Ejemplo n.º 1
0
def run(config, job_uuid, genes, geneId, seedModels, wobble, cut, motifSizes, jobName, mirbase_species, bgModel, topRet=10, viral=False):

    species = get_species_by_mirbase_id(mirbase_species)
    if bgModel=='3p':
        bgModel = species['weeder']
    else:
        bgModel = species['weeder'].rstrip('3P')
    sequence_file = os.path.join(config.get('General', 'data_dir'),
                                 "p3utrSeqs_" + species['ucsc_name'] + ".csv")

    cut = float(cut)
    curRunNum = randint(0,1000000)

    # translate gene identifiers to entrez IDs
    print "translating gene identifiers from %s to entrez IDs" % (geneId)
    genes = map_genes_to_entrez_ids(job_uuid, geneId, mirbase_species)
    print "genes = " + str(genes)

    # 1. Read in sequences
    seqFile = open(sequence_file,'r')
    seqLines = seqFile.readlines()
    ids = [i.strip().split(',')[0].upper() for i in seqLines]
    sequences = [i.strip().split(',')[1] for i in seqLines]
    seqs = dict(zip(ids,sequences))
    seqFile.close()

    # 2. Get sequences for each target
    miRSeqs = {}
    for gene in genes:
        if gene in seqs:
            miRSeqs[gene] = seqs[gene]

    # if there are no matching sequences, bail out w/ a reasonable error message.
    if (len(miRSeqs)==0):
        print("no matching sequences found for genes in job " + str(job_uuid))
        update_job_status(job_uuid, "error", "No sequences found for the genes entered.")
        return False

    # record whether a sequence was found for each gene
    # previously stored when job was created (create_job_in_db)
    set_genes_annotated(job_uuid, miRSeqs)

    # 3. Make a FASTA file
    fasta_dir = os.path.join(config.get('General', 'tmp_dir'), 'fasta')
    if not os.path.exists(fasta_dir):
        os.makedirs(fasta_dir)
    fasta_fname = os.path.join(fasta_dir, 'tmp' + str(curRunNum) + '.fasta')
    with open(fasta_fname, 'w') as fastaFile:
        for seq in miRSeqs:
            fastaFile.write('>'+str(seq)+'\n'+str(miRSeqs[seq])+'\n')

    # 4. Run weeder
    print 'Running weeder!'
    update_job_status(job_uuid, "running weeder")
    weederPSSMs1 = weeder(config,
                          seqFile=fasta_fname,
                          percTargets=50,
                          revComp=False,
                          bgModel=bgModel)

    # 4a. Take only selected size motifs
    weederPSSMsTmp = []
    for pssm1 in weederPSSMs1:
        png_path = os.path.join(config.get('General', 'pssm_images_dir'),
                                str(job_uuid) + '_' + pssm1.getName() + '.png')
        if 6 in motifSizes and len(pssm1.getName())==6:
            weederPSSMsTmp.append(deepcopy(pssm1))
            plotPssm(pssm1, png_path)
        if 8 in motifSizes and len(pssm1.getName())==8:
            weederPSSMsTmp.append(deepcopy(pssm1))
            plotPssm(pssm1, png_path)
        print("pssm name = " + pssm1.getName())
    weederPSSMs1 = deepcopy(weederPSSMsTmp)
    del weederPSSMsTmp

    # 5. Run miRvestigator HMM
    update_job_status(job_uuid, "computing miRvestigator HMM")
    mV = miRvestigator(config, weederPSSMs1, seqs.values(),
                       seedModel=seedModels,
                       minor=True,
                       p5=True, p3=True,
                       wobble=wobble, wobbleCut=cut,
                       textOut=False,
                       species=mirbase_species,
                       viral = viral)

    # 6. Clean-up after yerself
    os.remove(os.path.join(fasta_dir, 'tmp' + str(curRunNum) + '.fasta'))
    os.remove(os.path.join(fasta_dir, 'tmp' + str(curRunNum) + '.fasta.wee'))
    os.remove(os.path.join(fasta_dir, 'tmp' + str(curRunNum) + '.fasta.mix'))
    os.remove(os.path.join(fasta_dir, 'tmp' + str(curRunNum) + '.fasta.html'))

    # 7. write output to database
    update_job_status(job_uuid, "compiling results")

    for pssm in weederPSSMs1:
        motif_id = store_motif(job_uuid, pssm)
        scores = mV.getScoreList(pssm.getName())
        store_mirvestigator_scores(motif_id, scores)

    update_job_status(job_uuid, "done")
    return True
Ejemplo n.º 2
0
def run(job_uuid, genes, geneId, seedModels, wobble, cut, motifSizes, jobName, mirbase_species, bgModel, topRet=10, viral=False):

    species = get_species_by_mirbase_id(mirbase_species)
    if bgModel=='3p':
        bgModel = species['weeder']
    else:
        bgModel = species['weeder'].rstrip('3P')
    sequence_file = conf.data_dir+"/p3utrSeqs_" + species['ucsc_name'] + ".csv"

    cut = float(cut)
    curRunNum = randint(0,1000000)

    # translate gene identifiers to entrez IDs
    print "translating gene identifiers from %s to entrez IDs" % (geneId)
    genes = map_genes_to_entrez_ids(job_uuid, geneId, mirbase_species)
    print "genes = " + str(genes)

    # 1. Read in sequences
    seqFile = open(sequence_file,'r')
    seqLines = seqFile.readlines()
    ids = [i.strip().split(',')[0].upper() for i in seqLines]
    sequences = [i.strip().split(',')[1] for i in seqLines]
    seqs = dict(zip(ids,sequences))
    seqFile.close()

    #update_job_status(job, "finished reading sequence file")

    # 2. Get sequences for each target
    miRSeqs = {}
    for gene in genes:
        if gene in seqs:
            miRSeqs[gene] = seqs[gene]

    # if there are no matching sequences, bail out w/ a reasonable error message.
    if (len(miRSeqs)==0):
        print("no matching sequences found for genes in job " + str(job_uuid))
        update_job_status(job_uuid, "error", "No sequences found for the genes entered.")
        return False

    # record whether a sequence was found for each gene
    # previously stored when job was created (create_job_in_db)
    set_genes_annotated(job_uuid, miRSeqs)

    # 3. Make a FASTA file
    if not os.path.exists(conf.tmp_dir+'/fasta'):
        os.makedirs(conf.tmp_dir+'/fasta')
    fastaFile = open(conf.tmp_dir+'/fasta/tmp'+str(curRunNum)+'.fasta','w')
    for seq in miRSeqs:
        fastaFile.write('>'+str(seq)+'\n'+str(miRSeqs[seq])+'\n')
    fastaFile.close()

    # 4. Run weeder
    print 'Running weeder!'
    update_job_status(job_uuid, "running weeder")
    weederPSSMs1 = weeder(seqFile=conf.tmp_dir+'/fasta/tmp'+str(curRunNum)+'.fasta', percTargets=50, revComp=False, bgModel=bgModel)

    # 4a. Take only selected size motifs
    weederPSSMsTmp = []
    for pssm1 in weederPSSMs1:
        if 6 in motifSizes and len(pssm1.getName())==6:
            weederPSSMsTmp.append(deepcopy(pssm1))
            plotPssm(pssm1,conf.pssm_images_dir+'/'+str(job_uuid)+'_'+pssm1.getName()+'.png')
        if 8 in motifSizes and len(pssm1.getName())==8:
            weederPSSMsTmp.append(deepcopy(pssm1))
            plotPssm(pssm1,conf.pssm_images_dir+'/'+str(job_uuid)+'_'+pssm1.getName()+'.png')
        print("pssm name = " + pssm1.getName())
    weederPSSMs1 = deepcopy(weederPSSMsTmp)
    del weederPSSMsTmp

    # 5. Run miRvestigator HMM
    update_job_status(job_uuid, "computing miRvestigator HMM")
    mV = miRvestigator(weederPSSMs1, seqs.values(),
                       seedModel=seedModels,
                       minor=True,
                       p5=True, p3=True,
                       wobble=wobble, wobbleCut=cut,
                       textOut=False,
                       species=mirbase_species,
                       viral = viral)

    # 6. Read in miRNAs to get mature miRNA ids
    # import gzip
    # miRNAFile = gzip.open('mature.fa.gz','r')
    # miRNADict = {}
    # while 1:
    #     miRNALine = miRNAFile.readline()
    #     seqLine = miRNAFile.readline()
    #     if not miRNALine:
    #         break
    #     # Get the miRNA name
    #     miRNAData = miRNALine.lstrip('>').split(' ')
    #     curMiRNA = miRNAData[0]
    #     if (curMiRNA.split('-'))[0]=='hsa':
    #         miRNADict[curMiRNA] = miRNAData[1]
    # miRNAFile.close()

    # 6. Clean-up after yerself
    os.remove(conf.tmp_dir+'/fasta/tmp'+str(curRunNum)+'.fasta')
    os.remove(conf.tmp_dir+'/fasta/tmp'+str(curRunNum)+'.fasta.wee')
    os.remove(conf.tmp_dir+'/fasta/tmp'+str(curRunNum)+'.fasta.mix')
    os.remove(conf.tmp_dir+'/fasta/tmp'+str(curRunNum)+'.fasta.html')

    # 7. write output to database
    update_job_status(job_uuid, "compiling results")

    for pssm in weederPSSMs1:
        motif_id = store_motif(job_uuid, pssm)
        scores = mV.getScoreList(pssm.getName())
        store_mirvestigator_scores(motif_id, scores)


    update_job_status(job_uuid, "done")
    return True
Ejemplo n.º 3
0
Archivo: FIRM.py Proyecto: hjanime/FIRM
        for seq in clusterSeqs:
            fastaFile.write('>'+str(seq)+'\n'+str(clusterSeqs[seq])+'\n')
        fastaFile.close()

# Run this using all cores available
weederPSSMs1 = mgr.list()
print 'Starting Weeder runs...'
cpus = cpu_count()
print 'There are', cpus,'CPUs avialable.' 
pool = Pool(processes=cpus)
pool.map(runWeeder,range(len(fastaFiles)))
print 'Done with Weeder runs.\n'

# Compare to miRDB using my program
from miRvestigator import miRvestigator
m2m = miRvestigator(weederPSSMs1,seqs.values(),seedModel=[6,7,8],minor=True,p5=True,p3=True,wobble=False,wobbleCut=0.25)
outFile = open('m2m'+'_'+str(dataset)+'.pkl','wb')
cPickle.dump(m2m,outFile)
outFile.close()

# Now do PITA and TargetScan - iterate through both platforms
for db in ['TargetScan','PITA']:
    # Get ready for multiprocessor goodness
    mgr = Manager()
    cpus = cpu_count()

    # Load up db of miRNA ids
    ls2 = [x for x in os.listdir('TargetPredictionDatabases/'+db) if '.csv' in x]

    # Load the predicted target genes for each miRNA from the files
    tmpDict = {}
Ejemplo n.º 4
0
def run_mirvestigator(seqs, refSeq2entrez, use_entrez, exp_dir='exp'):
    """
    Run miRvestigator on all signatures
    """
    global fastaFiles, weederPSSMs1

    # Setup for multiprocessing
    mgr = Manager()
    fastaFiles = mgr.list()

    # For each cluster file in exp from Goodarzi et al.
    # Cluster files should have a header and be tab delimited to look like this:
    # Gene\tGroup\n
    # NM_000014\t52\n
    # <RefSeq_ID>\t<signature_id>\n
    # ...
    files = os.listdir(exp_dir)
    for file in files:
        # 3. Read in cluster file and convert to entrez ids
        with open(os.path.join(exp_dir, file), 'r') as inFile:
            dataset = file.strip().split('.')[0]
            inFile.readline()
            lines = inFile.readlines()
            clusters = defaultdict(list)
            for line in lines:
                gene, group = line.strip().split('\t')
                group = int(group)
                if use_entrez:
                    entrez = int(gene)
                    clusters[group].append(entrez)
                else:
                    if gene in refSeq2entrez:
                        clusters[group].append(refSeq2entrez[gene])

        # 5. Make a FASTA file & run weeder
        for cluster in clusters:
            print(cluster)
            # Get seqeunces
            clusterSeqs = {}
            for target in clusters[cluster]:
                if str(target) in seqs:
                    clusterSeqs[target] = seqs[str(target)]
                else:
                    print("Did not find seq for '%s'" % target)

            # Make FASTA file
            print('Fasta output...')
            fastaFiles.append('tmp/weeder/fasta/' + str(cluster) + '_' +
                              str(dataset) + '.fasta')
            if not os.path.exists('tmp/weeder/fasta'):
                os.makedirs('tmp/weeder/fasta')

            with open(
                    'tmp/weeder/fasta/' + str(cluster) + '_' + str(dataset) +
                    '.fasta', 'w') as fastaFile:
                for seq in clusterSeqs:
                    fastaFile.write('>' + str(seq) + '\n' +
                                    str(clusterSeqs[seq]) + '\n')

    # Run this using all cores available
    weederPSSMs1 = mgr.list()
    print('Starting Weeder runs...')
    cpus = cpu_count()
    print('There are %d CPUs available.' % cpus)
    pool = Pool(processes=cpus)
    pool.map(runWeeder, range(len(fastaFiles)))
    print('Done with Weeder runs.')

    # Compare to miRDB using my program
    m2m = miRvestigator(weederPSSMs1,
                        seqs.values(),
                        seedModel=[6, 7, 8],
                        minor=True,
                        p5=True,
                        p3=True,
                        wobble=False,
                        wobbleCut=0.25)
    with open('m2m' + '_' + str(dataset) + '.pkl', 'wb') as outFile:
        pickle.dump(m2m, outFile)