Ejemplo n.º 1
0
 def testinit(self):
     n = 15
     P = [R1(i) for i in range(n)]
     M = MetricSpace(P)
     for j in range(n):
         for i in range(n - j):
             self.assertEqual(M.dist(P[i], P[i + j]), j)
Ejemplo n.º 2
0
def greedyHD(A: MetricSpace, B: MetricSpace):
    """
    Compute Hausdorff distance after taking greedy permutations of A and B.
    """
    A_g = MetricSpace(points = list(greedy(A)), dist = A.distfn, cache = A.cache, turnoffcache = A.turnoffcache)
    B_g = MetricSpace(points = list(greedy(B)), dist = B.distfn, cache = B.cache, turnoffcache = B.turnoffcache)
    return naiveHD(A_g, B_g)
 def testinit_with_center(self):
     M = MetricSpace([Point([2 * i, 2 * i]) for i in range(100)])
     MetricCell = Cell(MetricSpace())
     C = MetricCell(Point([99, 99]))
     for p in M:
         C.addpoint(p)
     self.assertEqual(len(C), 101)
Ejemplo n.º 4
0
 def testiter(self):
     """
     The iteration order should match the insertion order.
     """
     P = [R1(5), R1(2), R1(3)]
     M = MetricSpace(P)
     self.assertEqual(P, list(M))
     newpoint = R1(4)
     M.add(newpoint)
     self.assertEqual(P + [R1(4)], list(M))
 def testrebalance(self):
     a, b = Point([-1]), Point([200])
     G = NeighborGraph(MetricSpace([a, b]))
     MetricCell = Cell(MetricSpace())
     A = MetricCell(a)
     B = MetricCell(b)
     for i in range(200):
         B.addpoint(Point([i]))
     self.assertEqual(len(A), 1)
     self.assertEqual(len(B), 201)
     G.rebalance(A, B)
     self.assertEqual(len(B), 101)
     self.assertEqual(len(A), 101)
def test_points_on_a_line():
    P = [Point([i]) for i in range(100)]
    GP = list(onehopgreedy(MetricSpace(P), P[50]))
    assert(GP[0] == P[50])
    expected = [50, 16, 83]
    n = len(expected)
    assert(GP[:n] == [P[i] for i in expected])
Ejemplo n.º 7
0
    def testgreedytree_transportplan_mass(self):
        """
        This test determines that greedy() computes the correct transportation plan
        """
        greedy = self.implementation.greedy
        root = Point([0])
        P = MetricSpace([root] + [Point([x]) for x in [9, 3, 5, 18]])
        #gp = greedy(P, root, tree=False, gettransportplan = True)
        gp = greedy(P,
                    root,
                    tree=False,
                    gettransportplan=True,
                    mass=[2, 2, 2, 2, 2])

        # A case-wise assertion was needed because the way clarksongreedy.greedy works,
        # it looks into all neighbors which might have been changed when a new cell was
        # created. So the transportation plan has entries in the dictionary with 0 mass
        # moved. On the other hand quadraticgreedy.greedy stores points in the
        # transportation plan only if their reverse nearest neighbor changed.
        # So there are no 0 value keys here.
        if self.implementation == clarksongreedy:
            self.assertEqual(next(gp), (Point([0]), {Point([0]): 10}))
            self.assertEqual(next(gp), (Point([18]), {
                Point([0]): -2,
                Point([18]): 2
            }))
            self.assertEqual(next(gp), (Point([9]), {
                Point([9]): 4,
                Point([0]): -4,
                Point([18]): 0
            }))
            self.assertEqual(next(gp), (Point([5]), {
                Point([9]): -2,
                Point([0]): -2,
                Point([5]): 4
            }))
            self.assertEqual(next(gp), (Point([3]), {
                Point([9]): 0,
                Point([3]): 2,
                Point([5]): -2
            }))
        else:
            self.assertEqual(next(gp), (Point([0]), {Point([0]): 10}))
            self.assertEqual(next(gp), (Point([18]), {
                Point([0]): -2,
                Point([18]): 2
            }))
            self.assertEqual(next(gp), (Point([9]), {
                Point([9]): 4,
                Point([0]): -4
            }))
            self.assertEqual(next(gp), (Point([5]), {
                Point([9]): -2,
                Point([0]): -2,
                Point([5]): 4
            }))
            self.assertEqual(next(gp), (Point([3]), {
                Point([3]): 2,
                Point([5]): -2
            }))
Ejemplo n.º 8
0
 def test_smallinstance(self):
     k = 11
     # S = set(range(0, 100, 4))
     S = set(range(0, 100, 4)) | set(range(100, 200, 10))
     P = [Point([c]) for c in S]
     M = MetricSpace(P)
     output = list(knnsample(M, k, P[0]))
     print(len(output), output)
     self.assertTrue(len(output) >= len(S) / k)
Ejemplo n.º 9
0
 def testgreedy_exponential_example(self):
     greedy = self.implementation.greedy
     P = [Point([(-3)**i]) for i in range(100)]
     # print([str(p) for p in P])
     M = MetricSpace(P)
     gp = greedy(M, P[0])
     self.assertEqual(next(gp), P[0])
     self.assertEqual(next(gp), P[99])
     for i in range(98, 0, -1):
         self.assertEqual(next(gp), P[i])
 def testaddpoint(self):
     a, b, c = Point([1, 2]), Point([2, 3]), Point([3, 4])
     MetricCell = Cell(MetricSpace())
     C = MetricCell(a)
     self.assertEqual(len(C), 1)
     C.addpoint(b)
     self.assertEqual(len(C), 2)
     C.addpoint(c)
     self.assertEqual(len(C), 3)
     self.assertEqual(C.points, {a, b, c})
Ejemplo n.º 11
0
    def test_getitem_subspace(self):
        def dist(x: float, y: float):
            return abs(x - y)

        a = 1
        b = 5
        c = 9
        M = MetricSpace([a, b, c], dist)
        self.assertEqual(M[0], 1)
        M_1 = M[1:]
        self.assertEqual(M_1.dist(M_1[0], M_1[1]), 4)
Ejemplo n.º 12
0
    def testcaching(self):
        class TestPoint:
            def __init__(self):
                self.distances_computed = set()

            def dist(self, other):
                assert ((self, other) not in self.distances_computed)
                self.distances_computed.add((self, other))
                return 0

        a, b, c = TestPoint(), TestPoint(), TestPoint()
        M = MetricSpace([a, b])
        self.assertEqual(M.dist(a, b), 0)
        with self.assertRaises(AssertionError):
            a.dist(b)
        # Reversing operands also hits the cache.
        self.assertEqual(M.dist(b, a), 0)
        # Other distances can still be computed.
        self.assertEqual(a.dist(c), 0)
        self.assertEqual(b.dist(c), 0)
Ejemplo n.º 13
0
 def testgreedytree_example2(self):
     greedy = self.implementation.greedy
     P = [Point([c]) for c in [0, 100, 49, 25, 60, 12, 81]]
     M = MetricSpace(P)
     root = P[0]
     gt = list(greedy(M, root, tree=True))
     gp = [p for p, i in gt]
     ch = defaultdict(list)
     for p, i in greedy(M, root, tree=True):
         if i is not None:
             ch[gp[i]].append(p)
     self.assertEqual(gp, [P[i] for i in [0, 1, 2, 3, 6, 5, 4]])
 def testpop(self):
     a, b, c, d = Point([0, 0]), Point([100,
                                        0]), Point([0, 50]), Point([25, 25])
     MetricCell = Cell(MetricSpace())
     C = MetricCell(a)
     C.addpoint(b)
     C.addpoint(c)
     C.addpoint(d)
     self.assertEqual(C.pop(), b)
     self.assertEqual(C.pop(), c)
     self.assertEqual(C.pop(), d)
     self.assertEqual(C.pop(), None)
Ejemplo n.º 15
0
 def testgreedytree_randomexample(self):
     greedy = self.implementation.greedy
     root = Point([0])
     P = MetricSpace([root] +
                     [Point([x]) for x in [8, 12, 100, 40, 70, 1, 72]])
     gp = greedy(P, root, tree=True)
     self.assertEqual(next(gp), (Point([0]), None))
     self.assertEqual(next(gp), (Point([100]), 0))  # radius = 100
     self.assertEqual(next(gp), (Point([40]), 0))
     self.assertEqual(next(gp), (Point([70]), 1))
     self.assertEqual(next(gp), (Point([12]), 0))
     self.assertEqual(next(gp), (Point([8]), 4))
     self.assertEqual(next(gp), (Point([72]), 3))
 def testaddpoint_duplicatepoint(self):
     a, b = Point([1, 2]), Point([2, 3])
     MetricCell = Cell(MetricSpace())
     C = MetricCell(a)
     self.assertEqual(len(C), 1)
     C.addpoint(b)
     self.assertEqual(len(C), 2)
     # Add b a second time.
     C.addpoint(b)
     self.assertEqual(len(C), 2)
     self.assertEqual(C.points, {a, b})
     # Add the center again.
     C.addpoint(a)
     self.assertEqual(len(C), 2)
     self.assertEqual(C.points, {a, b})
Ejemplo n.º 17
0
    def testgreedytree_bigexample(self):
        greedy = self.implementation.greedy
        n = 600
        coords = set()
        while len(coords) < n:
            coords.add((randrange(100), randrange(100), randrange(100)))
        P = [Point(c) for c in coords]
        M = MetricSpace(P)

        GP = list(greedy(M, P[0], tree=True))
        radii = [p.dist(GP[i][0]) for p, i in GP if i is not None]
        # Check that the insertion radii are nonincreasing.
        for i in range(n - 2):
            self.assertTrue(radii[i] >= radii[i + 1],
                            str([i, radii[i], radii[i + 1]]))
Ejemplo n.º 18
0
def naiveDirectedHD(A: MetricSpace, B: MetricSpace, cmax: float = 0):
    """
    Compute directed Hausdorff distance naively in O(n^2) time.
    """
    for a in A:
        cmin = float('inf')
        cont = True
        for b in B:
            d = A.distfn(a,b)
            if d < cmax:
                cont = False
                break
            if d < cmin:
                cmin = d
        if cont and cmin > cmax:
            cmax = cmin
    return cmax
Ejemplo n.º 19
0
    def testgreedytree_example3(self):
        greedy = self.implementation.greedy
        P = [Point([c]) for c in [0, 1, 3, 5, 20, 30]]
        M = MetricSpace(P)
        gt = list(greedy(M, P[0], tree=True))
        gp = [p for p, i in gt]
        ch = defaultdict(set)
        for p, i in gt:
            if i is not None:
                ch[gp[i]].add(p)

        self.assertEqual(gp, [P[0], P[5], P[4], P[3], P[2], P[1]])
        self.assertEqual(ch[P[0]], {P[5], P[3], P[1]})
        self.assertEqual(ch[P[1]], set())
        self.assertEqual(ch[P[2]], set())
        self.assertEqual(ch[P[3]], {P[2]})
        self.assertEqual(ch[P[4]], set())
        self.assertEqual(ch[P[5]], {P[4]})
Ejemplo n.º 20
0
    def test_dist_and_distsq(self):
        class TestPoint(float):
            def dist(self, other):
                return 2 * abs(self - other)

        a = TestPoint(4)
        b = TestPoint(5)
        c = TestPoint(9)
        M = MetricSpace([a, b, c])
        self.assertEqual(M.dist(a, b), 2)
        self.assertEqual(M.dist(a, c), 10)
        self.assertEqual(M.dist(c, a), 10)
        self.assertEqual(M.dist(a, b), 2)  # still
        self.assertEqual(M.dist(c, b), 8)

        self.assertEqual(M.distsq(a, b), 4)
        self.assertEqual(M.distsq(a, c), 100)
        self.assertEqual(M.distsq(c, a), 100)
        self.assertEqual(M.distsq(a, b), 4)  # still
        self.assertEqual(M.distsq(c, b), 64)
    def testneighborsofneighborscondition(self):
        """ This somewhat long test was written to expose a bug where
        neighbors of the neighbor graph were not properly discovered.
        The construction highlights the need for the neighbor graph to be
        undirected.
        """
        a = L_inf([0, 2, 21, 11, 22, 19])
        aa = L_inf([2, 0, 19, 9, 20, 17])
        b = L_inf([21, 19, 0, 10, 21, 18])
        bb = L_inf([11, 9, 10, 0, 11, 8])
        c = L_inf([22, 20, 21, 11, 0, 3])
        cc = L_inf([19, 17, 18, 8, 3, 0])
        P = [a, aa, b, bb, c, cc]
        G = NeighborGraph(MetricSpace(P))
        self.assertEqual(len(G), 1)
        p = G.heap.findmax()
        self.assertEqual(p.center, a)
        self.assertEqual(p.pop(), c)
        G.addcell(c, p)
        self.assertEqual(len(G), 2)
        p = G.heap.findmax()
        self.assertEqual(p.pop(), b)
        G.addcell(b, p)
        V = {v.center: v for v in G.vertices()}
        self.assertEqual(set(V), {a, b, c})
        self.assertTrue(V[b] in G.nbrs(V[a]))
        self.assertTrue(V[a] in G.nbrs(V[b]))
        self.assertTrue(V[b] in G.nbrs(V[c]))
        self.assertTrue(V[c] in G.nbrs(V[b]))

        # Before adding aa.
        self.assertTrue(bb in V[b])
        self.assertEqual(V[a].pop(), aa)
        G.addcell(aa, V[a])
        V = {v.center: v for v in G.vertices()}
        # After adding aa.
        self.assertTrue(cc in V[c])
        self.assertTrue(bb in V[aa])
        self.assertTrue(bb.dist(cc) < bb.dist(aa))
        # That means that we should have an edge from c to aa.
        self.assertTrue(V[aa] in G.nbrs(V[c]))
 def testdist(self):
     MetricCell = Cell(MetricSpace())
     A = MetricCell(Point([2, 3]))
     self.assertEqual(A.dist(Point([7, 3])), 5)
     self.assertEqual(A.dist(A.center), 0)
     self.assertEqual(A.dist(Point([7, 15])), 13)
 def testupdateradius_empty_cell(self):
     MetricCell = Cell(MetricSpace())
     C = MetricCell(Point([1, 2, 3]))
     C.updateradius()
     self.assertEqual(C.radius, 0)
Ejemplo n.º 24
0
def naiveHD(A: MetricSpace, B: MetricSpace, cmax: float = 0):
    """
    Compute the Hausdorff distance naively using 2 calls to naiveDirectedHD
    """
    return max(naiveDirectedHD(A, B, cmax), naiveDirectedHD(B, A, cmax))

def greedyHD(A: MetricSpace, B: MetricSpace):
    """
    Compute Hausdorff distance after taking greedy permutations of A and B.
    """
    A_g = MetricSpace(points = list(greedy(A)), dist = A.distfn, cache = A.cache, turnoffcache = A.turnoffcache)
    B_g = MetricSpace(points = list(greedy(B)), dist = B.distfn, cache = B.cache, turnoffcache = B.turnoffcache)
    return naiveHD(A_g, B_g)

def l_inf(p: Point, q: Point):
    return max(abs(p[0] - q[0]), abs(p[1] - q[1]))

M = 300
N = 350
seed(0)

points = [Point([randrange(5, M-5), randrange(5,M-5)]) for i in range(N)]
points = list(dict.fromkeys(points))

X = MetricSpace(points = points, dist=l_inf)
A = X[:N//2]
B = X[N//2:]

print(naiveHD(A, B))

print(greedyHD(A, B))
Ejemplo n.º 25
0
 def testinit(self):
     n = 9
     P = [Point((i, 0, j, 0)) for i in range(n) for j in range(n)]
     M = MetricSpace(P)
     MDS(M)
Ejemplo n.º 26
0
 def setUp(self):
     self.P = [Point([c]) for c in [0, 100, 49, 25, 60, 12, 81]]
     self.M = MetricSpace(self.P)
Ejemplo n.º 27
0
 def testinit_empty(self):
     M = MetricSpace()
 def testbasicusage(self):
     G = NeighborGraph(MetricSpace([Point([i, i]) for i in range(100)]))
Ejemplo n.º 29
0
 def metricspace(self, target_dimension=False):
     n = len(self.M)
     return MetricSpace([NumpyPoint(self.Q[i]) for i in range(n)])
Ejemplo n.º 30
0
 def testgreedy(self):
     greedy = self.implementation.greedy
     P = [Point([i]) for i in range(3)]
     M = MetricSpace(P)
     gp = list(greedy(M, P[0]))
     self.assertEqual(gp, [P[0], P[2], P[1]])