Ejemplo n.º 1
0
def spaceJump(ref=None, space=None, *args):
    """
    This function create a local reference space from another space in the hierarchy

    Args:
        ref (None, optional): Transform reference
        space (None, optional): Space reference
        *args: Maya dummy

    Returns:
        pyNode: Transform
    """

    if not ref and not space:
        if len(pm.selected())==2:
            ref = pm.selected()[0]
            space = pm.selected()[1]
        else:
            pm.displayWarning("Please select 2 objects. Reference Space  and Jump Space")
            return

    refLocal = pri.addTransform(ref, ref.name()+"_SPACE_"+space.name(), space.getMatrix(worldSpace=True))
    spaceLocal = pri.addTransform(space, ref.name()+"_JUMP_"+space.name(), space.getMatrix(worldSpace=True))

    aop.gear_mulmatrix_op(refLocal.attr("worldMatrix"), spaceLocal.attr("parentInverseMatrix[0]"), spaceLocal)

    pm.displayInfo("Jump Space for local space: " + space.name() + "created")
    return spaceLocal
Ejemplo n.º 2
0
def createInterpolateTransform(objects=None, blend=.5, *args):
    """
    Create space locator and apply gear_intmatrix_op, to interpolate the his pose between 2 selected objects.

    Args:
        objects (None or list of 2 dagNode, optional): The 2 dagNode to interpolate the transform.
        blend (float, optional): The interpolation blend factor.
        *args: Maya's dummy

    Returns:
        pyNode: The new transformation witht the interpolate matrix node applied.
    """
    if objects or len(pm.selected()) >= 2:
        if objects:
            refA = objects[0]
            refB = objects[1]

        else :
            refA = pm.selected()[0]
            refB = pm.selected()[1]

        intMatrix = aop.gear_intmatrix_op(refA.attr("worldMatrix"), refB.attr("worldMatrix"), blend)
        intTrans = pri.addTransform(refA, refA.name()+"_INTER_"+refB.name(), dt.Matrix())
        aop.gear_mulmatrix_op(intMatrix.attr("output"), intTrans.attr("parentInverseMatrix[0]"), intTrans)
        pm.displayInfo("Interpolated Transform: " + intTrans.name() + " created")
    else:
        pm.displayWarning("Please select 2 objects. ")
        return

    return intTrans
Ejemplo n.º 3
0
    def addOperators(self):
        aim_base = aop.aimCns(self.ref_base,
                              self.tip_ctl,
                              axis="yx",
                              wupType=2,
                              wupVector=[1, 0, 0],
                              wupObject=self.ctl,
                              maintainOffset=False)
        aim_tip = aop.aimCns(self.ref_tip,
                             self.ctl,
                             axis="-yx",
                             wupType=2,
                             wupVector=[1, 0, 0],
                             wupObject=self.tip_ctl,
                             maintainOffset=False)
        bIncrement = 1.0 / (self.settings["div"] - 1)
        blend = 0
        for i, div_cns in enumerate(self.div_cns):
            intMatrix = aop.gear_intmatrix_op(
                self.ref_base.attr("worldMatrix"),
                self.ref_tip.attr("worldMatrix"), blend)
            aop.gear_mulmatrix_op(intMatrix.attr("output"),
                                  div_cns.attr("parentInverseMatrix[0]"),
                                  div_cns)

            blend = blend + bIncrement
Ejemplo n.º 4
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        applyop.aimCns(self.ref_base,
                       self.tip_ctl,
                       axis="yx",
                       wupType=2,
                       wupVector=[1, 0, 0],
                       wupObject=self.ctl,
                       maintainOffset=False)
        applyop.aimCns(self.ref_tip,
                       self.ctl,
                       axis="-yx",
                       wupType=2,
                       wupVector=[1, 0, 0],
                       wupObject=self.tip_ctl,
                       maintainOffset=False)

        bIncrement = 1.0 / (self.settings["div"] - 1)
        blend = 0
        for i, div_cns in enumerate(self.div_cns):
            intMatrix = applyop.gear_intmatrix_op(
                self.ref_base.attr("worldMatrix"),
                self.ref_tip.attr("worldMatrix"), blend)

            applyop.gear_mulmatrix_op(intMatrix.attr("output"),
                                      div_cns.attr("parentInverseMatrix[0]"),
                                      div_cns)

            blend = blend + bIncrement
Ejemplo n.º 5
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators/Solvers, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        applyop.aimCns(self.ref_base,
                       self.squash_ctl,
                       axis="yx",
                       wupType=2,
                       wupVector=[1, 0, 0],
                       wupObject=self.ctl,
                       maintainOffset=False)
        applyop.aimCns(self.ref_squash,
                       self.ctl,
                       axis="-yx",
                       wupType=2,
                       wupVector=[1, 0, 0],
                       wupObject=self.squash_ctl,
                       maintainOffset=False)
        bIncrement = 1.0
        blend = 0
        for i, div_cns in enumerate(self.div_cns):
            intMatrix = applyop.gear_intmatrix_op(
                self.ref_base.attr("worldMatrix"),
                self.ref_squash.attr("worldMatrix"), blend)

            applyop.gear_mulmatrix_op(intMatrix.attr("output"),
                                      div_cns.attr("parentInverseMatrix[0]"),
                                      div_cns)

            blend = blend + bIncrement

        d = vector.getDistance(self.guide.apos[0], self.guide.apos[1])
        dist_node = node.createDistNode(self.squash_ctl, self.ctl)

        rootWorld_node = node.createDecomposeMatrixNode(
            self.ctl.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleY")

        div_node = node.createDivNode(div_node + ".outputX", d)
        rev_node = node.createReverseNode(div_node + ".outputX")
        add_node = pm.createNode("plusMinusAverage")

        add_node.input1D[0].set(1.0)
        rev_node.outputX >> add_node.input1D[1]

        div_node.outputX >> self.ref_base.scaleY
        add_node.output1D >> self.ref_base.scaleX
        add_node.output1D >> self.ref_base.scaleZ
Ejemplo n.º 6
0
def _createSoftModTweak(baseCtl, tweakCtl, name, targets):

    sm = pm.softMod(targets, wn=[tweakCtl, tweakCtl])
    pm.rename(sm[0], "{}_softMod".format(name))

    # disconnect default connection
    plugs = sm[0].softModXforms.listConnections(p=True)
    for p in plugs:
        pm.disconnectAttr(p, sm[0].softModXforms)
        pm.delete(p.node())

    dm_node = node.createDecomposeMatrixNode(baseCtl.worldMatrix[0])
    pm.connectAttr(dm_node.outputTranslate, sm[0].falloffCenter)
    mul_node = node.createMulNode(dm_node.outputScaleX,
                                  tweakCtl.attr("falloff"))
    pm.connectAttr(mul_node.outputX, sm[0].falloffRadius)
    mulMatrix_node = applyop.gear_mulmatrix_op(tweakCtl.worldMatrix[0],
                                               tweakCtl.parentInverseMatrix[0])
    pm.connectAttr(mulMatrix_node.output, sm[0].weightedMatrix)
    pm.connectAttr(baseCtl.worldInverseMatrix[0], sm[0].postMatrix)
    pm.connectAttr(baseCtl.worldMatrix[0], sm[0].preMatrix)
    attribute.addAttribute(sm[0], "_isSoftTweak", "bool", False, keyable=False)

    sm[0].addAttr("ctlRoot", at='message', m=False)
    sm[0].addAttr("ctlBase", at='message', m=False)
    sm[0].addAttr("ctlTweak", at='message', m=False)
    pm.connectAttr(baseCtl.getParent().attr("message"), sm[0].attr("ctlRoot"))
    pm.connectAttr(baseCtl.attr("message"), sm[0].attr("ctlBase"))
    pm.connectAttr(tweakCtl.attr("message"), sm[0].attr("ctlTweak"))

    return sm[0]
Ejemplo n.º 7
0
 def addOperators(self):
     if self.negate:
         node = aop.aimCns(self.mtx,
                           self.end,
                           axis="-xy",
                           wupType=4,
                           wupVector=[0, 1, 0],
                           wupObject=self.mtx,
                           maintainOffset=False)
     else:
         node = aop.aimCns(self.mtx,
                           self.end,
                           axis="xy",
                           wupType=4,
                           wupVector=[0, 1, 0],
                           wupObject=self.mtx,
                           maintainOffset=False)
     # position constrint loc to ref
     node = aop.gear_mulmatrix_op(self.end.attr("worldMatrix"),
                                  self.loc.attr("parentInverseMatrix"))
     dm_node = pm.createNode("decomposeMatrix")
     pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
     pb_node = pm.createNode("pairBlend")
     # move back a little bit to avoid overlapping with limb jts
     pm.setAttr(pb_node + ".weight", 0.98)
     pm.connectAttr(dm_node + ".outputTranslate", pb_node + ".inTranslate2")
     pm.connectAttr(pb_node + ".outTranslate", self.loc.attr("translate"))
     return
Ejemplo n.º 8
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        if self.negate:
            o_node = applyop.aimCns(self.mtx,
                                    self.end,
                                    axis="-xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.mtx,
                                    maintainOffset=False)
        else:
            o_node = applyop.aimCns(self.mtx,
                                    self.end,
                                    axis="xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.mtx,
                                    maintainOffset=False)

        # position constrint loc to ref
        o_node = applyop.gear_mulmatrix_op(
            self.end.attr("worldMatrix"), self.loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pb_node = pm.createNode("pairBlend")
        # move back a little bit to avoid overlapping with limb jts
        pm.setAttr(pb_node + ".weight", 0.98)
        pm.connectAttr(dm_node + ".outputTranslate", pb_node + ".inTranslate2")
        pm.connectAttr(pb_node + ".outTranslate", self.loc.attr("translate"))
Ejemplo n.º 9
0
    def addOperators(self):
        aop.aimCns(self.ref_base,
                   self.squash_ctl,
                   axis="yx",
                   wupType=2,
                   wupVector=[1, 0, 0],
                   wupObject=self.ctl,
                   maintainOffset=False)
        aop.aimCns(self.ref_squash,
                   self.ctl,
                   axis="-yx",
                   wupType=2,
                   wupVector=[1, 0, 0],
                   wupObject=self.squash_ctl,
                   maintainOffset=False)
        bIncrement = 1.0
        blend = 0
        for i, div_cns in enumerate(self.div_cns):
            intMatrix = aop.gear_intmatrix_op(
                self.ref_base.attr("worldMatrix"),
                self.ref_squash.attr("worldMatrix"), blend)
            aop.gear_mulmatrix_op(intMatrix.attr("output"),
                                  div_cns.attr("parentInverseMatrix[0]"),
                                  div_cns)

            blend = blend + bIncrement

        d = vec.getDistance(self.guide.apos[0], self.guide.apos[1])
        dist_node = nod.createDistNode(self.squash_ctl, self.ctl)
        rootWorld_node = nod.createDecomposeMatrixNode(
            self.ctl.attr("worldMatrix"))
        div_node = nod.createDivNode(dist_node + ".distance",
                                     rootWorld_node + ".outputScaleY")
        div_node = nod.createDivNode(div_node + ".outputX", d)
        rev_node = nod.createReverseNode(div_node + ".outputX")
        add_node = pm.createNode("plusMinusAverage")

        add_node.input1D[0].set(1.0)
        rev_node.outputX >> add_node.input1D[1]

        div_node.outputX >> self.ref_base.scaleY
        add_node.output1D >> self.ref_base.scaleX
        add_node.output1D >> self.ref_base.scaleZ
Ejemplo n.º 10
0
def createInterpolateTransform(*args):
    """
    Create space locator and apply gear_intmatrix_op, to interpolate the his pose between 2 selected objects.
    """

    if len(pm.selected()) == 2:
        refA = pm.selected()[0]
        refB = pm.selected()[1]
        intMatrix = aop.gear_intmatrix_op(refA.attr("worldMatrix"),
                                          refB.attr("worldMatrix"), .5)
        intTrans = pri.addTransform(refA,
                                    refA.name() + "_INTER_" + refB.name(),
                                    dt.Matrix())
        aop.gear_mulmatrix_op(intMatrix.attr("output"),
                              intTrans.attr("parentInverseMatrix[0]"),
                              intTrans)
        pm.displayInfo("Interpolated Transform: " + intTrans.name() +
                       "created")
    else:
        pm.displayWarning("Please select 2 objects. ")
Ejemplo n.º 11
0
    def addShadow(self, obj, name):

        if self.options["shadow_rig"]:
            shd = pri.addJoint(self.shd_org, self.getName(str(name)+"_shd"), tra.getTransform(obj))
            shd.setAttr("jointOrient", 0, 0, 0)
            # parentConstraint(obj, shd, maintainOffset=False)
            # scaleConstraint(obj, shd, maintainOffset=False)
            mulmat_node = aop.gear_mulmatrix_op(obj+".worldMatrix", shd+".parentInverseMatrix")
            dm_node = nod.createDecomposeMatrixNode(mulmat_node+".output")
            connectAttr(dm_node+".outputTranslate", shd+".t")
            connectAttr(dm_node+".outputRotate", shd+".r")
            connectAttr(dm_node+".outputScale", shd+".s")
            self.shd_org = shd
        else:
            shd = pri.addJoint(obj, self.getName(str(name)+"_shd"), tra.getTransform(obj))
            shd.setAttr("jointOrient", 0, 0, 0)
            shd.setAttr("rotate", 0, 0, 0)
            connectAttr(self.rig.shdVis_att, shd.attr("visibility"))

        self.addToGroup(shd, "deformers")
        return shd
Ejemplo n.º 12
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # 1 bone chain Upv ref ==============================================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root,
            self.getName("ikHandleArmChainUpvRef"),
            self.armChainUpvRef,
            "ikSCsolver")
        pm.pointConstraint(self.ik_ctl,
                           self.ikHandleUpvRef)
        pm.parentConstraint(self.armChainUpvRef[0],
                            self.upv_cns,
                            mo=True)

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        if self.settings["ikTR"]:
            for shp in self.ikRot_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        attribute.setRotOrder(self.fk0_ctl, "XZY")
        attribute.setRotOrder(self.fk1_ctl, "XYZ")
        attribute.setRotOrder(self.fk2_ctl, "YZX")
        attribute.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out,
                                           self.root,
                                           self.ik_ref,
                                           self.upv_ctl,
                                           self.fk_ctl[0],
                                           self.fk_ctl[1],
                                           self.fk_ref,
                                           self.length0,
                                           self.length1,
                                           self.negate)

        if self.settings["ikTR"]:
            # connect the control inputs
            outEff_dm = o_node.listConnections(c=True)[-1][1]

            inAttr = self.ikRot_npo.attr("translate")
            outEff_dm.attr("outputTranslate") >> inAttr

            outEff_dm.attr("outputScale") >> self.ikRot_npo.attr("scale")
            dm_node = node.createDecomposeMatrixNode(o_node.attr("outB"))
            dm_node.attr("outputRotate") >> self.ikRot_npo.attr("rotate")

            # rotation
            mulM_node = applyop.gear_mulmatrix_op(
                self.ikRot_ctl.attr("worldMatrix"),
                self.eff_loc.attr("parentInverseMatrix"))
            intM_node = applyop.gear_intmatrix_op(o_node.attr("outEff"),
                                                  mulM_node.attr("output"),
                                                  o_node.attr("blend"))
            dm_node = node.createDecomposeMatrixNode(intM_node.attr("output"))
            dm_node.attr("outputRotate") >> self.eff_loc.attr("rotate")
            transform.matchWorldTransform(self.fk2_ctl, self.ikRot_cns)

        # scale: this fix the scalin popping issue
        intM_node = applyop.gear_intmatrix_op(
            self.fk2_ctl.attr("worldMatrix"),
            self.ik_ctl_ref.attr("worldMatrix"),
            o_node.attr("blend"))
        mulM_node = applyop.gear_mulmatrix_op(
            intM_node.attr("output"),
            self.eff_loc.attr("parentInverseMatrix"))
        dm_node = node.createDecomposeMatrixNode(mulM_node.attr("output"))
        dm_node.attr("outputScale") >> self.eff_loc.attr("scale")

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------

        pm.pointConstraint(self.mid_ctl_twst_ref,
                           self.tws1_npo, maintainOffset=False)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1_loc.scaleX)
        pm.orientConstraint(self.mid_ctl_twst_ref,
                            self.tws1_npo, maintainOffset=False)

        o_node = applyop.gear_mulmatrix_op(self.eff_loc.attr(
            "worldMatrix"), self.root.attr("worldInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        attribute.setRotOrder(self.tws2_rot, "XYZ")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")

        self.tws0_rot.setAttr("sx", .001)
        self.tws2_rot.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        # Roll Shoulder
        applyop.splineIK(self.getName("rollRef"), self.rollRef,
                         parent=self.root, cParent=self.bone0)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        if self.settings["extraTweak"]:
            for tweak_ctl in self.tweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):

            if i < (self.settings["div0"] + 1):
                perc = i * .5 / (self.settings["div0"] + 1.0)
            elif i < (self.settings["div0"] + 2):
                perc = .49
            elif i < (self.settings["div0"] + 3):
                perc = .50
            elif i < (self.settings["div0"] + 4):
                perc = .51

            else:
                perc = .5 + \
                    (i - self.settings["div0"] - 3.0) * .5 / \
                    (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1 - perc, 40)
            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc, 40)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)
        if self.settings["ikTR"]:
            transform.matchWorldTransform(self.ikRot_ctl, self.match_ikRot)
            transform.matchWorldTransform(self.fk_ctl[2], self.match_fk2)

        return
Ejemplo n.º 13
0
    def addOperators(self):

        # Visibilities -------------------------------------
        # fk
        fkvis_node = nod.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk0_roll_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        fkvis2_node = nod.createReverseNode(self.blend2_att)
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis2_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        att.setRotOrder(self.fk0_ctl, "YZX")
        att.setRotOrder(self.fk0_roll_ctl, "YZX")
        att.setRotOrder(self.fk1_ctl, "XYZ")
        att.setRotOrder(self.fk2_ctl, "YZX")
        # att.setRotOrder(self.ik_ctl, "ZYX")
        att.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_npo]

        #self.fk_ctl = [self.fk0_roll_ctl, self.fk1_ctl, self.fk2_mtx]
        node = aop.gear_ikfk2bone_op(out, self.root, self.ik_ref, self.upv_ctl,
                                     self.fk_ctl[0], self.fk_ctl[1],
                                     self.fk2_mtx, self.length0, self.length1,
                                     self.negate)

        pm.connectAttr(self.blend_att, node + ".blend")
        pm.connectAttr(self.roll_att, node + ".roll")
        pm.connectAttr(self.scale_att, node + ".scaleA")
        pm.connectAttr(self.scale_att, node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, node + ".maxstretch")
        pm.connectAttr(self.slide_att, node + ".slide")
        pm.connectAttr(self.softness_att, node + ".softness")
        pm.connectAttr(self.reverse_att, node + ".reverse")

        # auto upvector -------------------------------------

        if self.negate:
            node = aop.aimCns(self.upv_auv,
                              self.ik_ctl,
                              axis="-xy",
                              wupType=4,
                              wupVector=[0, 1, 0],
                              wupObject=self.upv_auv,
                              maintainOffset=False)
        else:
            node = aop.aimCns(self.upv_auv,
                              self.ik_ctl,
                              axis="xy",
                              wupType=4,
                              wupVector=[0, 1, 0],
                              wupObject=self.upv_auv,
                              maintainOffset=False)
        pb_node = pm.createNode("pairBlend")
        pb_node.attr("rotInterpolation").set(1)

        pm.connectAttr(self.upv_auv.attr("rotate"), pb_node + ".inRotate2")
        pm.connectAttr(pb_node + ".outRotate", self.upv_mtx.attr("rotate"))
        pm.connectAttr(self.auv_att, pb_node + ".weight")

        # fk2_npo position constraint to effector------------------------
        node = aop.gear_mulmatrix_op(self.eff_npo.attr("worldMatrix"),
                                     self.fk2_npo.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk2_npo.attr("translate"))
        # fk2_npo rotation constraint to bone1 (bugfixed) ------------------------
        node = aop.gear_mulmatrix_op(self.bone1.attr("worldMatrix"),
                                     self.fk2_npo.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.fk2_npo.attr("rotate"))

        # hand ikfk blending from fk ref to ik ref (serious bugfix)--------------------------------
        node = aop.gear_mulmatrix_op(self.fk_ref.attr("worldMatrix"),
                                     self.eff_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pb_node = pm.createNode("pairBlend")
        pb_node.attr("rotInterpolation").set(1)
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", pb_node + ".inRotate1")
        pm.connectAttr(self.blend2_att, pb_node + ".weight")
        pm.connectAttr(pb_node + ".outRotate", self.eff_loc.attr("rotate"))
        node = aop.gear_mulmatrix_op(self.ik_ref.attr("worldMatrix"),
                                     self.eff_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", pb_node + ".inRotate2")

        # Twist references ---------------------------------
        node = aop.gear_mulmatrix_op(self.mid_ctl.attr("worldMatrix"),
                                     self.tws1_npo.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws1_npo.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.tws1_npo.attr("rotate"))
        pm.connectAttr(dm_node + ".outputScale", self.tws1_npo.attr("scale"))

        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"),
                                     self.tws2_npo.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        # orientConstraint(self.eff_loc, self.tws2_rot, maintainOffset=False)
        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"),
                                     self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        att.setRotOrder(self.tws2_rot, "XYZ")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")

        self.tws0_rot.setAttr("sx", .001)
        self.tws2_rot.setAttr("sx", .001)

        add_node = nod.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        #Roll Shoulder--use aimconstraint withour uovwctor to solve the stable twist

        if self.negate:
            node = aop.aimCns(self.tws0_loc,
                              self.mid_ctl,
                              axis="-xy",
                              wupType=4,
                              wupVector=[0, 1, 0],
                              wupObject=self.tws0_npo,
                              maintainOffset=False)
        else:
            node = aop.aimCns(self.tws0_loc,
                              self.mid_ctl,
                              axis="xy",
                              wupType=4,
                              wupVector=[0, 1, 0],
                              wupObject=self.tws0_npo,
                              maintainOffset=False)

        # Volume -------------------------------------------
        distA_node = nod.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = nod.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = nod.createAddNode(distA_node + ".distance",
                                     distB_node + ".distance")
        div_node = nod.createDivNode(add_node + ".output",
                                     self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = nod.createDivNode(div_node + ".outputX",
                                      dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):

            if i < (self.settings["div0"] + 1):
                perc = i * .5 / (self.settings["div0"] + 1.0)
            elif i < (self.settings["div0"] + 2):
                perc = .49
            elif i < (self.settings["div0"] + 3):
                perc = .50
            elif i < (self.settings["div0"] + 4):
                perc = .51

            else:
                perc = .5 + (i - self.settings["div0"] -
                             3.0) * .5 / (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # Roll
            if self.negate:
                node = aop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1 - perc, 40)
            else:
                node = aop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc, 40)

            pm.connectAttr(self.resample_att, node + ".resample")
            pm.connectAttr(self.absolute_att, node + ".absolute")

            # Squash n Stretch
            node = aop.gear_squashstretch2_op(div_cns, None,
                                              pm.getAttr(self.volDriver_att),
                                              "x")
            pm.connectAttr(self.volume_att, node + ".blend")
            pm.connectAttr(self.volDriver_att, node + ".driver")
            pm.connectAttr(self.st_att[i], node + ".stretch")
            pm.connectAttr(self.sq_att[i], node + ".squash")

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)

        return
Ejemplo n.º 14
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk0_roll_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_roll_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        fkvis2_node = node.createReverseNode(self.blend2_att)
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis2_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # jnt ctl
        for ctl in (self.div_ctls):
            for shp in ctl.getShapes():
                pm.connectAttr(self.jntctl_vis_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        attribute.setRotOrder(self.fk0_ctl, "YZX")
        attribute.setRotOrder(self.fk1_ctl, "XYZ")
        attribute.setRotOrder(self.fk2_ctl, "YZX")
        attribute.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_npo]

        o_node = applyop.gear_ikfk2bone_op(out, self.root, self.ik_ref,
                                           self.upv_ctl, self.fk0_mtx,
                                           self.fk1_mtx, self.fk2_mtx,
                                           self.length0, self.length1,
                                           self.negate)

        pm.connectAttr(self.blend_att, o_node + ".blend")
        pm.connectAttr(self.roll_att, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")
        # update issue on effector scale interpol, disconnect for stability
        pm.disconnectAttr(self.eff_npo.scale)
        # auto upvector -------------------------------------

        if self.negate:
            o_node = applyop.aimCns(self.upv_auv,
                                    self.ik_ctl,
                                    axis="-xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.upv_auv,
                                    maintainOffset=False)
        else:
            o_node = applyop.aimCns(self.upv_auv,
                                    self.ik_ctl,
                                    axis="xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.upv_auv,
                                    maintainOffset=False)

        o_node = applyop.gear_mulmatrix_op(
            self.upv_auv.attr("worldMatrix"),
            self.upv_mtx.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pb_node = pm.createNode("pairBlend")
        pb_node.attr("rotInterpolation").set(1)
        pm.connectAttr(dm_node + ".outputTranslate", pb_node + ".inTranslate2")
        pm.connectAttr(dm_node + ".outputRotate", pb_node + ".inRotate2")
        pm.connectAttr(pb_node + ".outRotate", self.upv_mtx.attr("rotate"))
        pm.connectAttr(pb_node + ".outTranslate",
                       self.upv_mtx.attr("translate"))
        pm.connectAttr(self.auv_att, pb_node + ".weight")

        # fk0 mtx connection
        o_node = applyop.gear_mulmatrix_op(
            self.fk0_roll_ctl.attr("worldMatrix"),
            self.fk0_mtx.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk0_mtx.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.fk0_mtx.attr("rotate"))
        # fk1 loc connect to fk1 ref @ pos and rot, not scl to avoid shearing
        o_node = applyop.gear_mulmatrix_op(
            self.fk1_ref.attr("worldMatrix"),
            self.fk1_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk1_loc.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.fk1_loc.attr("rotate"))
        # fk1 mtx orient cns to fk1 roll
        pm.connectAttr(self.fk1_roll_ctl.attr("rotate"),
                       self.fk1_mtx.attr("rotate"))
        # fk2_loc position constraint to effector------------------------
        o_node = applyop.gear_mulmatrix_op(
            self.eff_npo.attr("worldMatrix"),
            self.fk2_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk2_loc.attr("translate"))
        # fk2_loc rotation constraint to bone1 (bugfixed) --------------
        o_node = applyop.gear_mulmatrix_op(
            self.bone1.attr("worldMatrix"),
            self.fk2_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.fk2_loc.attr("rotate"))

        # hand ikfk blending from fk ref to ik ref (serious bugfix)--------
        o_node = applyop.gear_mulmatrix_op(
            self.fk_ref.attr("worldMatrix"),
            self.eff_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pb_node = pm.createNode("pairBlend")
        pb_node.attr("rotInterpolation").set(1)
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", pb_node + ".inRotate1")
        pm.connectAttr(self.blend2_att, pb_node + ".weight")
        pm.connectAttr(pb_node + ".outRotate", self.eff_loc.attr("rotate"))
        o_node = applyop.gear_mulmatrix_op(
            self.ik_ref.attr("worldMatrix"),
            self.eff_loc.attr("parentInverseMatrix"))
        dm_node1 = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node1 + ".inputMatrix")
        pm.connectAttr(dm_node1 + ".outputRotate", pb_node + ".inRotate2")
        # use blendcolors to blend scale
        bc_node = pm.createNode("blendColors")
        pm.connectAttr(self.blend_att, bc_node + ".blender")
        pm.connectAttr(dm_node + ".outputScale", bc_node + ".color2")
        pm.connectAttr(dm_node1 + ".outputScale", bc_node + ".color1")
        pm.connectAttr(bc_node + ".output", self.eff_loc.attr("scale"))

        # Twist references ---------------------------------
        pm.connectAttr(self.mid_ctl.attr("translate"),
                       self.tws1_npo.attr("translate"))
        pm.connectAttr(self.mid_ctl.attr("rotate"),
                       self.tws1_npo.attr("rotate"))
        pm.connectAttr(self.mid_ctl.attr("scale"), self.tws1_npo.attr("scale"))

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.tws3_npo.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")

        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws3_npo.attr("translate"))

        pm.connectAttr(dm_node + ".outputRotate", self.tws3_npo.attr("rotate"))

        attribute.setRotOrder(self.tws3_rot, "XYZ")

        # elbow thickness connection
        if self.negate:
            o_node = node.createMulNode(
                [self.elbow_thickness_att, self.elbow_thickness_att],
                [0.5, -0.5, 0],
                [self.tws1_loc + ".translateX", self.tws2_loc + ".translateX"])
        else:
            o_node = node.createMulNode(
                [self.elbow_thickness_att, self.elbow_thickness_att],
                [-0.5, 0.5, 0],
                [self.tws1_loc + ".translateX", self.tws2_loc + ".translateX"])

        # connect both tws1 and tws2  (mid tws)
        self.tws0_rot.setAttr("sx", .001)
        self.tws3_rot.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness0_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        add_node = node.createAddNode(self.roundness1_att, .001)
        pm.connectAttr(add_node + ".output", self.tws2_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        # Roll Shoulder--use aimconstraint withour uovwctor to solve
        # the stable twist

        if self.negate:
            o_node = applyop.aimCns(self.tws0_loc,
                                    self.mid_ctl,
                                    axis="-xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.tws0_npo,
                                    maintainOffset=False)
        else:
            o_node = applyop.aimCns(self.tws0_loc,
                                    self.mid_ctl,
                                    axis="xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.tws0_npo,
                                    maintainOffset=False)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_npo)
        distB_node = node.createDistNode(self.tws1_npo, self.tws3_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        # Divisions ----------------------------------------
        # div mid constraint to mid ctl
        o_node = applyop.gear_mulmatrix_op(
            self.mid_ctl.attr("worldMatrix"),
            self.div_mid.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.div_mid.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.div_mid.attr("rotate"))

        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        # linear scaling percentage (1) to effector (2) to elbow
        scl_1_perc = []
        scl_2_perc = []

        for i, div_cnsUp in enumerate(self.div_cnsUp):

            if i < (self.settings["div0"] + 1):
                perc = i / (self.settings["div0"] + 1.0)
            elif i < (self.settings["div0"] + 2):
                perc = .95

            perc = max(.001, min(.99, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsUp, [self.tws1_rot, self.tws0_rot], 1 - perc, 20)

            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsUp, [self.tws0_rot, self.tws1_rot], perc, 20)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            scl_1_perc.append(perc / 2)
            scl_2_perc.append(perc)
        scl_1_perc.append(0.5)
        scl_2_perc.append(1)
        for i, div_cnsDn in enumerate(self.div_cnsDn):

            if i == (0):
                perc = .05
            elif i < (self.settings["div1"] + 1):
                perc = i / (self.settings["div1"] + 1.0)
            elif i < (self.settings["div1"] + 2):
                perc = .95

            perc = max(.001, min(.990, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsDn, [self.tws3_rot, self.tws2_rot], 1 - perc, 20)

            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsDn, [self.tws2_rot, self.tws3_rot], perc, 20)
            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            scl_1_perc.append(perc / 2 + 0.5)
            scl_2_perc.append(1 - perc)
        # Squash n Stretch
        for i, div_cns in enumerate(self.div_cns):
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")
            # get the first mult_node after sq op
            mult_node = pm.listHistory(o_node, future=True)[1]
            # linear blend effector scale
            bc_node = pm.createNode("blendColors")
            bc_node.setAttr("color2R", 1)
            bc_node.setAttr("color2G", 1)
            bc_node.setAttr("blender", scl_1_perc[i])
            pm.connectAttr(self.eff_loc.attr("scale"), bc_node + ".color1")
            # linear blend mid scale
            bc_node2 = pm.createNode("blendColors")
            bc_node2.setAttr("color2R", 1)
            bc_node2.setAttr("color2G", 1)
            bc_node2.setAttr("blender", scl_2_perc[i])
            pm.connectAttr(self.mid_ctl.attr("scale"), bc_node2 + ".color1")
            # mid_ctl scale * effector scale
            mult_node2 = pm.createNode("multiplyDivide")
            pm.connectAttr(bc_node2 + ".output", mult_node2 + ".input1")
            pm.connectAttr(bc_node + ".output", mult_node2 + ".input2")
            # plug to sq scale
            pm.connectAttr(mult_node2 + ".output", mult_node + ".input2")

        # match IK/FK ref
        pm.connectAttr(self.bone0.attr("rotate"),
                       self.match_fk0.attr("rotate"))
        pm.connectAttr(self.bone0.attr("translate"),
                       self.match_fk0.attr("translate"))
        pm.connectAttr(self.bone1.attr("rotate"),
                       self.match_fk1.attr("rotate"))
        pm.connectAttr(self.bone1.attr("translate"),
                       self.match_fk1.attr("translate"))

        return
Ejemplo n.º 15
0
    def addJoint(self,
                 obj,
                 name,
                 newActiveJnt=None,
                 UniScale=False,
                 segComp=0,
                 gearMulMatrix=True):
        """Add joint as child of the active joint or under driver object.

        Args:
            obj (dagNode): The input driver object for the joint.
            name (str): The joint name.
            newActiveJnt (bool or dagNode): If a joint is pass, this joint will
                be the active joint and parent of the newly created joint.
            UniScale (bool): Connects the joint scale with the Z axis for a
                unifor scalin, if set Falsewill connect with each axis
                separated.
            segComp (bool): Set True or False the segment compensation in the
                joint..
            gearMulMatrix (bool): Use the custom gear_multiply matrix node, if
                False will use Maya's default mulMatrix node.

        Returns:
            dagNode: The newly created joint.

        """

        if self.options["joint_rig"]:
            if newActiveJnt:
                self.active_jnt = newActiveJnt

            jnt = primitive.addJoint(self.active_jnt,
                                     self.getName(str(name) + "_jnt"),
                                     transform.getTransform(obj))
            # TODO: Set the joint to have always positive scaling
            # jnt.scale.set([1, 1, 1])

            # Disconnect inversScale for better preformance
            if isinstance(self.active_jnt, pm.nodetypes.Joint):
                try:
                    pm.disconnectAttr(self.active_jnt.scale, jnt.inverseScale)

                except RuntimeError:
                    # This handle the situation where we have in between joints
                    # transformation due a negative scaling
                    pm.ungroup(jnt.getParent())
            # All new jnts are the active by default
            self.active_jnt = jnt

            if gearMulMatrix:
                mulmat_node = applyop.gear_mulmatrix_op(
                    obj + ".worldMatrix", jnt + ".parentInverseMatrix")
                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")
                m = mulmat_node.attr('output').get()
            else:
                mulmat_node = node.createMultMatrixNode(
                    obj + ".worldMatrix", jnt + ".parentInverseMatrix")
                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".matrixSum")
                m = mulmat_node.attr('matrixSum').get()
            pm.connectAttr(dm_node + ".outputTranslate", jnt + ".t")
            pm.connectAttr(dm_node + ".outputRotate", jnt + ".r")
            # TODO: fix squash stretch solver to scale the joint uniform
            # the next line cheat the uniform scaling only fo X or Y axis
            # oriented joints
            if UniScale:
                pm.connectAttr(dm_node + ".outputScaleZ", jnt + ".sx")
                pm.connectAttr(dm_node + ".outputScaleZ", jnt + ".sy")
                pm.connectAttr(dm_node + ".outputScaleZ", jnt + ".sz")
            else:
                pm.connectAttr(dm_node + ".outputScale", jnt + ".s")
                pm.connectAttr(dm_node + ".outputShear", jnt + ".shear")

            # Segment scale compensate Off to avoid issues with the global
            # scale
            jnt.setAttr("segmentScaleCompensate", segComp)

            jnt.setAttr("jointOrient", 0, 0, 0)

            # setting the joint orient compensation in order to have clean
            # rotation channels
            jnt.attr("jointOrientX").set(jnt.attr("rx").get())
            jnt.attr("jointOrientY").set(jnt.attr("ry").get())
            jnt.attr("jointOrientZ").set(jnt.attr("rz").get())

            im = m.inverse()

            if gearMulMatrix:
                mul_nod = applyop.gear_mulmatrix_op(mulmat_node.attr('output'),
                                                    im, jnt, 'r')
                dm_node2 = mul_nod.output.listConnections()[0]
            else:
                mul_nod = node.createMultMatrixNode(
                    mulmat_node.attr('matrixSum'), im, jnt, 'r')
                dm_node2 = mul_nod.matrixSum.listConnections()[0]

            if jnt.attr("sz").get() < 0:
                # if negative scaling we have to negate some axis for rotation
                neg_rot_node = pm.createNode("multiplyDivide")
                pm.setAttr(neg_rot_node + ".operation", 1)
                pm.connectAttr(dm_node2.outputRotate,
                               neg_rot_node + ".input1",
                               f=True)
                for v, axis in zip([-1, -1, 1], "XYZ"):
                    pm.setAttr(neg_rot_node + ".input2" + axis, v)
                pm.connectAttr(neg_rot_node + ".output", jnt + ".r", f=True)

            # set not keyable
            attribute.setNotKeyableAttributes(jnt)

        else:
            jnt = primitive.addJoint(obj, self.getName(str(name) + "_jnt"),
                                     transform.getTransform(obj))
            pm.connectAttr(self.rig.jntVis_att, jnt.attr("visibility"))
            attribute.lockAttribute(jnt)

        self.addToGroup(jnt, "deformers")

        # This is a workaround due the evaluation problem with compound attr
        # TODO: This workaround, should be removed onces the evaluation issue
        # is fixed
        # github issue: Shifter: Joint connection: Maya evaluation Bug #210
        dm = jnt.r.listConnections(p=True, type="decomposeMatrix")
        if dm:
            at = dm[0]
            dm_node = at.node()
            pm.disconnectAttr(at, jnt.r)
            pm.connectAttr(dm_node.outputRotateX, jnt.rx)
            pm.connectAttr(dm_node.outputRotateY, jnt.ry)
            pm.connectAttr(dm_node.outputRotateZ, jnt.rz)

        dm = jnt.t.listConnections(p=True, type="decomposeMatrix")
        if dm:
            at = dm[0]
            dm_node = at.node()
            pm.disconnectAttr(at, jnt.t)
            pm.connectAttr(dm_node.outputTranslateX, jnt.tx)
            pm.connectAttr(dm_node.outputTranslateY, jnt.ty)
            pm.connectAttr(dm_node.outputTranslateZ, jnt.tz)

        dm = jnt.s.listConnections(p=True, type="decomposeMatrix")
        if dm:
            at = dm[0]
            dm_node = at.node()
            pm.disconnectAttr(at, jnt.s)
            pm.connectAttr(dm_node.outputScaleX, jnt.sx)
            pm.connectAttr(dm_node.outputScaleY, jnt.sy)
            pm.connectAttr(dm_node.outputScaleZ, jnt.sz)

        return jnt
Ejemplo n.º 16
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Auto bend ----------------------------
        if self.settings["autoBend"]:
            mul_node = node.createMulNode(
                [self.autoBendChain[0].ry, self.autoBendChain[0].rz],
                [self.sideBend_att, self.frontBend_att])

            mul_node.outputX >> self.ik1autoRot_lvl.rz
            mul_node.outputY >> self.ik1autoRot_lvl.rx

            self.ikHandleAutoBend = primitive.addIkHandle(
                self.autoBend_ctl,
                self.getName("ikHandleAutoBend"),
                self.autoBendChain, "ikSCsolver")

        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.apos[0], self.guide.apos[1])
        dist_node = node.createDistNode(self.ik0_ctl, self.ik1_ctl)

        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")

        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX",
                       self.tan0_npo.attr("ty"))

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan1_npo.attr("ty"))

        # Tangent Mid --------------------------------------
        if self.settings["centralTangent"]:
            tanIntMat = applyop.gear_intmatrix_op(
                self.tan0_npo.attr("worldMatrix"),
                self.tan1_npo.attr("worldMatrix"),
                .5)

            applyop.gear_mulmatrix_op(
                tanIntMat.attr("output"),
                self.tan_npo.attr("parentInverseMatrix[0]"),
                self.tan_npo)

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan0_off.attr("translate"))

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan1_off.attr("translate"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(
            self.slv_crv, self.mst_crv, 0, 1.5, .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)

            cns = applyop.pathCns(
                self.div_cns[i], self.slv_crv, False, u, True)
            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 0)  # front axis is 'X'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik0_ctl + ".worldMatrix",
                self.ik1_ctl + ".worldMatrix",
                u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # compensate scale reference
            div_node = node.createDivNode([1, 1, 1],
                                          [rootWorld_node + ".outputScaleX",
                                           rootWorld_node + ".outputScaleY",
                                           rootWorld_node + ".outputScaleZ"])

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(
                self.scl_transforms[i],
                self.root,
                pm.arclen(self.slv_crv),
                "y",
                div_node + ".output")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(
                    mulmat_node + ".output")

                pm.connectAttr(dm_node + ".outputTranslate",
                               self.fk_npo[i].attr("t"))

            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(
                    mulmat_node + ".output")

                mul_node = node.createMulNode(div_node + ".output",
                                              dm_node + ".outputTranslate")

                pm.connectAttr(mul_node + ".output",
                               self.fk_npo[i].attr("t"))

            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == 0:
                dm_node = node.createDecomposeMatrixNode(
                    self.ik0_ctl + ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"],
                    self.lock_ori0_att)

                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

            elif i == self.settings["division"] - 1:
                dm_node = node.createDecomposeMatrixNode(
                    self.ik1_ctl + ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"],
                    self.lock_ori1_att)

                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

        # Connections (Hooks) ------------------------------

        pm.parentConstraint(self.scl_transforms[0], self.cnx0)
        pm.scaleConstraint(self.scl_transforms[0], self.cnx0)
        pm.parentConstraint(self.scl_transforms[-1], self.cnx1)
        pm.scaleConstraint(self.scl_transforms[-1], self.cnx1)
Ejemplo n.º 17
0
def slice(parent=False, oSel=False, *args):
    """
    Create a proxy geometry from a skinned object.
    """
    startTime = datetime.datetime.now()
    print oSel
    if not oSel:
        oSel = pm.selected()[0]
        print "----"
        print oSel

    oColl = pm.skinCluster(oSel, query=True, influence=True)
    oFaces = oSel.faces
    nFaces = oSel.numFaces()

    faceGroups = []
    for x in oColl:
        faceGroups.append([])
    sCluster = pm.listConnections(oSel.getShape(), type="skinCluster")
    print sCluster
    sCName = sCluster[0].name()
    for iFace in range(nFaces):
        faceVtx = oFaces[iFace].getVertices()
        oSum = False
        for iVtx in faceVtx:
            values = pm.skinPercent(sCName, oSel.vtx[iVtx], q=True, v=True)
            if oSum:
                oSum = [L + l for L, l in zip(oSum, values)]
            else:
                oSum = values

        print "adding face: " + str(iFace) + " to group in: " + str(
            oColl[oSum.index(max(oSum))])

        faceGroups[oSum.index(max(oSum))].append(iFace)

    original = oSel
    if not parent:
        try:
            parentGroup = pm.PyNode("ProxyGeo")
        except:
            parentGroup = pm.createNode("transform", n="ProxyGeo")
    try:
        proxySet = pm.PyNode("rig_proxyGeo_grp")
    except:
        proxySet = pm.sets(name="rig_proxyGeo_grp", em=True)

    for boneList in faceGroups:

        if len(boneList):
            newObj = pm.duplicate(original,
                                  rr=True,
                                  name=oColl[faceGroups.index(boneList)] +
                                  "_Proxy")
            for trans in [
                    "tx", "ty", "tz", "rx", "ry", "rz", "sx", "sy", "sz"
            ]:

                pm.setAttr(newObj[0].name() + "." + trans, lock=0)

            c = list(newObj[0].faces)

            for index in reversed(boneList):

                c.pop(index)

            pm.delete(c)
            if parent:
                pm.parent(newObj,
                          pm.PyNode(oColl[faceGroups.index(boneList)]),
                          a=True)
            else:
                pm.parent(newObj, parentGroup, a=True)
                dummyCopy = pm.duplicate(newObj[0])[0]
                pm.delete(newObj[0].listRelatives(c=True))
                tra.matchWorldTransform(
                    pm.PyNode(oColl[faceGroups.index(boneList)]), newObj[0])
                pm.parent(dummyCopy.listRelatives(c=True)[0],
                          newObj[0],
                          shape=True)
                pm.delete(dummyCopy)
                pm.rename(newObj[0].listRelatives(c=True)[0],
                          newObj[0].name() + "_offset")
                mulmat_node = aop.gear_mulmatrix_op(
                    pm.PyNode(oColl[faceGroups.index(boneList)]).name() +
                    ".worldMatrix", newObj[0].name() + ".parentInverseMatrix")
                dm_node = nod.createDecomposeMatrixNode(mulmat_node +
                                                        ".output")
                pm.connectAttr(dm_node + ".outputTranslate",
                               newObj[0].name() + ".t")
                pm.connectAttr(dm_node + ".outputRotate",
                               newObj[0].name() + ".r")
                pm.connectAttr(dm_node + ".outputScale",
                               newObj[0].name() + ".s")

            print "Creating proxy for: " + str(
                oColl[faceGroups.index(boneList)])

            pm.sets(proxySet, add=newObj)

    endTime = datetime.datetime.now()
    finalTime = endTime - startTime
    mgear.log("=============== Slicing for: %s finish ======= [ %s  ] ======" %
              (oSel.name(), str(finalTime)))
Ejemplo n.º 18
0
def _createSoftModTweak(baseCtl,
                        tweakCtl,
                        name,
                        targets,
                        nameExt="softMod",
                        is_asset=False):

    sm = pm.softMod(targets, wn=[tweakCtl, tweakCtl])
    pm.rename(sm[0], "{}_{}".format(name, nameExt))

    # disconnect default connection
    plugs = sm[0].softModXforms.listConnections(p=True)
    for p in plugs:
        pm.disconnectAttr(p, sm[0].softModXforms)
        pm.delete(p.node())

    dm_node = node.createDecomposeMatrixNode(baseCtl.worldMatrix[0])
    pm.connectAttr(dm_node.outputTranslate, sm[0].falloffCenter)
    mul_node = node.createMulNode(dm_node.outputScaleX,
                                  tweakCtl.attr("falloff"))
    pm.connectAttr(mul_node.outputX, sm[0].falloffRadius)
    mulMatrix_node = applyop.gear_mulmatrix_op(tweakCtl.worldMatrix[0],
                                               tweakCtl.parentInverseMatrix[0])
    pm.connectAttr(mulMatrix_node.output, sm[0].weightedMatrix)
    pm.connectAttr(baseCtl.worldInverseMatrix[0], sm[0].postMatrix)
    pm.connectAttr(baseCtl.worldMatrix[0], sm[0].preMatrix)
    if is_asset:
        tag_name = ASSET_TAG
    else:
        tag_name = SHOT_TAG

    attribute.addAttribute(sm[0], tag_name, "bool", False, keyable=False)

    sm[0].addAttr("ctlRoot", at='message', m=False)
    sm[0].addAttr("ctlBase", at='message', m=False)
    sm[0].addAttr("ctlTweak", at='message', m=False)
    pm.connectAttr(baseCtl.getParent().attr("message"), sm[0].attr("ctlRoot"))
    pm.connectAttr(baseCtl.attr("message"), sm[0].attr("ctlBase"))
    pm.connectAttr(tweakCtl.attr("message"), sm[0].attr("ctlTweak"))

    # This connection allow the softTweak to work if we apply the  skin
    # precision fix.
    # TODO: By default only apply to a non asset tweaks.
    if skin.getSkinCluster(targets[0]) and not is_asset:

        skin_cls = skin.getSkinCluster(targets[0])
        cnxs = skin_cls.matrix[0].listConnections()
        if (cnxs and cnxs[0].type() == "mgear_mulMatrix"
                and not sm[0].hasAttr("_fixedSkinFix")):

            # tag the softmod as fixed
            attribute.addAttribute(sm[0], "_fixedSkinFix", "bool")

            # original connections
            matrix_cnx = sm[0].matrix.listConnections(p=True)[0]
            preMatrix_cnx = sm[0].preMatrix.listConnections(p=True)[0]
            wgtMatrix_cnx = sm[0].weightedMatrix.listConnections(p=True)[0]
            postMatrix_cnx = sm[0].postMatrix.listConnections(p=True)[0]

            # pre existing node operators
            mulMtx_node = wgtMatrix_cnx.node()
            dcMtx_node = sm[0].falloffCenter.listConnections(p=True)[0].node()

            # geo offset connnections
            geo_root = targets[0].getParent()
            gr_W = geo_root.worldMatrix[0]
            gr_WI = geo_root.worldInverseMatrix[0]

            # new offset operators
            mmm1 = applyop.gear_mulmatrix_op(preMatrix_cnx, gr_WI)
            mmm2 = applyop.gear_mulmatrix_op(matrix_cnx, gr_WI)
            mmm3 = applyop.gear_mulmatrix_op(gr_W, postMatrix_cnx)

            # re-wire connections
            pm.connectAttr(mmm1.output, dcMtx_node.inputMatrix, f=True)
            pm.connectAttr(mmm1.output, sm[0].preMatrix, f=True)

            pm.connectAttr(mmm2.output, sm[0].matrix, f=True)
            pm.connectAttr(mmm2.output, mulMtx_node.matrixA, f=True)

            pm.connectAttr(mmm3.output, mulMtx_node.matrixB, f=True)
            pm.connectAttr(mmm3.output, sm[0].postMatrix, f=True)

            _neutra_geomMatrix(sm[0])

    return sm[0]
Ejemplo n.º 19
0
    def addOperators(self):

        # Visibilities -------------------------------------
        # fk
        fkvis_node = nod.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            connectAttr(self.blend_att, shp.attr("visibility"))

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        node = aop.gear_ikfk2bone_op(out, self.root, self.ik_ref, self.upv_ctl,
                                     self.fk_ctl[0], self.fk_ctl[1],
                                     self.fk_ref, self.length0, self.length1,
                                     self.negate)

        connectAttr(self.blend_att, node + ".blend")
        connectAttr(self.roll_att, node + ".roll")
        connectAttr(self.scale_att, node + ".scaleA")
        connectAttr(self.scale_att, node + ".scaleB")
        connectAttr(self.maxstretch_att, node + ".maxstretch")
        connectAttr(self.slide_att, node + ".slide")
        connectAttr(self.softness_att, node + ".softness")
        connectAttr(self.reverse_att, node + ".reverse")

        # Twist references ---------------------------------
        pointConstraint(self.root, self.tws0_loc, maintainOffset=True)
        aop.aimCns(self.tws0_loc, self.mid_ctl, self.n_sign + "xz", 2,
                   [0, 1, 0], self.root, False)

        pointConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        scaleConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        orientConstraint(self.mid_ctl, self.tws1_rot, maintainOffset=False)

        pointConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        scaleConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        orientConstraint(self.bone1, self.tws2_loc, maintainOffset=False)
        # orientConstraint(self.eff_loc, self.tws2_rot, maintainOffset=False)
        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"),
                                     self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = createNode("decomposeMatrix")
        connectAttr(node + ".output", dm_node + ".inputMatrix")
        connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")
        # att.setRotOrder(self.tws2_rot, "YZX")

        self.tws0_loc.setAttr("sx", .001)
        self.tws2_loc.setAttr("sx", .001)

        add_node = nod.createAddNode(self.roundness_att, .001)
        connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        # Volume -------------------------------------------
        distA_node = nod.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = nod.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = nod.createAddNode(distA_node + ".distance",
                                     distB_node + ".distance")
        div_node = nod.createDivNode(add_node + ".output",
                                     self.root.attr("sx"))
        self.volDriver_att = div_node + ".outputX"

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):

            if i < (self.settings["div0"] + 1):
                perc = i * .5 / (self.settings["div0"] + 1.0)
            else:
                perc = .5 + (i - self.settings["div0"] -
                             1.0) * .5 / (self.settings["div1"] + 1.0)

            perc = max(.001, min(.999, perc))

            # Roll
            if self.negate:
                node = aop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1 - perc)
            else:
                node = aop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc)

            connectAttr(self.resample_att, node + ".resample")
            connectAttr(self.absolute_att, node + ".absolute")

            # Squash n Stretch
            node = aop.gear_squashstretch2_op(div_cns, None,
                                              getAttr(self.volDriver_att), "x")
            connectAttr(self.volume_att, node + ".blend")
            connectAttr(self.volDriver_att, node + ".driver")
            connectAttr(self.st_att[i], node + ".stretch")
            connectAttr(self.sq_att[i], node + ".squash")

        return
Ejemplo n.º 20
0
    def addOperators(self):

        # Tangent position ---------------------------------
        # common part
        d = vec.getDistance(self.guide.apos[0], self.guide.apos[1])
        dist_node = nod.createDistNode(self.ik0_ctl, self.ik1_ctl)
        rootWorld_node = nod.createDecomposeMatrixNode(self.root.attr("worldMatrix"))
        div_node = nod.createDivNode(dist_node+".distance", rootWorld_node+".outputScaleX")
        div_node = nod.createDivNode(div_node+".outputX", d)

        # tan0
        mul_node = nod.createMulNode(self.tan0_att, self.tan0_npo.getAttr("ty"))
        res_node = nod.createMulNode(mul_node+".outputX", div_node+".outputX")
        pm.connectAttr( res_node+".outputX", self.tan0_npo.attr("ty"))

        # tan1
        mul_node = nod.createMulNode(self.tan1_att, self.tan1_npo.getAttr("ty"))
        res_node = nod.createMulNode(mul_node+".outputX", div_node+".outputX")
        pm.connectAttr( res_node+".outputX", self.tan1_npo.attr("ty"))

        # Curves -------------------------------------------
        op = aop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5, .5, .5)

        pm.connectAttr(self.position_att, op+".position")
        pm.connectAttr(self.maxstretch_att, op+".maxstretch")
        pm.connectAttr(self.maxsquash_att, op+".maxsquash")
        pm.connectAttr(self.softness_att, op+".softness")

        # Volume driver ------------------------------------
        crv_node = nod.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)

            cns = aop.pathCns(self.div_cns[i], self.slv_crv, False, u, True)
            cns.setAttr("frontAxis", 1)# front axis is 'Y'
            cns.setAttr("upAxis", 0)# front axis is 'X'

            # Roll
            intMatrix = aop.gear_intmatrix_op(self.ik0_ctl+".worldMatrix", self.ik1_ctl+".worldMatrix", u)
            dm_node = nod.createDecomposeMatrixNode(intMatrix+".output")
            pm.connectAttr(dm_node+".outputRotate", self.twister[i].attr("rotate"))


            pm.parentConstraint(self.twister[i], self.ref_twist[i], maintainOffset=True)


            pm.connectAttr(self.ref_twist[i]+".translate", cns+".worldUpVector")

            # Squash n Stretch
            op = aop.gear_squashstretch2_op(self.fk_npo[i], self.root, pm.arclen(self.slv_crv), "y")
            pm.connectAttr(self.volume_att, op+".blend")
            pm.connectAttr(crv_node+".arcLength", op+".driver")
            pm.connectAttr(self.st_att[i], op+".stretch")
            pm.connectAttr(self.sq_att[i], op+".squash")

            # scl compensation

            if i == 0:
                dm_node = nod.createDecomposeMatrixNode(self.root+".worldMatrix")
                div_node = nod.createDivNode([1,1,1], [dm_node+".outputScaleX", dm_node+".outputScaleY", dm_node+".outputScaleZ"])
                pm.connectAttr(div_node+".output", self.scl_npo[i]+".scale")

            elif i == 1:
                div_node = nod.createDivNode([1,1,1], [self.fk_npo[i-1]+".sx", self.fk_npo[i-1]+".sy", self.fk_npo[i-1]+".sz"])
                pm.connectAttr(div_node+".output", self.scl_npo[i]+".scale")


            else:
                div_node = nod.createDivNode([1,1,1], [self.fk_npo[i-1]+".sx", self.fk_npo[i-1]+".sy", self.fk_npo[i-1]+".sz"])
                pm.connectAttr(div_node+".output", self.scl_npo[i]+".scale")


            # Controlers
            if i == 0:
                mulmat_node = aop.gear_mulmatrix_op(self.div_cns[i].attr("worldMatrix"),
                                                    self.scl_npo[0].attr("worldInverseMatrix"))
            else:
                mulmat_node = aop.gear_mulmatrix_op(self.div_cns[i].attr("worldMatrix"),
                                                    self.div_cns[i - 1].attr("worldInverseMatrix"))
            dm_node = nod.createDecomposeMatrixNode(mulmat_node+".output")
            pm.connectAttr(dm_node+".outputTranslate", self.fk_npo[i].attr("t"))
            pm.connectAttr(dm_node+".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == 0 :
                dm_node = nod.createDecomposeMatrixNode(self.ik0_ctl+".worldMatrix")
                blend_node = nod.createBlendNode([dm_node+".outputRotate%s"%s for s in "XYZ"], [cns+".rotate%s"%s for s in "XYZ"], self.lock_ori0_att)
                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node+".output", self.div_cns[i]+".rotate")
            elif i == self.settings["division"] - 1 :
                dm_node = nod.createDecomposeMatrixNode(self.ik1_ctl+".worldMatrix")
                blend_node = nod.createBlendNode([dm_node+".outputRotate%s"%s for s in "XYZ"], [cns+".rotate%s"%s for s in "XYZ"], self.lock_ori1_att)
                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node+".output", self.div_cns[i]+".rotate")

        # Connections (Hooks) ------------------------------
        pm.pointConstraint(self.div_cns[0], self.cnx0)
        pm.orientConstraint(self.div_cns[0], self.cnx0)
        pm.pointConstraint(self.fk_ctl[-1], self.cnx1)
        pm.orientConstraint(self.fk_ctl[-1], self.cnx1)
Ejemplo n.º 21
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Visibilities -------------------------------------
        if self.isFkIk:
            # fk
            fkvis_node = node.createReverseNode(self.blend_att)

            for fk_ctl in self.fk_ctl:
                for shp in fk_ctl.getShapes():
                    pm.connectAttr(fkvis_node + ".outputX",
                                   shp.attr("visibility"))

            # ik
            for shp in self.upv_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
            for shp in self.ikcns_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
            for shp in self.ik_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # FK Chain -----------------------------------------
        if self.isFk:
            for off, ref in zip(self.fk_off[1:], self.fk_ref):
                applyop.gear_mulmatrix_op(ref.worldMatrix,
                                          off.parentInverseMatrix, off, "rt")
        # IK Chain -----------------------------------------
        if self.isIk:
            self.ikh = primitive.addIkHandle(self.root, self.getName("ikh"),
                                             self.chain)
            self.ikh.attr("visibility").set(False)

            # Constraint and up vector
            pm.pointConstraint(self.ik_ctl, self.ikh, maintainOffset=False)
            pm.poleVectorConstraint(self.upv_ctl, self.ikh)

            # TwistTest
            o_list = [round(elem, 4) for elem
                      in transform.getTranslation(self.chain[1])] \
                != [round(elem, 4) for elem in self.guide.apos[1]]

            if o_list:
                add_nodeTwist = node.createAddNode(180.0, self.roll_att)
                pm.connectAttr(add_nodeTwist + ".output",
                               self.ikh.attr("twist"))
            else:
                pm.connectAttr(self.roll_att, self.ikh.attr("twist"))

        # Chain of deformers -------------------------------
        for i, loc in enumerate(self.loc):

            if self.settings["mode"] == 0:  # fk only
                pm.parentConstraint(self.fk_ctl[i], loc, maintainOffset=False)
                pm.connectAttr(self.fk_ctl[i] + ".scale", loc + ".scale")

            elif self.settings["mode"] == 1:  # ik only
                pm.parentConstraint(self.chain[i], loc, maintainOffset=False)

            elif self.settings["mode"] == 2:  # fk/ik

                rev_node = node.createReverseNode(self.blend_att)

                # orientation
                cns = pm.parentConstraint(self.fk_ctl[i],
                                          self.chain[i],
                                          loc,
                                          maintainOffset=False)
                cns.interpType.set(0)
                weight_att = pm.parentConstraint(cns,
                                                 query=True,
                                                 weightAliasList=True)
                pm.connectAttr(rev_node + ".outputX", weight_att[0])
                pm.connectAttr(self.blend_att, weight_att[1])

                # scaling
                blend_node = pm.createNode("blendColors")
                pm.connectAttr(self.chain[i].attr("scale"),
                               blend_node + ".color1")
                pm.connectAttr(self.fk_ctl[i].attr("scale"),
                               blend_node + ".color2")
                pm.connectAttr(self.blend_att, blend_node + ".blender")
                pm.connectAttr(blend_node + ".output", loc + ".scale")
Ejemplo n.º 22
0
    def addJoint(self,
                 obj,
                 name,
                 newActiveJnt=None,
                 UniScale=True,
                 segComp=0,
                 gearMulMatrix=True):
        """
        Add joint as child of the active joint or under driver object.

        Args:
            obj (dagNode): The input driver object for the joint.
            name (str): The joint name.
            newActiveJnt (bool or dagNode): If a joint is pass, this joint will be the active joint
                and parent of the newly created joint.
            UniScale (bool): Connects the joint scale with the Z axis for a unifor scalin, if set False
                will connect with each axis separated.
            segComp (bool): Set True or False the segment compensation in the joint..
            gearMulMatrix (bool): Use the custom gear_multiply matrix node, if False will use
                 Maya's default mulMatrix node.

        Returns:
            dagNode: The newly created joint.

        """

        if self.options["joint_rig"]:
            if newActiveJnt:
                self.active_jnt = newActiveJnt

            jnt = pri.addJoint(self.active_jnt,
                               self.getName(str(name) + "_jnt"),
                               tra.getTransform(obj))
            #All new jnts are the active by default
            self.active_jnt = jnt

            if gearMulMatrix:
                mulmat_node = aop.gear_mulmatrix_op(
                    obj + ".worldMatrix", jnt + ".parentInverseMatrix")
                dm_node = nod.createDecomposeMatrixNode(mulmat_node +
                                                        ".output")
                m = mulmat_node.attr('output').get()
            else:
                mulmat_node = nod.createMultMatrixNode(
                    obj + ".worldMatrix", jnt + ".parentInverseMatrix")
                dm_node = nod.createDecomposeMatrixNode(mulmat_node +
                                                        ".matrixSum")
                m = mulmat_node.attr('matrixSum').get()
            pm.connectAttr(dm_node + ".outputTranslate", jnt + ".t")
            pm.connectAttr(dm_node + ".outputRotate", jnt + ".r")
            # TODO: fix squash stretch solver to scale the joint uniform
            # the next line cheat the uniform scaling only fo X or Y axis oriented joints
            if UniScale:
                pm.connectAttr(dm_node + ".outputScaleZ", jnt + ".sx")
                pm.connectAttr(dm_node + ".outputScaleZ", jnt + ".sy")
                pm.connectAttr(dm_node + ".outputScaleZ", jnt + ".sz")
            else:
                pm.connectAttr(dm_node + ".outputScale", jnt + ".s")
                pm.connectAttr(dm_node + ".outputShear", jnt + ".shear")

            # Segment scale compensate Off to avoid issues with the global scale
            jnt.setAttr("segmentScaleCompensate", segComp)

            jnt.setAttr("jointOrient", 0, 0, 0)

            # setting the joint orient compensation in order to have clean rotation channels
            jnt.attr("jointOrientX").set(jnt.attr("rx").get())
            jnt.attr("jointOrientY").set(jnt.attr("ry").get())
            jnt.attr("jointOrientZ").set(jnt.attr("rz").get())

            im = m.inverse()

            if gearMulMatrix:
                aop.gear_mulmatrix_op(mulmat_node.attr('output'), im, jnt, 'r')
            else:
                nod.createMultMatrixNode(mulmat_node.attr('matrixSum'), im,
                                         jnt, 'r')

        else:
            jnt = pri.addJoint(obj, self.getName(str(name) + "_jnt"),
                               tra.getTransform(obj))
            pm.connectAttr(self.rig.jntVis_att, jnt.attr("visibility"))

        self.addToGroup(jnt, "deformers")

        return jnt
Ejemplo n.º 23
0
    def addOperators(self):

        # Tangent position ---------------------------------
        # common part
        d = vec.getDistance(self.guide.pos["root"], self.guide.pos["neck"])
        dist_node = nod.createDistNode(self.root, self.ik_ctl)
        rootWorld_node = nod.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))
        div_node = nod.createDivNode(dist_node + ".distance",
                                     rootWorld_node + ".outputScaleX")
        div_node = nod.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = nod.createMulNode(self.tan0_att,
                                     self.tan0_loc.getAttr("ty"))
        res_node = nod.createMulNode(mul_node + ".outputX",
                                     div_node + ".outputX")
        connectAttr(res_node + ".outputX", self.tan0_loc + ".ty")

        # tan1
        mul_node = nod.createMulNode(self.tan1_att,
                                     self.tan1_loc.getAttr("ty"))
        res_node = nod.createMulNode(mul_node + ".outputX",
                                     div_node + ".outputX")
        connectAttr(res_node + ".outputX", self.tan1_loc.attr("ty"))

        # Curves -------------------------------------------
        op = aop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5, .5,
                                     .5)
        connectAttr(self.maxstretch_att, op + ".maxstretch")
        connectAttr(self.maxsquash_att, op + ".maxsquash")
        connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = nod.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)

            cns = aop.pathCns(self.div_cns[i], self.slv_crv, False, u, True)
            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 2)  # front axis is 'Z'

            # Roll
            aop.gear_spinePointAtOp(cns, self.root, self.ik_ctl, u, "Z")

            # Squash n Stretch
            op = aop.gear_squashstretch2_op(self.fk_npo[i], self.root,
                                            arclen(self.slv_crv), "y")
            connectAttr(self.volume_att, op + ".blend")
            connectAttr(crv_node + ".arcLength", op + ".driver")
            connectAttr(self.st_att[i], op + ".stretch")
            connectAttr(self.sq_att[i], op + ".squash")

            # scl compas
            if i != 0:
                div_node = nod.createDivNode([1, 1, 1], [
                    self.fk_npo[i - 1] + ".sx", self.fk_npo[i - 1] + ".sy",
                    self.fk_npo[i - 1] + ".sz"
                ])
                connectAttr(div_node + ".output", self.scl_npo[i] + ".scale")

            # Controlers
            if i == 0:
                mulmat_node = aop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))
            else:
                mulmat_node = aop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

            dm_node = nod.createDecomposeMatrixNode(mulmat_node + ".output")
            connectAttr(dm_node + ".outputTranslate", self.fk_npo[i].attr("t"))
            connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))
            #connectAttr(dm_node+".outputScale", self.fk_npo[i].attr("s"))

            # Orientation Lock
            if i == self.settings["division"] - 1:
                dm_node = nod.createDecomposeMatrixNode(self.ik_ctl +
                                                        ".worldMatrix")
                blend_node = nod.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori_att)
                self.div_cns[i].attr("rotate").disconnect()
                connectAttr(blend_node + ".output",
                            self.div_cns[i] + ".rotate")

        # Head ---------------------------------------------
        self.fk_ctl[-1].addChild(self.head_cns)
Ejemplo n.º 24
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # 1 bone chain Upv ref ==============================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root, self.getName("ikHandleLegChainUpvRef"),
            self.legChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.legChainUpvRef[0],
                            self.ik_ctl,
                            self.upv_cns,
                            mo=True)

        # Visibilities -------------------------------------
        # shape.dispGeometry
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out, self.root_ctl, self.ik_ref,
                                           self.upv_ctl, self.fk_ctl[0],
                                           self.fk_ctl[1], self.fk_ref,
                                           self.length0, self.length1,
                                           self.negate)

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        # pm.connectAttr(self.roll_att, o_node+".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------
        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.root.attr("worldInverseMatrix"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        # spline IK for  twist jnts
        self.ikhUpLegTwist, self.uplegTwistCrv = applyop.splineIK(
            self.getName("uplegTwist"),
            self.uplegTwistChain,
            parent=self.root,
            cParent=self.bone0)

        self.ikhLowLegTwist, self.lowlegTwistCrv = applyop.splineIK(
            self.getName("lowlegTwist"),
            self.lowlegTwistChain,
            parent=self.root,
            cParent=self.bone1)

        # references
        self.ikhUpLegRef, self.tmpCrv = applyop.splineIK(
            self.getName("uplegRollRef"),
            self.uplegRollRef,
            parent=self.root,
            cParent=self.bone0)

        self.ikhLowLegRef, self.tmpCrv = applyop.splineIK(
            self.getName("lowlegRollRef"),
            self.lowlegRollRef,
            parent=self.root,
            cParent=self.eff_loc)

        self.ikhAuxTwist, self.tmpCrv = applyop.splineIK(
            self.getName("auxTwist"),
            self.auxTwistChain,
            parent=self.root,
            cParent=self.eff_loc)

        # setting connexions for ikhUpLegTwist
        self.ikhUpLegTwist.attr("dTwistControlEnable").set(True)
        self.ikhUpLegTwist.attr("dWorldUpType").set(4)
        self.ikhUpLegTwist.attr("dWorldUpAxis").set(3)
        self.ikhUpLegTwist.attr("dWorldUpVectorZ").set(1.0)
        self.ikhUpLegTwist.attr("dWorldUpVectorY").set(0.0)
        self.ikhUpLegTwist.attr("dWorldUpVectorEndZ").set(1.0)
        self.ikhUpLegTwist.attr("dWorldUpVectorEndY").set(0.0)
        pm.connectAttr(self.uplegRollRef[0].attr("worldMatrix[0]"),
                       self.ikhUpLegTwist.attr("dWorldUpMatrix"))
        pm.connectAttr(self.bone0.attr("worldMatrix[0]"),
                       self.ikhUpLegTwist.attr("dWorldUpMatrixEnd"))

        # setting connexions for ikhAuxTwist
        self.ikhAuxTwist.attr("dTwistControlEnable").set(True)
        self.ikhAuxTwist.attr("dWorldUpType").set(4)
        self.ikhAuxTwist.attr("dWorldUpAxis").set(3)
        self.ikhAuxTwist.attr("dWorldUpVectorZ").set(1.0)
        self.ikhAuxTwist.attr("dWorldUpVectorY").set(0.0)
        self.ikhAuxTwist.attr("dWorldUpVectorEndZ").set(1.0)
        self.ikhAuxTwist.attr("dWorldUpVectorEndY").set(0.0)
        pm.connectAttr(self.lowlegRollRef[0].attr("worldMatrix[0]"),
                       self.ikhAuxTwist.attr("dWorldUpMatrix"))
        pm.connectAttr(self.tws_ref.attr("worldMatrix[0]"),
                       self.ikhAuxTwist.attr("dWorldUpMatrixEnd"))
        pm.connectAttr(self.auxTwistChain[1].attr("rx"),
                       self.ikhLowLegTwist.attr("twist"))

        pm.parentConstraint(self.bone1, self.aux_npo, maintainOffset=True)

        # scale arm length for twist chain (not the squash and stretch)
        arclen_node = pm.arclen(self.uplegTwistCrv, ch=True)
        alAttrUpLeg = arclen_node.attr("arcLength")
        muldiv_nodeArm = pm.createNode("multiplyDivide")
        pm.connectAttr(arclen_node.attr("arcLength"),
                       muldiv_nodeArm.attr("input1X"))
        muldiv_nodeArm.attr("input2X").set(alAttrUpLeg.get())
        muldiv_nodeArm.attr("operation").set(2)
        for jnt in self.uplegTwistChain:
            pm.connectAttr(muldiv_nodeArm.attr("outputX"), jnt.attr("sx"))

        # scale forearm length for twist chain (not the squash and stretch)
        arclen_node = pm.arclen(self.lowlegTwistCrv, ch=True)
        alAttrLowLeg = arclen_node.attr("arcLength")
        muldiv_nodeLowLeg = pm.createNode("multiplyDivide")
        pm.connectAttr(arclen_node.attr("arcLength"),
                       muldiv_nodeLowLeg.attr("input1X"))
        muldiv_nodeLowLeg.attr("input2X").set(alAttrLowLeg.get())
        muldiv_nodeLowLeg.attr("operation").set(2)
        for jnt in self.lowlegTwistChain:
            pm.connectAttr(muldiv_nodeLowLeg.attr("outputX"), jnt.attr("sx"))

        # scale compensation for the first  twist join
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix[0]"),
                       dm_node.attr("inputMatrix"))
        pm.connectAttr(dm_node.attr("outputScale"),
                       self.uplegTwistChain[0].attr("inverseScale"))
        pm.connectAttr(dm_node.attr("outputScale"),
                       self.lowlegTwistChain[0].attr("inverseScale"))

        # tangent controls
        muldiv_node = pm.createNode("multiplyDivide")
        muldiv_node.attr("input2X").set(-1)
        pm.connectAttr(self.tws1A_npo.attr("rz"), muldiv_node.attr("input1X"))
        muldiv_nodeBias = pm.createNode("multiplyDivide")
        pm.connectAttr(muldiv_node.attr("outputX"),
                       muldiv_nodeBias.attr("input1X"))
        pm.connectAttr(self.roundness_att, muldiv_nodeBias.attr("input2X"))
        pm.connectAttr(muldiv_nodeBias.attr("outputX"),
                       self.tws1A_loc.attr("rz"))
        if self.negate:
            axis = "xz"
        else:
            axis = "-xz"
        applyop.aimCns(self.tws1A_npo,
                       self.tws0_loc,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        applyop.aimCns(self.lowlegTangentB_loc,
                       self.lowlegTangentA_npo,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        pm.pointConstraint(self.eff_loc, self.lowlegTangentB_loc)

        muldiv_node = pm.createNode("multiplyDivide")
        muldiv_node.attr("input2X").set(-1)
        pm.connectAttr(self.tws1B_npo.attr("rz"), muldiv_node.attr("input1X"))
        muldiv_nodeBias = pm.createNode("multiplyDivide")
        pm.connectAttr(muldiv_node.attr("outputX"),
                       muldiv_nodeBias.attr("input1X"))
        pm.connectAttr(self.roundness_att, muldiv_nodeBias.attr("input2X"))
        pm.connectAttr(muldiv_nodeBias.attr("outputX"),
                       self.tws1B_loc.attr("rz"))
        if self.negate:
            axis = "-xz"
        else:
            axis = "xz"
        applyop.aimCns(self.tws1B_npo,
                       self.tws2_loc,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        applyop.aimCns(self.uplegTangentA_loc,
                       self.uplegTangentB_npo,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root_ctl.attr("sx"))

        # comp scaling issue
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")

        self.volDriver_att = div_node2 + ".outputX"

        # connecting tangent scaele compensation after volume to
        # avoid duplicate some nodes
        distA_node = node.createDistNode(self.tws0_loc, self.mid_ctl)
        distB_node = node.createDistNode(self.mid_ctl, self.tws2_loc)

        div_nodeUpLeg = node.createDivNode(distA_node + ".distance",
                                           dm_node.attr("outputScaleX"))

        div_node2 = node.createDivNode(div_nodeUpLeg + ".outputX",
                                       distA_node.attr("distance").get())

        pm.connectAttr(div_node2.attr("outputX"), self.tws1A_loc.attr("sx"))

        pm.connectAttr(div_node2.attr("outputX"),
                       self.uplegTangentA_loc.attr("sx"))

        div_nodeLowLeg = node.createDivNode(distB_node + ".distance",
                                            dm_node.attr("outputScaleX"))
        div_node2 = node.createDivNode(div_nodeLowLeg + ".outputX",
                                       distB_node.attr("distance").get())

        pm.connectAttr(div_node2.attr("outputX"), self.tws1B_loc.attr("sx"))
        pm.connectAttr(div_node2.attr("outputX"),
                       self.lowlegTangentB_loc.attr("sx"))

        # conection curve
        cnts = [
            self.uplegTangentA_loc, self.uplegTangentA_ctl,
            self.uplegTangentB_ctl, self.kneeTangent_ctl
        ]
        applyop.gear_curvecns_op(self.uplegTwistCrv, cnts)

        cnts = [
            self.kneeTangent_ctl, self.lowlegTangentA_ctl,
            self.lowlegTangentB_ctl, self.lowlegTangentB_loc
        ]
        applyop.gear_curvecns_op(self.lowlegTwistCrv, cnts)

        # Tangent controls vis
        for shp in self.uplegTangentA_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.uplegTangentB_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.lowlegTangentA_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.lowlegTangentB_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.kneeTangent_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):
            if i < (self.settings["div0"] + 2):
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.uplegTwistChain[i] + ".worldMatrix",
                    div_cns + ".parentInverseMatrix")
                lastUpLegDiv = div_cns
            else:
                o_node = self.lowlegTwistChain[i - (self.settings["div0"] + 2)]
                mulmat_node = applyop.gear_mulmatrix_op(
                    o_node + ".worldMatrix", div_cns + ".parentInverseMatrix")
                lastLowLegDiv = div_cns
            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", div_cns + ".t")
            pm.connectAttr(dm_node + ".outputRotate", div_cns + ".r")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # force translation for last loc arm and foreamr
        applyop.gear_mulmatrix_op(self.kneeTangent_ctl.worldMatrix,
                                  lastUpLegDiv.parentInverseMatrix,
                                  lastUpLegDiv, "t")
        applyop.gear_mulmatrix_op(self.tws2_loc.worldMatrix,
                                  lastLowLegDiv.parentInverseMatrix,
                                  lastLowLegDiv, "t")

        # NOTE: next line fix the issue on meters.
        # This is special case becasuse the IK solver from mGear use the
        # scale as lenght and we have shear
        # TODO: check for a more clean and elegant solution instead of
        # re-match the world matrix again
        transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0_off)
        transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1_off)
        transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0)
        transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1)

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)

        return
Ejemplo n.º 25
0
    def addOperators(self):

        # 1 bone chain Upv ref =====================================================================================
        self.ikHandleUpvRef = pri.addIkHandle(
            self.root, self.getName("ikHandleLegChainUpvRef"),
            self.armChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.armChainUpvRef[0], self.upv_cns, mo=True)

        # Visibilities -------------------------------------
        # fk
        fkvis_node = nod.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        if self.settings["ikTR"]:
            for shp in self.ikRot_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        att.setRotOrder(self.fk0_ctl, "XZY")
        att.setRotOrder(self.fk1_ctl, "XYZ")
        att.setRotOrder(self.fk2_ctl, "YZX")
        # att.setRotOrder(self.ik_ctl, "ZYX")
        att.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        node = aop.gear_ikfk2bone_op(out, self.root, self.ik_ref, self.upv_ctl,
                                     self.fk_ctl[0], self.fk_ctl[1],
                                     self.fk_ref, self.length0, self.length1,
                                     self.negate)

        if self.settings["ikTR"]:
            #connect the control inputs
            outEff_dm = node.listConnections(c=True)[-1][1]

            outEff_dm.attr("outputTranslate") >> self.ikRot_npo.attr(
                "translate")
            outEff_dm.attr("outputScale") >> self.ikRot_npo.attr("scale")
            dm_node = nod.createDecomposeMatrixNode(node.attr("outB"))
            dm_node.attr("outputRotate") >> self.ikRot_npo.attr("rotate")

            #rotation

            # intM_node = aop.gear_intmatrix_op(node.attr("outEff"), self.ikRot_ctl.attr("worldMatrix"), node.attr("blend"))
            # mulM_node = aop.gear_mulmatrix_op(intM_node.attr("output"), self.eff_loc.attr("parentInverseMatrix"))
            # dm_node = nod.createDecomposeMatrixNode(mulM_node.attr("output"))
            mulM_node = aop.gear_mulmatrix_op(
                self.ikRot_ctl.attr("worldMatrix"),
                self.eff_loc.attr("parentInverseMatrix"))
            intM_node = aop.gear_intmatrix_op(node.attr("outEff"),
                                              mulM_node.attr("output"),
                                              node.attr("blend"))
            dm_node = nod.createDecomposeMatrixNode(intM_node.attr("output"))
            dm_node.attr("outputRotate") >> self.eff_loc.attr("rotate")

        #scale: this fix the scalin popping issue
        intM_node = aop.gear_intmatrix_op(self.fk2_ctl.attr("worldMatrix"),
                                          self.ik_ctl.attr("worldMatrix"),
                                          node.attr("blend"))
        mulM_node = aop.gear_mulmatrix_op(
            intM_node.attr("output"), self.eff_loc.attr("parentInverseMatrix"))
        dm_node = nod.createDecomposeMatrixNode(mulM_node.attr("output"))
        dm_node.attr("outputScale") >> self.eff_loc.attr("scale")

        pm.connectAttr(self.blend_att, node + ".blend")
        pm.connectAttr(self.roll_att, node + ".roll")
        pm.connectAttr(self.scale_att, node + ".scaleA")
        pm.connectAttr(self.scale_att, node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, node + ".maxstretch")
        pm.connectAttr(self.slide_att, node + ".slide")
        pm.connectAttr(self.softness_att, node + ".softness")
        pm.connectAttr(self.reverse_att, node + ".reverse")

        # Twist references ---------------------------------

        pm.pointConstraint(self.mid_ctl, self.tws1_npo, maintainOffset=False)
        pm.scaleConstraint(self.mid_ctl, self.tws1_npo, maintainOffset=False)
        pm.orientConstraint(self.mid_ctl, self.tws1_npo, maintainOffset=False)

        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"),
                                     self.root.attr("worldInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"),
                                     self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        att.setRotOrder(self.tws2_rot, "XYZ")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")

        self.tws0_rot.setAttr("sx", .001)
        self.tws2_rot.setAttr("sx", .001)

        add_node = nod.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        #Roll Shoulder
        aop.splineIK(self.getName("rollRef"),
                     self.rollRef,
                     parent=self.root,
                     cParent=self.bone0)

        # Volume -------------------------------------------
        distA_node = nod.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = nod.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = nod.createAddNode(distA_node + ".distance",
                                     distB_node + ".distance")
        div_node = nod.createDivNode(add_node + ".output",
                                     self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = nod.createDivNode(div_node + ".outputX",
                                      dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):

            if i < (self.settings["div0"] + 1):
                perc = i * .5 / (self.settings["div0"] + 1.0)
            elif i < (self.settings["div0"] + 2):
                perc = .49
            elif i < (self.settings["div0"] + 3):
                perc = .50
            elif i < (self.settings["div0"] + 4):
                perc = .51

            else:
                perc = .5 + (i - self.settings["div0"] -
                             3.0) * .5 / (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # Roll
            if self.negate:
                node = aop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1 - perc, 40)
            else:
                node = aop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc, 40)

            pm.connectAttr(self.resample_att, node + ".resample")
            pm.connectAttr(self.absolute_att, node + ".absolute")

            # Squash n Stretch
            node = aop.gear_squashstretch2_op(div_cns, None,
                                              pm.getAttr(self.volDriver_att),
                                              "x")
            pm.connectAttr(self.volume_att, node + ".blend")
            pm.connectAttr(self.volDriver_att, node + ".driver")
            pm.connectAttr(self.st_att[i], node + ".stretch")
            pm.connectAttr(self.sq_att[i], node + ".squash")

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)

        return
Ejemplo n.º 26
0
    def addOperators(self):

        # Visibilities -------------------------------------
        # fk
        fkvis_node = nod.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        att.setRotOrder(self.fk0_ctl, "XZY")
        att.setRotOrder(self.fk1_ctl, "XYZ")
        att.setRotOrder(self.fk2_ctl, "YZX")
        att.setRotOrder(self.ik_ctl, "ZYX")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        node = aop.gear_ikfk2bone_op(out, self.root, self.ik_ref, self.upv_ctl,
                                     self.fk_ctl[0], self.fk_ctl[1],
                                     self.fk_ref, self.length0, self.length1,
                                     self.negate)

        pm.connectAttr(self.blend_att, node + ".blend")
        pm.connectAttr(self.roll_att, node + ".roll")
        pm.connectAttr(self.scale_att, node + ".scaleA")
        pm.connectAttr(self.scale_att, node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, node + ".maxstretch")
        pm.connectAttr(self.slide_att, node + ".slide")
        pm.connectAttr(self.softness_att, node + ".softness")
        pm.connectAttr(self.reverse_att, node + ".reverse")

        # Twist references ---------------------------------

        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"),
                                     self.root.attr("worldInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        #spline IK for  twist jnts
        self.ikhArmTwist, self.armTwistCrv = aop.splineIK(
            self.getName("armTwist"),
            self.armTwistChain,
            parent=self.root,
            cParent=self.bone0)
        self.ikhForearmTwist, self.forearmTwistCrv = aop.splineIK(
            self.getName("forearmTwist"),
            self.forearmTwistChain,
            parent=self.root,
            cParent=self.bone1)

        #references
        self.ikhArmRef, self.tmpCrv = aop.splineIK(self.getName("armRollRef"),
                                                   self.armRollRef,
                                                   parent=self.root,
                                                   cParent=self.bone0)
        self.ikhForearmRef, self.tmpCrv = aop.splineIK(
            self.getName("forearmRollRef"),
            self.forearmRollRef,
            parent=self.root,
            cParent=self.eff_loc)
        self.ikhAuxTwist, self.tmpCrv = aop.splineIK(self.getName("auxTwist"),
                                                     self.auxTwistChain,
                                                     parent=self.root,
                                                     cParent=self.eff_loc)

        #setting connexions for ikhArmTwist
        self.ikhArmTwist.attr("dTwistControlEnable").set(True)
        self.ikhArmTwist.attr("dWorldUpType").set(4)
        self.ikhArmTwist.attr("dWorldUpAxis").set(3)
        self.ikhArmTwist.attr("dWorldUpVectorZ").set(1.0)
        self.ikhArmTwist.attr("dWorldUpVectorY").set(0.0)
        self.ikhArmTwist.attr("dWorldUpVectorEndZ").set(1.0)
        self.ikhArmTwist.attr("dWorldUpVectorEndY").set(0.0)
        pm.connectAttr(self.armRollRef[0].attr("worldMatrix[0]"),
                       self.ikhArmTwist.attr("dWorldUpMatrix"))
        pm.connectAttr(self.bone0.attr("worldMatrix[0]"),
                       self.ikhArmTwist.attr("dWorldUpMatrixEnd"))

        #setting connexions for ikhAuxTwist
        self.ikhAuxTwist.attr("dTwistControlEnable").set(True)
        self.ikhAuxTwist.attr("dWorldUpType").set(4)
        self.ikhAuxTwist.attr("dWorldUpAxis").set(3)
        self.ikhAuxTwist.attr("dWorldUpVectorZ").set(1.0)
        self.ikhAuxTwist.attr("dWorldUpVectorY").set(0.0)
        self.ikhAuxTwist.attr("dWorldUpVectorEndZ").set(1.0)
        self.ikhAuxTwist.attr("dWorldUpVectorEndY").set(0.0)
        pm.connectAttr(self.forearmRollRef[0].attr("worldMatrix[0]"),
                       self.ikhAuxTwist.attr("dWorldUpMatrix"))
        pm.connectAttr(self.eff_loc.attr("worldMatrix[0]"),
                       self.ikhAuxTwist.attr("dWorldUpMatrixEnd"))
        pm.connectAttr(self.auxTwistChain[1].attr("rx"),
                       self.ikhForearmTwist.attr("twist"))

        pm.parentConstraint(self.bone1, self.aux_npo, maintainOffset=True)

        #scale arm length for twist chain (not the squash and stretch)
        arclen_node = pm.arclen(self.armTwistCrv, ch=True)
        alAttrArm = arclen_node.attr("arcLength")
        muldiv_nodeArm = pm.createNode("multiplyDivide")
        pm.connectAttr(arclen_node.attr("arcLength"),
                       muldiv_nodeArm.attr("input1X"))
        muldiv_nodeArm.attr("input2X").set(alAttrArm.get())
        muldiv_nodeArm.attr("operation").set(2)
        for jnt in self.armTwistChain:
            pm.connectAttr(muldiv_nodeArm.attr("outputX"), jnt.attr("sx"))

        #scale forearm length for twist chain (not the squash and stretch)
        arclen_node = pm.arclen(self.forearmTwistCrv, ch=True)
        alAttrForearm = arclen_node.attr("arcLength")
        muldiv_nodeForearm = pm.createNode("multiplyDivide")
        pm.connectAttr(arclen_node.attr("arcLength"),
                       muldiv_nodeForearm.attr("input1X"))
        muldiv_nodeForearm.attr("input2X").set(alAttrForearm.get())
        muldiv_nodeForearm.attr("operation").set(2)
        for jnt in self.forearmTwistChain:
            pm.connectAttr(muldiv_nodeForearm.attr("outputX"), jnt.attr("sx"))

        #scale compensation for the first  twist join
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix[0]"),
                       dm_node.attr("inputMatrix"))
        pm.connectAttr(dm_node.attr("outputScale"),
                       self.armTwistChain[0].attr("inverseScale"))
        pm.connectAttr(dm_node.attr("outputScale"),
                       self.forearmTwistChain[0].attr("inverseScale"))

        #tangent controls
        muldiv_node = pm.createNode("multiplyDivide")
        muldiv_node.attr("input2X").set(-1)
        pm.connectAttr(self.tws1A_npo.attr("rz"), muldiv_node.attr("input1X"))
        muldiv_nodeBias = pm.createNode("multiplyDivide")
        pm.connectAttr(muldiv_node.attr("outputX"),
                       muldiv_nodeBias.attr("input1X"))
        pm.connectAttr(self.roundness_att, muldiv_nodeBias.attr("input2X"))
        pm.connectAttr(muldiv_nodeBias.attr("outputX"),
                       self.tws1A_loc.attr("rz"))
        if self.negate:
            axis = "xz"
        else:
            axis = "-xz"
        aop.aimCns(self.tws1A_npo,
                   self.tws0_loc,
                   axis=axis,
                   wupType=2,
                   wupVector=[0, 0, 1],
                   wupObject=self.mid_ctl,
                   maintainOffset=False)

        aop.aimCns(self.forearmTangentB_loc,
                   self.forearmTangentA_npo,
                   axis=axis,
                   wupType=2,
                   wupVector=[0, 0, 1],
                   wupObject=self.mid_ctl,
                   maintainOffset=False)
        pm.pointConstraint(self.eff_loc, self.forearmTangentB_loc)

        muldiv_node = pm.createNode("multiplyDivide")
        muldiv_node.attr("input2X").set(-1)
        pm.connectAttr(self.tws1B_npo.attr("rz"), muldiv_node.attr("input1X"))
        muldiv_nodeBias = pm.createNode("multiplyDivide")
        pm.connectAttr(muldiv_node.attr("outputX"),
                       muldiv_nodeBias.attr("input1X"))
        pm.connectAttr(self.roundness_att, muldiv_nodeBias.attr("input2X"))
        pm.connectAttr(muldiv_nodeBias.attr("outputX"),
                       self.tws1B_loc.attr("rz"))
        if self.negate:
            axis = "-xz"
        else:
            axis = "xz"
        aop.aimCns(self.tws1B_npo,
                   self.tws2_loc,
                   axis=axis,
                   wupType=2,
                   wupVector=[0, 0, 1],
                   wupObject=self.mid_ctl,
                   maintainOffset=False)

        aop.aimCns(self.armTangentA_loc,
                   self.armTangentB_npo,
                   axis=axis,
                   wupType=2,
                   wupVector=[0, 0, 1],
                   wupObject=self.mid_ctl,
                   maintainOffset=False)

        # Volume -------------------------------------------
        distA_node = nod.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = nod.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = nod.createAddNode(distA_node + ".distance",
                                     distB_node + ".distance")
        div_node = nod.createDivNode(add_node + ".output",
                                     self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = nod.createDivNode(div_node + ".outputX",
                                      dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        # connecting tangent scaele compensation after volume to aboid duplicate some nodes ------------------------------
        distA_node = nod.createDistNode(self.tws0_loc, self.mid_ctl)
        distB_node = nod.createDistNode(self.mid_ctl, self.tws2_loc)

        div_nodeArm = nod.createDivNode(distA_node + ".distance",
                                        dm_node.attr("outputScaleX"))
        div_node2 = nod.createDivNode(div_nodeArm + ".outputX",
                                      distA_node.attr("distance").get())
        pm.connectAttr(div_node2.attr("outputX"), self.tws1A_loc.attr("sx"))
        pm.connectAttr(div_node2.attr("outputX"),
                       self.armTangentA_loc.attr("sx"))

        div_nodeForearm = nod.createDivNode(distB_node + ".distance",
                                            dm_node.attr("outputScaleX"))
        div_node2 = nod.createDivNode(div_nodeForearm + ".outputX",
                                      distB_node.attr("distance").get())
        pm.connectAttr(div_node2.attr("outputX"), self.tws1B_loc.attr("sx"))
        pm.connectAttr(div_node2.attr("outputX"),
                       self.forearmTangentB_loc.attr("sx"))

        #conection curve
        aop.gear_curvecns_op(self.armTwistCrv, [
            self.armTangentA_loc, self.armTangentA_ctl, self.armTangentB_ctl,
            self.elbowTangent_ctl
        ])
        aop.gear_curvecns_op(self.forearmTwistCrv, [
            self.elbowTangent_ctl, self.forearmTangentA_ctl,
            self.forearmTangentB_ctl, self.forearmTangentB_loc
        ])

        #Tangent controls vis
        pm.connectAttr(self.tangentVis_att,
                       self.armTangentA_ctl.attr("visibility"))
        pm.connectAttr(self.tangentVis_att,
                       self.armTangentB_ctl.attr("visibility"))
        pm.connectAttr(self.tangentVis_att,
                       self.forearmTangentA_ctl.attr("visibility"))
        pm.connectAttr(self.tangentVis_att,
                       self.forearmTangentB_ctl.attr("visibility"))
        pm.connectAttr(self.tangentVis_att,
                       self.elbowTangent_ctl.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):
            if i < (self.settings["div0"] + 2):
                mulmat_node = aop.gear_mulmatrix_op(
                    self.armTwistChain[i] + ".worldMatrix",
                    div_cns + ".parentInverseMatrix")
            else:
                mulmat_node = aop.gear_mulmatrix_op(
                    self.forearmTwistChain[i - (self.settings["div0"] + 2)] +
                    ".worldMatrix", div_cns + ".parentInverseMatrix")
            dm_node = nod.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", div_cns + ".t")
            pm.connectAttr(dm_node + ".outputRotate", div_cns + ".r")

            # Squash n Stretch
            node = aop.gear_squashstretch2_op(div_cns, None,
                                              pm.getAttr(self.volDriver_att),
                                              "x")
            pm.connectAttr(self.volume_att, node + ".blend")
            pm.connectAttr(self.volDriver_att, node + ".driver")
            pm.connectAttr(self.st_att[i], node + ".stretch")
            pm.connectAttr(self.sq_att[i], node + ".squash")

        # return

        # NOTE: next line fix the issue on meters.
        # This is special case becasuse the IK solver from mGear use the scale as lenght and we have shear
        # TODO: check for a more clean and elegant solution instead of re-match the world matrix again
        tra.matchWorldTransform(self.fk_ctl[0], self.match_fk0_off)
        tra.matchWorldTransform(self.fk_ctl[1], self.match_fk1_off)
        tra.matchWorldTransform(self.fk_ctl[0], self.match_fk0)
        tra.matchWorldTransform(self.fk_ctl[1], self.match_fk1)

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)
Ejemplo n.º 27
0
    def addOperators(self):

        # Visibilities -------------------------------------
        # fk
        fkvis_node = nod.createReverseNode(self.blend_att)
        
        for shp in self.fk0_ctl.getShapes():
            connectAttr(fkvis_node+".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            connectAttr(fkvis_node+".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            connectAttr(fkvis_node+".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            connectAttr(self.blend_att, shp.attr("visibility"))

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        node = aop.gear_ikfk2bone_op(out, self.root, self.ik_ref, self.upv_ctl, self.fk_ctl[0], self.fk_ctl[1], self.fk_ref, self.length0, self.length1, self.negate)

        connectAttr(self.blend_att, node+".blend")
        connectAttr(self.roll_att, node+".roll")
        connectAttr(self.scale_att, node+".scaleA")
        connectAttr(self.scale_att, node+".scaleB")
        connectAttr(self.maxstretch_att, node+".maxstretch")
        connectAttr(self.slide_att, node+".slide")
        connectAttr(self.softness_att, node+".softness")
        connectAttr(self.reverse_att, node+".reverse")

        # Twist references ---------------------------------
        pointConstraint(self.root, self.tws0_loc, maintainOffset=True)
        aop.aimCns(self.tws0_loc, self.mid_ctl, self.n_sign+"xz", 2, [0,1,0], self.root, False)

        pointConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        scaleConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        orientConstraint(self.mid_ctl, self.tws1_rot, maintainOffset=False)

        pointConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        scaleConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        orientConstraint(self.bone1, self.tws2_loc, maintainOffset=False) 
        # orientConstraint(self.eff_loc, self.tws2_rot, maintainOffset=False)
        node = aop.gear_mulmatrix_op(self.eff_loc.attr("worldMatrix"), self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = createNode("decomposeMatrix")
        connectAttr(node+".output", dm_node+".inputMatrix")
        connectAttr(dm_node+".outputRotate", self.tws2_rot+".rotate")
        # att.setRotOrder(self.tws2_rot, "YZX")

        self.tws0_loc.setAttr("sx", .001)
        self.tws2_loc.setAttr("sx", .001)

        add_node = nod.createAddNode(self.roundness_att, .001)
        connectAttr(add_node+".output", self.tws1_rot.attr("sx"))

        # Volume -------------------------------------------
        distA_node = nod.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = nod.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = nod.createAddNode(distA_node+".distance", distB_node+".distance")
        div_node = nod.createDivNode(add_node+".output", self.root.attr("sx"))
        self.volDriver_att = div_node+".outputX"

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):

            if i < (self.settings["div0"]+1):
                perc = i*.5 / (self.settings["div0"]+1.0)
            else:
                perc = .5 + (i-self.settings["div0"]-1.0)*.5 / (self.settings["div1"]+1.0)

            perc = max(.001, min(.999, perc))

            # Roll
            if self.negate:
                node = aop.gear_rollsplinekine_op(div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot], 1-perc)
            else:
                node = aop.gear_rollsplinekine_op(div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot], perc)

            connectAttr(self.resample_att, node+".resample")
            connectAttr(self.absolute_att, node+".absolute")

            # Squash n Stretch
            node = aop.gear_squashstretch2_op(div_cns, None, getAttr(self.volDriver_att), "x")
            connectAttr(self.volume_att, node+".blend")
            connectAttr(self.volDriver_att, node+".driver")
            connectAttr(self.st_att[i], node+".stretch")
            connectAttr(self.sq_att[i], node+".squash")

        return
Ejemplo n.º 28
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.pos["root"], self.guide.pos["neck"])
        dist_node = node.createDistNode(self.root, self.ik_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))
        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")
        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_loc.getAttr("ty"))
        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")
        pm.connectAttr(res_node + ".outputX", self.tan0_loc + ".ty")

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_loc.getAttr("ty"))
        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")
        pm.connectAttr(res_node + ".outputX", self.tan1_loc.attr("ty"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)
            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 2)  # front axis is 'Z'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.intMRef + ".worldMatrix", self.ik_ctl + ".worldMatrix", u)
            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.fk_npo[i], self.root,
                                                pm.arclen(self.slv_crv), "y")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")
            op.setAttr("driver_min", .1)

            # scl compas
            if i != 0:
                div_node = node.createDivNode([1, 1, 1], [
                    self.fk_npo[i - 1] + ".sx", self.fk_npo[i - 1] + ".sy",
                    self.fk_npo[i - 1] + ".sz"
                ])

                pm.connectAttr(div_node + ".output",
                               self.scl_npo[i] + ".scale")

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))
            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate",
                           self.fk_npo[i].attr("t"))
            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == self.settings["division"] - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik_ctl +
                                                         ".worldMatrix")
                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori_att)
                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

        # Head ---------------------------------------------
        self.fk_ctl[-1].addChild(self.head_cns)

        # scale compensation
        dm_node = node.createDecomposeMatrixNode(self.scl_npo[0] +
                                                 ".parentInverseMatrix")

        pm.connectAttr(dm_node + ".outputScale", self.scl_npo[0] + ".scale")
Ejemplo n.º 29
0
    def addOperators(self):

        # Tangent position ---------------------------------
        # common part
        d = vec.getDistance(self.guide.pos["root"], self.guide.pos["neck"])
        dist_node = nod.createDistNode(self.root, self.ik_ctl)
        rootWorld_node = nod.createDecomposeMatrixNode(self.root.attr("worldMatrix"))
        div_node = nod.createDivNode(dist_node+".distance", rootWorld_node+".outputScaleX")
        div_node = nod.createDivNode(div_node+".outputX", d)

        # tan0
        mul_node = nod.createMulNode(self.tan0_att, self.tan0_loc.getAttr("ty"))
        res_node = nod.createMulNode(mul_node+".outputX", div_node+".outputX")
        connectAttr( res_node+".outputX", self.tan0_loc+".ty")

        # tan1
        mul_node = nod.createMulNode(self.tan1_att, self.tan1_loc.getAttr("ty"))
        res_node = nod.createMulNode(mul_node+".outputX", div_node+".outputX")
        connectAttr( res_node+".outputX", self.tan1_loc.attr("ty"))

        # Curves -------------------------------------------
        op = aop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5, .5, .5)
        connectAttr(self.maxstretch_att, op+".maxstretch")
        connectAttr(self.maxsquash_att, op+".maxsquash")
        connectAttr(self.softness_att, op+".softness")

        # Volume driver ------------------------------------
        crv_node = nod.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)

            cns = aop.pathCns(self.div_cns[i], self.slv_crv, False, u, True)
            cns.setAttr("frontAxis", 1)# front axis is 'Y'
            cns.setAttr("upAxis", 2)# front axis is 'Z'

            # Roll
            aop.gear_spinePointAtOp(cns, self.root, self.ik_ctl, u, "Z")

            # Squash n Stretch
            op = aop.gear_squashstretch2_op(self.fk_npo[i], self.root, arclen(self.slv_crv), "y")
            connectAttr(self.volume_att, op+".blend")
            connectAttr(crv_node+".arcLength", op+".driver")
            connectAttr(self.st_att[i], op+".stretch")
            connectAttr(self.sq_att[i], op+".squash")

            # scl compas
            if i != 0:
                div_node = nod.createDivNode([1,1,1], [self.fk_npo[i-1]+".sx", self.fk_npo[i-1]+".sy", self.fk_npo[i-1]+".sz"])
                connectAttr(div_node+".output", self.scl_npo[i]+".scale")

            # Controlers
            if i == 0:
                mulmat_node = aop.gear_mulmatrix_op(self.div_cns[i].attr("worldMatrix"), self.root.attr("worldInverseMatrix"))
            else:
                mulmat_node = aop.gear_mulmatrix_op(self.div_cns[i].attr("worldMatrix"), self.div_cns[i-1].attr("worldInverseMatrix"))

            dm_node = nod.createDecomposeMatrixNode(mulmat_node+".output")
            connectAttr(dm_node+".outputTranslate", self.fk_npo[i].attr("t"))
            connectAttr(dm_node+".outputRotate", self.fk_npo[i].attr("r"))
            #connectAttr(dm_node+".outputScale", self.fk_npo[i].attr("s"))

            # Orientation Lock
            if i == self.settings["division"] - 1 :
                dm_node = nod.createDecomposeMatrixNode(self.ik_ctl+".worldMatrix")
                blend_node = nod.createBlendNode([dm_node+".outputRotate%s"%s for s in "XYZ"], [cns+".rotate%s"%s for s in "XYZ"], self.lock_ori_att)
                self.div_cns[i].attr("rotate").disconnect()
                connectAttr(blend_node+".output", self.div_cns[i]+".rotate")


        # Head ---------------------------------------------
        self.fk_ctl[-1].addChild(self.head_cns)