kernel = 'rbf' gamma = 0.0012 C = 250 experience = '2018' positiveCsvFileName = 'hard-video.csv' negativeCsvFileName = 'easy-video.csv' path = './result/{0}/{1}/g{2}/c{3}'.format(experience, dir_name, gamma, C) dicimate = 4 mil = MIL(method=method, experience=experience, dirName=dir_name, estimatorName='misvm') mil.setData(positiveCsvFileName=positiveCsvFileName, negativeCsvFileName=negativeCsvFileName, saveMotionTmplate=False, dicimate=dicimate, videoExtension='mp4', csvExtension='csv') #mil.importCsv2Feature(positiveCsvFileName, negativeCsvFileName, dicimate, data='all') def main(): # read hard and easy estimator = misvm.miSVM(kernel=kernel, gamma=gamma, C=C, verbose=True, max_iters=100) #estimator = misvm.miPSVM(feature=kernel, gamma=gamma, C=C, verbose=True, max_iters=100, n_components=36*3, sparse=['P']) mil.train(estimator=estimator, resultSuperDirPath=path)
kernel = 'rbf' gamma = 0.0012 C = 1000 sample_num_per_label = 0 experience = '2018' path = './result/{0}/{1}/g{2}/c{3}'.format(experience, dir_name, gamma, C) dicimate = 4 person = [] mil = MIL(method=method, experience=experience, dirName=dir_name, estimatorName='MISVM') mil.setData(positiveCsvFileName='easy-video.csv', negativeCsvFileName='hard-video.csv', saveMotionTmplate=False, dicimate=4, videoExtension='mp4', csvExtension='csv') def main(): # read hard and easy estimator = misvm.MISVM(kernel=kernel, gamma=gamma, C=C, verbose=True, max_iters=100) mil.train(estimator=estimator, resultSuperDirPath=path) def check_identification_func_max(): bags, labels, csvnamelist = mil.bags, mil.labels, mil.csvFilePaths