Ejemplo n.º 1
0
def generate_actors():
    f = open("actors.csv", 'w')
    person = Person()
    id_PK = 1
    print("Generating...")
    for _ in range(2500):
        # generate male
        id_FK = randint(1, 1000)

        f.write(str(id_PK) + ',' + str(id_FK) + ','\
         + person.full_name(gender=Gender.MALE) + ','\
         + str(person.age(minimum=18, maximum=70)) + ','\
         + 'M' + ','\
         + person.nationality() + ','\
         + str(randint(1000, 1000000)) + ','\
         + str(randint(0, 5)) + '\n')

        id_PK += 1
        id_FK = randint(1, 1000)
        # generate female
        f.write(str(id_PK) + ','+ str(id_FK) + ','\
         + person.full_name(gender=Gender.FEMALE) + ','\
         + str(person.age(minimum=18, maximum=70)) + ','\
         + 'F' + ','\
         + person.nationality() + ','\
         + str(randint(1000, 1000000)) + ','\
         + str(randint(0, 5)) + '\n')

        id_PK += 1

    f.close()
    print("DONE")
Ejemplo n.º 2
0
    def handle(self, *args, **options):
        UserProfile.objects.all().delete()
        Author.objects.all().delete()

        person = Person('en')

        for _ in range(COUNT_ELEM):
            first_name = person.first_name()
            last_name = person.last_name()
            login = f'{first_name}.{last_name}'
            email = person.email()
            birthday_year = datetime.today().year - person.age(minimum=14,
                                                               maximum=100)
            print(f'Created:{login} - {email}')
            user = {
                "user_name": login,
                "first_name": first_name,
                "last_name": last_name,
                "gender": person.sex('M', 'F'),
                "birthday_year": birthday_year,
                "email": email
            }
            author = {
                "first_name": first_name,
                "last_name": last_name,
                "birthday_year": birthday_year,
            }
            new_user = UserProfile(**user)
            new_user.save()
            new_author = Author(**author)
            new_author.save()

        User.objects.all().delete()
        User.objects.create_superuser('admin', 'admin@localhost', 'admin')
Ejemplo n.º 3
0
def create_human(n):
    """

    :param n: язык генерации данных
    :return: сгенерированные фейковые данные
    """
    log.info("Генерируем тестовые данные")
    if n == 1:
        person = Person('ru')
    else:
        person = Person('en')
    log.info("person: " + str(person))

    client_info = generate_id_passport()

    print('\nфамилия:\t', person.last_name())
    print('имя:\t\t', person.name())
    print('отчество:\t', person.surname(), '\n')

    passport = generate_number_passport()
    print('личный №:\t', client_info.get('idn'))
    print('документ:\t', passport)

    print('пол:\t\t', client_info.get('sex'))
    print('возраст:\t', person.age(13, 70), '\n')
    # print('аватар\t', person.avatar())
    print('гражд-во:\t', person.get_current_locale())
    print('Нац-сть:\t',person.nationality())
    print('телефон:\t', person.telephone('+37529#######'))
    print('email:\t\t', person.email())
    print('проф-ия:\t', person.occupation(), '\n')
    print('обращение:\t', person.title())
    print('взгляды:\t', person.views_on())
    print('вера:\t\t', person.worldview(), '\n')
Ejemplo n.º 4
0
def create_human(n):  # function of creating new client
    if n == 1:
        person = Person('ru')
    else:
        person = Person('en')

    # Выводим исландские мужские имена.
    client_info = generate_id_passport()

    print('\nфамилия:\t', person.last_name())
    print('имя:\t\t', person.name())
    print('отчество:\t', person.surname(), '\n')

    passport = generate_number_passport()
    print('личный №:\t', client_info.get('idn'))
    print('документ:\t', passport)

    print('пол:\t\t', client_info.get('sex'))
    print('возраст:\t', person.age(13, 70), '\n')
    # print('аватар\t', person.avatar())
    print('гражд-во:\t', person.get_current_locale())
    print('Нац-сть:\t', person.nationality())
    print('телефон:\t', person.telephone('+37529#######'))
    print('email:\t\t', '*****@*****.**')
    # print('email:\t\t', person.email())
    print('проф-ия:\t', person.occupation(), '\n')
    print('обращение:\t', person.title())
    print('взгляды:\t', person.views_on())
    print('вера:\t\t', person.worldview(), '\n')
Ejemplo n.º 5
0
def createPlayers(team):
    person = Person("en")
    adress = Address("en")
    players = []
    MAX_N = len(team)
    arrOfIds = [i + 1 for i in range(MAX_N)]
    for i in range(MAX_N):
        positions = [1, 2, 3, 4, 5]
        numbers   = [k for k in range(1, 99, 1)]
        curTeamID = choice(arrOfIds)
        arrOfIds.remove(curTeamID)
        for _ in range(len(positions)):
            curID       = str(len(players) + 1)
            teamID      = str(curTeamID)
            name        = person.full_name()
            position    = choice(positions)
            height      = str(randint(150, 220)) 
            weight      = str(person.weight()) 
            number      = str(choice(numbers))
            age         = str(person.age()) 
            country     = adress.country(allow_random=True)
            positions.remove(position)
            numbers.remove(int(number))
            players.append([curID, teamID, name, position, height, weight, number, age, country])
    f = open("Players.csv", "w", encoding='utf-8')
    for player in players:
        line = str(player[0]) + ',' + str(player[1]) + ',' + str(player[2]) + ',' +\
               str(player[3]) + ',' + str(player[4]) + ',' + str(player[5]) + ',' +\
               str(player[6]) + ',' + str(player[7]) + ',' + str(player[8]) + '\n'
        f.write(line)
    f.close()   
Ejemplo n.º 6
0
def seedDatabase(rows):
    person = Person('en')
    for _ in range(0, int(rows)):
        first_name = person.first_name()
        age = person.age()
        new_user = User(first_name=first_name, age=age)
        Db.session.add(new_user)
        Db.session.commit()
    return redirect(url_for('index'))
Ejemplo n.º 7
0
def create_personalData():  # function of generate new client data
    passport = ''
    person = Person('ru')

    # Выводим исландские мужские имена.

    lastname = person.last_name()
    personalData['lastname'] = lastname
    # print('\nфамилия:\t', personalData['lastname'])

    name = person.name()
    personalData['name'] = name
    # print('имя:\t\t', personalData['name'])

    surname = person.surname()
    personalData['surname'] = surname
    # print('отчество:\t', personalData['surname'])

    gender = person.gender()
    personalData['gender'] = gender
    # print('пол:\t\t', personalData['gender'])

    for _ in range(2):
        varLet = random.choice(string.ascii_uppercase)
        passport += varLet
    passport += person.telephone('#######')
    personalData['passport'] = passport
    # print('паспорт:\t', personalData['passport'])

    ### birthday
    currentDate()
    personalData['age'] = age
    personalData['age'][2] = str(
        int(personalData['age'][2]) - person.age(16, 70))
    # print('возраст:\t', personalData['age'], '\n')
    ###

    # print('гражд-во:\t', person.get_current_locale())
    # print('Нац-сть:\t',person.nationality())

    ### mobile
    mobile = person.telephone('+37529#######')
    personalData['mobile'] = mobile
    # print('телефон:\t', personalData['mobile'])
    ###
    ### email
    # personalData['email'] = person.email()
    # print('email:\t\t', personalData['email'])
    ###
    # print('проф-ия:\t', person.occupation(), '\n')
    # print('обращение:\t', person.title())
    # print('взгляды:\t', person.views_on())
    # print('вера:\t\t', person.worldview(), '\n')
    return personalData
Ejemplo n.º 8
0
    def gen_data_simple_schema(self, data_path, partition_date, num_rows,
                               file_format):
        """
        Input
        - data_path: path where the partition will be created (string)
        - partition_date: partition date to be created (date)
        - num_rows: number of rows to be generated (integer)
        - file_format: format of file to be generated (parquet or avro)

        This function creates a data sample with a simple schema
        """

        person = Person('en')

        # Create a simple schema
        schema_df = StructType([
            StructField('identifier', StringType(), True),
            StructField('first_name', StringType(), True),
            StructField('last_name', StringType(), True),
            StructField('occupation', StringType(), True),
            StructField('age', IntegerType(), True),
            StructField('date', DateType(), True)
        ])

        # generate data
        for _ in range(num_rows):
            df_temp = self.spark.createDataFrame([[
                person.identifier(),
                person.first_name(),
                person.last_name(),
                person.occupation(),
                person.age(), partition_date
            ]], schema_df)

            try:
                df = df.union(df_temp)
            except:
                df = df_temp

        df.coalesce(1).write.partitionBy('date').mode('overwrite').format(
            file_format).save(data_path)

        print('Partition created: {data_path}/date={date}'.format(
            data_path=data_path, date=partition_date))
        print('# Rows:', df.count())
        print('Schema:')
        df.printSchema()
        print('\n')

        return
Ejemplo n.º 9
0
def generate_student() -> dict:
    """Generate a student record."""
    person = Person()

    student = {
        "academic_degree": person.academic_degree(),
        "age": person.age(),
        "full_name": person.full_name(),
        "gender": person.gender(),
        "nationality": person.nationality(),
        "university": person.university(),
    }

    return student
Ejemplo n.º 10
0
def generate_directors():
    f = open("directors.csv", 'w')
    person = Person()
    ID = 1
    for _ in range(500):
        # generate male
        f.write(str(ID) + ','\
         + person.full_name(gender=Gender.MALE) + ','\
         + str(person.age(minimum=24, maximum=70)) + ','\
         + 'M' + ','\
         + str(randint(1, 9)) + '\n')

        ID += 1
        # generate female
        f.write(str(ID) + ','\
         + person.full_name(gender=Gender.FEMALE) + ','\
         + str(person.age(minimum=24, maximum=70)) + ','\
         + 'F' + ','\
         + str(randint(1, 9)) + '\n')

        ID += 1

    f.close()
Ejemplo n.º 11
0
    def make_full_name(self, loc, value):
        global sex
        per = Person(loc)
        rsp = RussiaSpecProvider()

        if value == 'male':
            sex = Gender.MALE
        elif value == 'famale':
            sex = Gender.FEMALE
        name = per.name(sex)
        surname = per.surname(sex)
        patron = rsp.patronymic(sex)
        age = per.age(16, 66)
        occup = per.occupation()
        return name, surname, patron, age, occup
Ejemplo n.º 12
0
def get_user(number):
    """
    Creates random user data
    :param number: number of users
    :return: user data list
    """
    data = []
    for i in range(number):
        user_gender = random.sample([Gender.MALE, Gender.FEMALE], 1)[0]
        person = Person('ru')
        data.append(
            OrderedDict(first_name=person.first_name(gender=user_gender),
                        last_name=person.last_name(gender=user_gender),
                        age=person.age(minimum=18, maximum=66),
                        email=person.email(domains=('yandex.ru', 'gmail.com')),
                        username=person.username(template='UU_d')))
    return data
Ejemplo n.º 13
0
def update():
    db.users.remove({})
    db.goods.remove({})
    users, goods = [], []
    for _ in range(30):
        person = Person(locales.ZH)
        user = {
            "name": person.name(),
            "age": person.age(),
            "sex": choice(["boy", "girl"]),
            "mobile": person.telephone(),
            "wechat": person.email(),
            "status": choice(["normal", "in_debt"]),
            "isVip": Development().boolean(),
        }
        users.append(user)
    db.users.insert_many(users)
Ejemplo n.º 14
0
""")
conn.commit()

for i in range(20):
    #idd =  g.code.imei()
    idd = n
    gender = random.choice(gen)
    if gender == 'Женский':
        first_name = p.first_name(gender=Gender.FEMALE)
        last_name = p.last_name(gender=Gender.FEMALE)
        #self.patron = rus.patronymic(gender = Gender.FEMALE)
    elif gender == 'Мужской':
        first_name = p.first_name(gender=Gender.MALE)
        last_name = p.last_name(gender=Gender.MALE)
        #self.patron = rus.patronymic(gender = Gender.MALE)
    age = p.age(minimum=18, maximum=70)
    month_ob = dt.month()
    day_ob = dt.day_of_month()
    year_ob = 2020 - age
    city_ob = adr.city()
    city = adr.city()
    address = adr.address()
    phone = p.telephone(mask='+7(###)-###-####')
    email = p.email(domains=['mimesis.name'])

    user = (int(idd), str(gender), str(first_name), str(last_name), str(age),
            str(month_ob), str(day_ob), str(year_ob), str(city_ob), str(city),
            str(address), str(phone), str(email))

    cur.execute(
        "INSERT INTO people VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);",
Ejemplo n.º 15
0
    def gen_data_remove_column(self, data_path, partition_date, num_rows,
                               file_format):
        """
        Input
        - data_path: path where the partition will be created (string)
        - partition_date: partition date to be created (date)
        - num_rows: number of rows to be generated (integer)
        - file_format: format of file to be generated (parquet or avro)

        This function creates a data sample removing some columns
        """

        person = Person('en')
        address = Address('en')

        schema_street = StructType([
            StructField('street_name', StringType(), True)
            # StructField('lat', FloatType(), True), #column removed
            # StructField('long', FloatType(), True) #column removed
        ])

        schema_address_details = StructType([
            StructField('street', schema_street, True),
            StructField('number', IntegerType(), True)
        ])

        schema_address = StructType([
            StructField('address_details', schema_address_details, True),
            StructField('city', StringType(), True),
            StructField('country', StringType(), True),
            # StructField('country_code', StringType(), True), #column removed
            StructField('state', StringType(), True),
            StructField('postal_code', IntegerType(), True)
        ])

        schema_df = StructType([
            StructField('identifier', StringType(), True),
            StructField('first_name', StringType(), True),
            StructField('last_name', StringType(), True),
            StructField('occupation', StringType(), True),
            StructField('age', IntegerType(), True),
            StructField('address', schema_address, True),
            # StructField('title_name', StringType(), True), #column removed
            StructField('date', DateType(), True)
        ])

        for _ in range(num_rows):
            df_temp = self.spark.createDataFrame(
                [[
                    person.identifier(),
                    person.first_name(),
                    person.last_name(),
                    person.occupation(),
                    person.age(),
                    [
                        [
                            [
                                address.street_name()
                                #float(address.latitude()),
                                #float(address.longitude())
                            ],
                            int(address.street_number())
                        ],
                        address.city(),
                        address.country(),
                        #address.country_code(),
                        address.state(),
                        int(address.postal_code())
                    ],
                    #person.title(),
                    partition_date
                ]],
                schema_df)

            try:
                df = df.union(df_temp)
            except:
                df = df_temp

        df.coalesce(1).write.partitionBy('date').mode('overwrite').format(
            file_format).save(data_path)

        print('Partition created: {data_path}/date={date}'.format(
            data_path=data_path, date=partition_date))
        print('# Rows:', df.count())
        print('Schema:')
        df.printSchema()
        print('\n')

        return
Ejemplo n.º 16
0
from mimesis import Person
Person = Person('de')

print(Person.email())
print(Person.telephone())
print(Person.age())

from collections import OrderedDict
from csv import DictWriter
import os

from mimesis import Person

COUNT = 100
LOCAL = 'en-gb'
HERE = os.path.dirname(__file__)

person = Person(LOCAL)

records = []
for _ in range(COUNT):
    record = OrderedDict(
        name=person.full_name(),
        email=person.email(),
        age=person.age(minimum=18, maximum=45),
        height=person.height(),
        blood_type=person.blood_type()
    )
    records.append(record)


with open(os.path.join(HERE, './fakedata.csv'), 'w') as f:
    writer = DictWriter(f, fieldnames=records[0].keys())
    writer.writeheader()
    writer.writerows(records)
Ejemplo n.º 18
0
#!/usr/bin/env python3
# -*- conding:utf8 -*-

from mimesis import Person
person_en = Person('en')
print(person_en.full_name())
print(person_en.age())
print(person_en.favorite_movie())
print('*' * 20)
person_zh = Person('zh')
print(person_zh.full_name())
print(person_zh.age())
print(person_zh.favorite_movie())
Ejemplo n.º 19
0
    def person(
        cls,
        *,
        locale=Locales.EN,
        qualification=None,
        age=None,
        blood_type=None,
        email=None,
        first_name=None,
        last_name=None,
        gender=None,
        height=None,
        id=None,
        language=None,
        nationality=None,
        occupation=None,
        phone=None,
        title=None,
        university=None,
        weight=None,
        work_experience=None,
    ):
        '''
            Create an Person Data Entity object.

            All individual fields are automatically randomly generated based on locale. If provided, the corresponding values are overriden.

            Note:
                All individual fields are randomly generated. Don't expect correct correlation e.g. correct postal code for the generated city.

            Keyword Arguments:
                locale: Approprite Random.locale.<local_name> object. Default is Random.locale.EN
                qualification: Educational Qualification
                age: Age
                blood_type: Blood type
                email: Email address
                first_name: First name
                last_name: Last name
                gender: Gender
                height: Height
                id: Identifier
                language: Language
                nationality: Nationality
                occupation: Occupation
                phone: Phone number
                title: Title
                university: University
                weight: Weight
                work_experience: Work Experience
        '''
        person = Person(locale=locale)
        from arjuna.engine.data.entity.person import Person as ArjPerson

        first_name = first_name is not None and first_name or person.first_name(
        )
        last_name = last_name is not None and last_name or person.last_name()
        return ArjPerson(
            qualification=qualification is not None and qualification
            or person.academic_degree(),
            age=age is not None and age or person.age(),
            blood_type=blood_type is not None and blood_type
            or person.blood_type(),
            email=email is not None and email or person.email(),
            first_name=first_name,
            last_name=last_name,
            name=first_name + " " + last_name,
            gender=gender is not None and gender or person.gender(),
            height=height is not None and height or person.height(),
            id=id is not None and id or person.identifier(),
            language=language is not None and language or person.language(),
            nationality=nationality is not None and nationality
            or person.nationality(),
            occupation=occupation is not None and occupation
            or person.occupation(),
            phone=phone is not None and phone or person.telephone(),
            title=title is not None and title or person.title(),
            university=university is not None and university
            or person.university(),
            weight=weight is not None and weight or person.weight(),
            work_experience=work_experience is not None and work_experience
            or person.work_experience(),
        )
Ejemplo n.º 20
0
    return 0.01*pow(np.abs(df[age] - 30), 2.5) + df[age] + 50*df[marketing_level]*gated_age + 2*df[account_balance] + noise


##################################################

##################################################
### Generate a DataFrame of user information
##################################################
# Generate 10,000 rows of the following:
# user_id, first_name, last_name, email, password, address,
# birth_date, credit_card_num, credit_card_exp, security_answer,
# account_balance

user_df = pd.DataFrame([[x, person.name(), person.surname(), person.gender(),
                        person.email(), hashed_passwd(person.password()),
                        address.address(), person.age(),
                        payment.credit_card_number(),
                        payment.credit_card_expiration_date(), text.word(),
                        account_balance(), np.random.randint(1, 11)]
                        for x in range(10000)])

user_df.columns = ["user_id", "first_name", "last_name",
                   "gender", "email", "password_hashed", "address",
                   "age", "credit_card_num", "credit_card_exp",
                   "security_answer", "account_balance",
                   "marketing_level"]

# Generate sales, based on a noisy linear model
user_df['sales'] = generate_sales(user_df)
user_df['sales'] = user_df['sales'] - user_df['sales'].min()
user_df['sales'] /= 40
Ejemplo n.º 21
0
### Generate a DataFrame of user information
##################################################
# Generate 10,000 rows of the following:
# user_id, first_name, last_name, email, password, address,
# birth_date, credit_card_num, credit_card_exp, security_answer,
# account_balance

user_df = pd.DataFrame([[
    x,
    person.name(),
    person.surname(),
    person.gender(),
    person.email(),
    hashed_passwd(person.password()),
    address.address(),
    person.age(),
    payment.credit_card_number(),
    payment.credit_card_expiration_date(),
    text.word(),
    account_balance(),
    np.random.randint(1, 11)
] for x in range(10000)])

user_df.columns = [
    "user_id", "first_name", "last_name", "gender", "email", "password_hashed",
    "address", "age", "credit_card_num", "credit_card_exp", "security_answer",
    "account_balance", "marketing_level"
]

# Generate sales, based on a noisy linear model
user_df['sales'] = generate_sales(user_df)
Ejemplo n.º 22
0
# -*- encoding : utf-8 -*-
"""
@File       : __init__.py.py
@Time       :2021/3/29 18:46
@Author     :kuang congxian
@Contact    :[email protected]
@Description : null
"""

from mimesis import Person
from pprint import pprint

person = Person("zh")

pprint("{}[age:{}, sex:{}, university:{}]".format(person.name(), person.age(),
                                                  person.sex(),
                                                  person.university()))