Ejemplo n.º 1
0
    def run(self):
        """Run a lending experiment.

    Returns:
      A json encoding of the experiment result.
    """

        env, agent = self.scenario_builder()
        metrics = {
            'initial_credit_distribution':
            lending_metrics.CreditDistribution(env, step=0),
            'final_credit_distributions':
            lending_metrics.CreditDistribution(env, step=-1),
            'recall':
            error_metrics.RecallMetric(
                env,
                prediction_fn=lambda x: x.action,
                ground_truth_fn=lambda x: not x.state.will_default,
                stratify_fn=lambda x: str(x.state.group_id)),
            'precision':
            error_metrics.PrecisionMetric(
                env,
                prediction_fn=lambda x: x.action,
                ground_truth_fn=lambda x: not x.state.will_default,
                stratify_fn=lambda x: str(x.state.group_id)),
            'profit rate':
            value_tracking_metrics.ValueChange(env, state_var='bank_cash'),
        }

        if self.include_cumulative_loans:
            metrics['cumulative_loans'] = lending_metrics.CumulativeLoans(env)
            metrics['cumulative_recall'] = lending_metrics.CumulativeRecall(
                env)

        metric_results = run_util.run_simulation(env, agent, metrics,
                                                 self.num_steps, self.seed)
        report = {
            'environment': {
                'name': env.__class__.__name__,
                'params': env.initial_params,
                'history': env.history,
                'env': env
            },
            'agent': {
                'name': agent.__class__.__name__,
                'params': agent.params,
                'debug_string': agent.debug_string(),
                'threshold_history': agent.group_specific_threshold_history,
                'tpr_targets': agent.target_recall_history,
            },
            'experiment_params': self,
            'metric_results': metric_results,
        }
        if self.return_json:
            return core.to_json(report, indent=4)
        return report
Ejemplo n.º 2
0
  def test_recall_with_zero_denominator(self):
    env = test_util.DeterministicDummyEnv(test_util.DummyParams(dim=1))
    env.set_scalar_reward(rewards.NullReward())
    # Ground truth is always 0, recall will have a zero denominator.
    metric = error_metrics.RecallMetric(
        env=env,
        prediction_fn=lambda x: 0,
        ground_truth_fn=lambda x: 0,
        stratify_fn=lambda x: 1)

    measurement = test_util.run_test_simulation(
        env=env, agent=None, metric=metric, num_steps=50)
    self.assertEqual({1: 0}, measurement)
Ejemplo n.º 3
0
  def test_recall_metric_correct_for_atomic_prediction_rule(self):
    def _ground_truth_fn(history_item):
      state, _ = history_item
      return state.x[0]

    env = test_util.DeterministicDummyEnv(test_util.DummyParams(dim=1))
    env.set_scalar_reward(rewards.NullReward())
    # Always predict 1.
    metric = error_metrics.RecallMetric(
        env=env,
        prediction_fn=lambda x: 1,
        ground_truth_fn=_ground_truth_fn,
        stratify_fn=lambda x: 1)

    measurement = test_util.run_test_simulation(
        env=env, agent=None, metric=metric, num_steps=50)

    logging.info('Measurement: %s.', measurement)
    self.assertEqual({1: 1}, measurement)