def build_stamp(self, page_num=0, layout="", view=None): if True: coast_empty = mv.mcoast( map_coastline="off", map_grid="off", map_label="off" ) empty_view = mv.geoview( page_frame="off", subpage_frame="off", coastlines=coast_empty, subpage_x_position=40, subpage_x_length=10, subpage_y_length=10, ) title_page = mv.plot_page( top=0, bottom=5, left=30, right=70, view=empty_view ) r, c = self._grid_row_col(page_num=page_num, layout=layout) pages = mv.mvl_regular_layout(view, c, r, 1, 1, [5, 100, 15, 100]) pages.append(title_page) return mv.plot_superpage(pages=pages)
def test_met_plot(): contour = mv.mcont({ 'CONTOUR_LINE_COLOUR': 'PURPLE', 'CONTOUR_LINE_THICKNESS': 3, 'CONTOUR_HIGHLIGHT': False }) coast = mv.mcoast({'MAP_COASTLINE_LAND_SHADE': True}) bindings.met_plot(TEST_FIELDSET, contour, coast)
def plot_obs_freq(predictor_matrix, code): coastline = mv.mcoast(map_coastline_thickness=2, map_boundaries="on", map_coastline_colour="chestnut") symbol = mv.msymb( legend="on", symbol_type="marker", symbol_table_mode="on", symbol_outline="on", symbol_min_table=[1, 2, 5, 10, 15, 20, 25, 30], symbol_max_table=[2, 5, 10, 15, 20, 25, 30, 100000], symbol_colour_table=[ "RGB(0.7020,0.7020,0.7020)", "RGB(0.4039,0.4039,0.4039)", "blue", "RGB(0.4980,1.0000,0.0000)", "RGB(1.0000,0.8549,0.0000)", "orange", "red", "magenta", ], symbol_marker_table=15, symbol_height_table=0.3, ) legend = mv.mlegend( legend_text_font="arial", legend_text_font_size=0.35, legend_entry_plot_direction="row", legend_box_blanking="on", legend_entry_text_width=50, ) title = mv.mtext( text_line_count=4, text_line_1= "OBS Frequency", # To sostitute with "FE" values when relevant. text_line_2=f"WT Code = {code}", text_line_4=" ", text_font="arial", text_font_size=0.4, ) df = predictor_matrix[["LonOBS", "LatOBS", "OBS"]] grouped_df = df.groupby(["LatOBS", "LonOBS"], as_index=False).count() geo = mv.create_geo(len(grouped_df), "xyv") geo = mv.set_latitudes(geo, grouped_df["LatOBS"].to_numpy(dtype=np.float)) geo = mv.set_longitudes(geo, grouped_df["LonOBS"].to_numpy(dtype=np.float)) geo = mv.set_values(geo, grouped_df["OBS"].to_numpy(dtype=np.float)) with NamedTemporaryFile(delete=False, suffix=".pdf") as pdf: pdf_obj = mv.pdf_output(output_name=pdf.name.replace(".pdf", "")) mv.setoutput(pdf_obj) mv.plot(coastline, symbol, legend, title, geo) return pdf.name
def plot_std(predictor_matrix, code): coastline = mv.mcoast(map_coastline_thickness=2, map_boundaries="on", map_coastline_colour="chestnut") symbol = mv.msymb( legend="on", symbol_type="marker", symbol_table_mode="on", symbol_outline="on", symbol_min_table=[0, 0.0001, 0.5, 1, 2, 5], symbol_max_table=[0.0001, 0.5, 1, 2, 5, 1000], symbol_colour_table=[ "RGB(0.7020,0.7020,0.7020)", "RGB(0.2973,0.2973,0.9498)", "RGB(0.1521,0.6558,0.5970)", "RGB(1.0000,0.6902,0.0000)", "red", "RGB(1.0000,0.0000,1.0000)", ], symbol_marker_table=15, symbol_height_table=0.3, ) legend = mv.mlegend( legend_text_font="arial", legend_text_font_size=0.35, legend_entry_plot_direction="row", legend_box_blanking="on", legend_entry_text_width=50, ) error = "FER" if "FER" in predictor_matrix.columns else "FE" title = mv.mtext( text_line_count=4, text_line_1=f"{error} Standard Deviation", text_line_2=f"WT Code = {code}", text_line_4=" ", text_font="arial", text_font_size=0.4, ) df = predictor_matrix[["LonOBS", "LatOBS", error]] grouped_df = df.groupby(["LatOBS", "LonOBS"])[error].mean().reset_index() geo = mv.create_geo(len(grouped_df), "xyv") geo = mv.set_latitudes(geo, grouped_df["LatOBS"].to_numpy(dtype=np.float)) geo = mv.set_longitudes(geo, grouped_df["LonOBS"].to_numpy(dtype=np.float)) geo = mv.set_values(geo, grouped_df[error].to_numpy(dtype=np.float)) with NamedTemporaryFile(delete=False, suffix=".pdf") as pdf: pdf_obj = mv.pdf_output(output_name=pdf.name.replace(".pdf", "")) mv.setoutput(pdf_obj) mv.plot(coastline, symbol, legend, title, geo) return pdf.name
def plot_avg(predictor_matrix, code): coastline = mv.mcoast(map_coastline_thickness=2, map_boundaries="on", map_coastline_colour="chestnut") symbol = mv.msymb( legend="on", symbol_type="marker", symbol_table_mode="on", symbol_outline="on", symbol_min_table=[-1, -0.25, 0.25, 2], symbol_max_table=[-0.025, 0.25, 2, 1000], symbol_colour_table=[ "RGB(0.0000,0.5490,0.1882)", "black", "RGB(1.0000,0.6902,0.0000)", "red", ], symbol_marker_table=15, symbol_height_table=0.3, ) legend = mv.mlegend( legend_text_font="arial", legend_text_font_size=0.35, legend_entry_plot_direction="row", legend_box_blanking="on", legend_entry_text_width=50, ) error = "FER" if "FER" in predictor_matrix.columns else "FE" title = mv.mtext( text_line_count=4, text_line_1=f"{error} Mean", text_line_2=f"WT Code = {code}", text_line_4=" ", text_font="arial", text_font_size=0.4, ) df = predictor_matrix[["LonOBS", "LatOBS", error]] grouped_df = df.groupby(["LatOBS", "LonOBS"])[error].mean().reset_index() geo = mv.create_geo(len(grouped_df), "xyv") geo = mv.set_latitudes(geo, grouped_df["LatOBS"].to_numpy(dtype=np.float)) geo = mv.set_longitudes(geo, grouped_df["LonOBS"].to_numpy(dtype=np.float)) geo = mv.set_values(geo, grouped_df[error].to_numpy(dtype=np.float)) return plot_geo(geo, coastline, symbol, legend, title)
def test_definitions(): mcont_def = mv.mcont({'legend': True}) msymb_def = mv.msymb({'symbol_type': 'marker'}) mcoast_def = mv.mcoast({'map_coastline_land_shade': True}) mobs_def = mv.mobs({'obs_temperature': False}) mtext_def = mv.mtext({'text_font_size': '0.80'}) geoview_def = mv.geoview({'map_projection': 'polar_stereographic'}) ps_output_def = mv.ps_output({'output_name': 'test'}) assert mcont_def['LEGEND'] == 'ON' assert msymb_def['SYMBOL_TYPE'] == 'MARKER' assert mcoast_def['MAP_COASTLINE_LAND_SHADE'] == 'ON' assert mobs_def['OBS_TEMPERATURE'] == 'OFF' assert mtext_def['TEXT_FONT_SIZE'] == 0.8 assert geoview_def['MAP_PROJECTION'] == 'POLAR_STEREOGRAPHIC' assert ps_output_def['OUTPUT_NAME'] == 'test'
to alter its plotting style -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- 3. Python analyst reads BUFR data and filters a single parameter from it and plots it with a colour scale -------------------------------------------------------------------------------- """ import metview as mv # define a view over the area of interest and set land shading on land_shade = mv.mcoast( map_coastline_land_shade=True, map_coastline_land_shade_colour="RGB(0.98,0.95,0.82)", map_coastline_sea_shade=False, map_coastline_sea_shade_colour="RGB(0.85,0.93,1)", ) area_view = mv.geoview( map_area_definition="corners", area=[45.83, -13.87, 62.03, 8.92], coastlines=land_shade, ) # Simplest plot: # NOTE that when plotting a 'raw' BUFR file, Magics will plot synop symbols as shown in # https://software.ecmwf.int/wiki/display/METV/Data+Part+1 "Plotting BUFR Data" obs = mv.read("../tests/obs_3day.bufr")