Ejemplo n.º 1
0
    def build_stamp(self, page_num=0, layout="", view=None):

        if True:
            coast_empty = mv.mcoast(
                map_coastline="off", map_grid="off", map_label="off"
            )

            empty_view = mv.geoview(
                page_frame="off",
                subpage_frame="off",
                coastlines=coast_empty,
                subpage_x_position=40,
                subpage_x_length=10,
                subpage_y_length=10,
            )

            title_page = mv.plot_page(
                top=0, bottom=5, left=30, right=70, view=empty_view
            )

        r, c = self._grid_row_col(page_num=page_num, layout=layout)

        pages = mv.mvl_regular_layout(view, c, r, 1, 1, [5, 100, 15, 100])
        pages.append(title_page)
        return mv.plot_superpage(pages=pages)
Ejemplo n.º 2
0
def test_met_plot():
    contour = mv.mcont({
        'CONTOUR_LINE_COLOUR': 'PURPLE',
        'CONTOUR_LINE_THICKNESS': 3,
        'CONTOUR_HIGHLIGHT': False
    })
    coast = mv.mcoast({'MAP_COASTLINE_LAND_SHADE': True})
    bindings.met_plot(TEST_FIELDSET, contour, coast)
def plot_obs_freq(predictor_matrix, code):
    coastline = mv.mcoast(map_coastline_thickness=2,
                          map_boundaries="on",
                          map_coastline_colour="chestnut")
    symbol = mv.msymb(
        legend="on",
        symbol_type="marker",
        symbol_table_mode="on",
        symbol_outline="on",
        symbol_min_table=[1, 2, 5, 10, 15, 20, 25, 30],
        symbol_max_table=[2, 5, 10, 15, 20, 25, 30, 100000],
        symbol_colour_table=[
            "RGB(0.7020,0.7020,0.7020)",
            "RGB(0.4039,0.4039,0.4039)",
            "blue",
            "RGB(0.4980,1.0000,0.0000)",
            "RGB(1.0000,0.8549,0.0000)",
            "orange",
            "red",
            "magenta",
        ],
        symbol_marker_table=15,
        symbol_height_table=0.3,
    )

    legend = mv.mlegend(
        legend_text_font="arial",
        legend_text_font_size=0.35,
        legend_entry_plot_direction="row",
        legend_box_blanking="on",
        legend_entry_text_width=50,
    )

    title = mv.mtext(
        text_line_count=4,
        text_line_1=
        "OBS Frequency",  # To sostitute with "FE" values when relevant.
        text_line_2=f"WT Code = {code}",
        text_line_4=" ",
        text_font="arial",
        text_font_size=0.4,
    )

    df = predictor_matrix[["LonOBS", "LatOBS", "OBS"]]
    grouped_df = df.groupby(["LatOBS", "LonOBS"], as_index=False).count()

    geo = mv.create_geo(len(grouped_df), "xyv")
    geo = mv.set_latitudes(geo, grouped_df["LatOBS"].to_numpy(dtype=np.float))
    geo = mv.set_longitudes(geo, grouped_df["LonOBS"].to_numpy(dtype=np.float))
    geo = mv.set_values(geo, grouped_df["OBS"].to_numpy(dtype=np.float))

    with NamedTemporaryFile(delete=False, suffix=".pdf") as pdf:
        pdf_obj = mv.pdf_output(output_name=pdf.name.replace(".pdf", ""))
        mv.setoutput(pdf_obj)

        mv.plot(coastline, symbol, legend, title, geo)
        return pdf.name
def plot_std(predictor_matrix, code):
    coastline = mv.mcoast(map_coastline_thickness=2,
                          map_boundaries="on",
                          map_coastline_colour="chestnut")

    symbol = mv.msymb(
        legend="on",
        symbol_type="marker",
        symbol_table_mode="on",
        symbol_outline="on",
        symbol_min_table=[0, 0.0001, 0.5, 1, 2, 5],
        symbol_max_table=[0.0001, 0.5, 1, 2, 5, 1000],
        symbol_colour_table=[
            "RGB(0.7020,0.7020,0.7020)",
            "RGB(0.2973,0.2973,0.9498)",
            "RGB(0.1521,0.6558,0.5970)",
            "RGB(1.0000,0.6902,0.0000)",
            "red",
            "RGB(1.0000,0.0000,1.0000)",
        ],
        symbol_marker_table=15,
        symbol_height_table=0.3,
    )

    legend = mv.mlegend(
        legend_text_font="arial",
        legend_text_font_size=0.35,
        legend_entry_plot_direction="row",
        legend_box_blanking="on",
        legend_entry_text_width=50,
    )

    error = "FER" if "FER" in predictor_matrix.columns else "FE"

    title = mv.mtext(
        text_line_count=4,
        text_line_1=f"{error} Standard Deviation",
        text_line_2=f"WT Code = {code}",
        text_line_4=" ",
        text_font="arial",
        text_font_size=0.4,
    )

    df = predictor_matrix[["LonOBS", "LatOBS", error]]
    grouped_df = df.groupby(["LatOBS", "LonOBS"])[error].mean().reset_index()

    geo = mv.create_geo(len(grouped_df), "xyv")
    geo = mv.set_latitudes(geo, grouped_df["LatOBS"].to_numpy(dtype=np.float))
    geo = mv.set_longitudes(geo, grouped_df["LonOBS"].to_numpy(dtype=np.float))
    geo = mv.set_values(geo, grouped_df[error].to_numpy(dtype=np.float))

    with NamedTemporaryFile(delete=False, suffix=".pdf") as pdf:
        pdf_obj = mv.pdf_output(output_name=pdf.name.replace(".pdf", ""))
        mv.setoutput(pdf_obj)

        mv.plot(coastline, symbol, legend, title, geo)
        return pdf.name
def plot_avg(predictor_matrix, code):
    coastline = mv.mcoast(map_coastline_thickness=2,
                          map_boundaries="on",
                          map_coastline_colour="chestnut")

    symbol = mv.msymb(
        legend="on",
        symbol_type="marker",
        symbol_table_mode="on",
        symbol_outline="on",
        symbol_min_table=[-1, -0.25, 0.25, 2],
        symbol_max_table=[-0.025, 0.25, 2, 1000],
        symbol_colour_table=[
            "RGB(0.0000,0.5490,0.1882)",
            "black",
            "RGB(1.0000,0.6902,0.0000)",
            "red",
        ],
        symbol_marker_table=15,
        symbol_height_table=0.3,
    )

    legend = mv.mlegend(
        legend_text_font="arial",
        legend_text_font_size=0.35,
        legend_entry_plot_direction="row",
        legend_box_blanking="on",
        legend_entry_text_width=50,
    )

    error = "FER" if "FER" in predictor_matrix.columns else "FE"

    title = mv.mtext(
        text_line_count=4,
        text_line_1=f"{error} Mean",
        text_line_2=f"WT Code = {code}",
        text_line_4=" ",
        text_font="arial",
        text_font_size=0.4,
    )

    df = predictor_matrix[["LonOBS", "LatOBS", error]]
    grouped_df = df.groupby(["LatOBS", "LonOBS"])[error].mean().reset_index()

    geo = mv.create_geo(len(grouped_df), "xyv")
    geo = mv.set_latitudes(geo, grouped_df["LatOBS"].to_numpy(dtype=np.float))
    geo = mv.set_longitudes(geo, grouped_df["LonOBS"].to_numpy(dtype=np.float))
    geo = mv.set_values(geo, grouped_df[error].to_numpy(dtype=np.float))

    return plot_geo(geo, coastline, symbol, legend, title)
Ejemplo n.º 6
0
def test_definitions():
    mcont_def = mv.mcont({'legend': True})
    msymb_def = mv.msymb({'symbol_type': 'marker'})
    mcoast_def = mv.mcoast({'map_coastline_land_shade': True})
    mobs_def = mv.mobs({'obs_temperature': False})
    mtext_def = mv.mtext({'text_font_size': '0.80'})
    geoview_def = mv.geoview({'map_projection': 'polar_stereographic'})
    ps_output_def = mv.ps_output({'output_name': 'test'})
    assert mcont_def['LEGEND'] == 'ON'
    assert msymb_def['SYMBOL_TYPE'] == 'MARKER'
    assert mcoast_def['MAP_COASTLINE_LAND_SHADE'] == 'ON'
    assert mobs_def['OBS_TEMPERATURE'] == 'OFF'
    assert mtext_def['TEXT_FONT_SIZE'] == 0.8
    assert geoview_def['MAP_PROJECTION'] == 'POLAR_STEREOGRAPHIC'
    assert ps_output_def['OUTPUT_NAME'] == 'test'
Ejemplo n.º 7
0
   to alter its plotting style
--------------------------------------------------------------------------------

--------------------------------------------------------------------------------
3. Python analyst reads BUFR data and filters a single parameter from it
   and plots it with a colour scale
--------------------------------------------------------------------------------

"""
import metview as mv

# define a view over the area of interest and set land shading on

land_shade = mv.mcoast(
    map_coastline_land_shade=True,
    map_coastline_land_shade_colour="RGB(0.98,0.95,0.82)",
    map_coastline_sea_shade=False,
    map_coastline_sea_shade_colour="RGB(0.85,0.93,1)",
)

area_view = mv.geoview(
    map_area_definition="corners",
    area=[45.83, -13.87, 62.03, 8.92],
    coastlines=land_shade,
)

# Simplest plot:
# NOTE that when plotting a 'raw' BUFR file, Magics will plot synop symbols as shown in
# https://software.ecmwf.int/wiki/display/METV/Data+Part+1 "Plotting BUFR Data"

obs = mv.read("../tests/obs_3day.bufr")