def read_and_extract_features(args, partition):
    data_folder = os.path.join(args.data, partition)
    reader = LengthOfStayReader(
            dataset_dir=data_folder,
            listfile=os.path.join(data_folder, 'listfile.csv'),
            fixed_time=args.period_length)

    ret = common_utils.read_chunk(reader, reader.get_number_of_examples())
    patients = np.array(ret["patient"], dtype=int)
    ret["meta"] = np.stack(ret["meta"])
    X = common_utils.extract_features_from_rawdata(ret['X'], ret['header'], period="all", features=args.features)

    # Check that the period of observation time is the same for all observations
    period_of_obs = np.mean(ret["t"])
    print("Period of observation", period_of_obs, np.var(ret["t"]))
    assert np.var(ret["t"]) < 1e-3

    # Augment data with missing columns
    missing_flags = np.isnan(X)
    # Also add in the metadata (age, ethnicity, gender)
    augmented_X = np.concatenate([ret["meta"], X, missing_flags], axis=1)
    y = np.array(ret['y']).reshape((-1,1)) + period_of_obs
    log_y = np.log(y)
    return augmented_X, log_y, patients
Ejemplo n.º 2
0
    bins = np.array([one_hot(metrics.get_bin_custom(x, nbins)) for x in ys])
    return (Xs, bins, ys)


print "==> reading data and extracting features"
chunk_size = 100000  # TODO: bigger chunk_size

prev_time = time.time()
(train_X, train_y, train_actual) = read_and_extract_features(train_reader, chunk_size)
del train_reader

(val_X, val_y, val_actual) = read_and_extract_features(val_reader, chunk_size)
del val_reader

(test_X, test_y, test_actual) = read_and_extract_features(test_reader,
                                                          test_reader.get_number_of_examples())
del test_reader

print "==> elapsed time = %.3f" % (time.time() - prev_time)

print "train.shape ", train_X.shape, train_y.shape
print "val.shape", val_X.shape, val_y.shape
print "test.shape", test_X.shape, test_y.shape

print "==> imputing missing values"
imputer = Imputer(missing_values=np.nan, strategy='mean', axis=0,
                  verbose=0, copy=True)
imputer.fit(train_X)
train_X = np.array(imputer.transform(train_X), dtype=np.float32)
val_X = np.array(imputer.transform(val_X), dtype=np.float32)
test_X = np.array(imputer.transform(test_X), dtype=np.float32)
Ejemplo n.º 3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--period',
                        type=str,
                        default='all',
                        help='specifies which period extract features from',
                        choices=[
                            'first4days', 'first8days', 'last12hours',
                            'first25percent', 'first50percent', 'all'
                        ])
    parser.add_argument('--features',
                        type=str,
                        default='all',
                        help='specifies what features to extract',
                        choices=['all', 'len', 'all_but_len'])
    parser.add_argument('--data',
                        type=str,
                        help='Path to the data of length-of-stay task',
                        default=os.path.join(os.path.dirname(__file__),
                                             '../../../data/length-of-stay/'))
    parser.add_argument(
        '--output_dir',
        type=str,
        help='Directory relative which all output files are stored',
        default='.')
    args = parser.parse_args()
    print(args)

    train_reader = LengthOfStayReader(
        dataset_dir=os.path.join(args.data, 'train'),
        listfile=os.path.join(args.data, 'train_listfile.csv'))

    val_reader = LengthOfStayReader(
        dataset_dir=os.path.join(args.data, 'train'),
        listfile=os.path.join(args.data, 'val_listfile.csv'))

    test_reader = LengthOfStayReader(
        dataset_dir=os.path.join(args.data, 'test'),
        listfile=os.path.join(args.data, 'test_listfile.csv'))

    print('Reading data and extracting features ...')
    n_train = min(100000, train_reader.get_number_of_examples())
    n_val = min(100000, val_reader.get_number_of_examples())

    (train_X, train_y, train_names,
     train_ts) = read_and_extract_features(train_reader, n_train, args.period,
                                           args.features)

    (val_X, val_y, val_names,
     val_ts) = read_and_extract_features(val_reader, n_val, args.period,
                                         args.features)

    (test_X, test_y, test_names,
     test_ts) = read_and_extract_features(test_reader,
                                          test_reader.get_number_of_examples(),
                                          args.period, args.features)

    print(train_X.shape)
    assert False

    print('Imputing missing values ...')
    imputer = Imputer(missing_values=np.nan,
                      strategy='mean',
                      axis=0,
                      verbose=0,
                      copy=True)
    imputer.fit(train_X)
    train_X = np.array(imputer.transform(train_X), dtype=np.float32)
    val_X = np.array(imputer.transform(val_X), dtype=np.float32)
    test_X = np.array(imputer.transform(test_X), dtype=np.float32)

    print('Normalizing the data to have zero mean and unit variance ...')
    scaler = StandardScaler()
    scaler.fit(train_X)
    train_X = scaler.transform(train_X)
    val_X = scaler.transform(val_X)
    test_X = scaler.transform(test_X)

    file_name = "{}.{}".format(args.period, args.features)

    linreg = LinearRegression()
    linreg.fit(train_X, train_y)

    result_dir = os.path.join(args.output_dir, 'results')
    common_utils.create_directory(result_dir)

    with open(os.path.join(result_dir, 'train_{}.json'.format(file_name)),
              "w") as res_file:
        ret = print_metrics_regression(train_y, linreg.predict(train_X))
        ret = {k: float(v) for k, v in ret.items()}
        json.dump(ret, res_file)

    with open(os.path.join(result_dir, 'val_{}.json'.format(file_name)),
              'w') as res_file:
        ret = print_metrics_regression(val_y, linreg.predict(val_X))
        ret = {k: float(v) for k, v in ret.items()}
        json.dump(ret, res_file)

    prediction = linreg.predict(test_X)

    with open(os.path.join(result_dir, 'test_{}.json'.format(file_name)),
              'w') as res_file:
        ret = print_metrics_regression(test_y, prediction)
        ret = {k: float(v) for k, v in ret.items()}
        json.dump(ret, res_file)

    save_results(
        test_names, test_ts, prediction, test_y,
        os.path.join(args.output_dir, 'predictions', file_name + '.csv'))
Ejemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--period', type=str, default='all', help='specifies which period extract features from',
                        choices=['first4days', 'first8days', 'last12hours', 'first25percent', 'first50percent', 'all'])
    parser.add_argument('--features', type=str, default='all', help='specifies what features to extract',
                        choices=['all', 'len', 'all_but_len'])
    parser.add_argument('--grid-search', dest='grid_search', action='store_true')
    parser.add_argument('--no-grid-search', dest='grid_search', action='store_false')
    parser.set_defaults(grid_search=False)
    parser.add_argument('--data', type=str, help='Path to the data of length-of-stay task',
                        default=os.path.join(os.path.dirname(__file__), '../../../data/length-of-stay/'))
    parser.add_argument('--output_dir', type=str, help='Directory relative which all output files are stored',
                        default='.')
    args = parser.parse_args()
    print(args)

    if args.grid_search:
        penalties = ['l2', 'l2', 'l2', 'l2', 'l2', 'l2', 'l1', 'l1', 'l1', 'l1', 'l1']
        coefs = [1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001, 1.0, 0.1, 0.01, 0.001, 0.0001]
    else:
        penalties = ['l2']
        coefs = [0.00001]

    train_reader = LengthOfStayReader(dataset_dir=os.path.join(args.data, 'train'),
                                      listfile=os.path.join(args.data, 'train_listfile.csv'))

    val_reader = LengthOfStayReader(dataset_dir=os.path.join(args.data, 'train'),
                                    listfile=os.path.join(args.data, 'val_listfile.csv'))

    test_reader = LengthOfStayReader(dataset_dir=os.path.join(args.data, 'test'),
                                     listfile=os.path.join(args.data, 'test_listfile.csv'))

    print('Reading data and extracting features ...')
    n_train = min(100000, train_reader.get_number_of_examples())
    n_val = min(100000, val_reader.get_number_of_examples())

    (train_X, train_y, train_actual, train_names, train_ts) = read_and_extract_features(
        train_reader, n_train, args.period, args.features)

    (val_X, val_y, val_actual, val_names, val_ts) = read_and_extract_features(
        val_reader, n_val, args.period, args.features)

    (test_X, test_y, test_actual, test_names, test_ts) = read_and_extract_features(
        test_reader, test_reader.get_number_of_examples(), args.period, args.features)

    print("train set shape:  {}".format(train_X.shape))
    print("validation set shape: {}".format(val_X.shape))
    print("test set shape: {}".format(test_X.shape))

    print('Imputing missing values ...')
    imputer = Imputer(missing_values=np.nan, strategy='mean', axis=0, verbose=0, copy=True)
    imputer.fit(train_X)
    train_X = np.array(imputer.transform(train_X), dtype=np.float32)
    val_X = np.array(imputer.transform(val_X), dtype=np.float32)
    test_X = np.array(imputer.transform(test_X), dtype=np.float32)

    print('Normalizing the data to have zero mean and unit variance ...')
    scaler = StandardScaler()
    scaler.fit(train_X)
    train_X = scaler.transform(train_X)
    val_X = scaler.transform(val_X)
    test_X = scaler.transform(test_X)

    result_dir = os.path.join(args.output_dir, 'cf_results')
    common_utils.create_directory(result_dir)

    for (penalty, C) in zip(penalties, coefs):
        model_name = '{}.{}.{}.C{}'.format(args.period, args.features, penalty, C)

        train_activations = np.zeros(shape=train_y.shape, dtype=float)
        val_activations = np.zeros(shape=val_y.shape, dtype=float)
        test_activations = np.zeros(shape=test_y.shape, dtype=float)

        for task_id in range(n_bins):
            logreg = LogisticRegression(penalty=penalty, C=C, random_state=42)
            logreg.fit(train_X, train_y[:, task_id])

            train_preds = logreg.predict_proba(train_X)
            train_activations[:, task_id] = train_preds[:, 1]

            val_preds = logreg.predict_proba(val_X)
            val_activations[:, task_id] = val_preds[:, 1]

            test_preds = logreg.predict_proba(test_X)
            test_activations[:, task_id] = test_preds[:, 1]

        train_predictions = np.array([metrics.get_estimate_custom(x, n_bins) for x in train_activations])
        val_predictions = np.array([metrics.get_estimate_custom(x, n_bins) for x in val_activations])
        test_predictions = np.array([metrics.get_estimate_custom(x, n_bins) for x in test_activations])

        with open(os.path.join(result_dir, 'train_{}.json'.format(model_name)), 'w') as f:
            ret = metrics.print_metrics_custom_bins(train_actual, train_predictions)
            ret = {k: float(v) for k, v in ret.items()}
            json.dump(ret, f)

        with open(os.path.join(result_dir, 'val_{}.json'.format(model_name)), 'w') as f:
            ret = metrics.print_metrics_custom_bins(val_actual, val_predictions)
            ret = {k: float(v) for k, v in ret.items()}
            json.dump(ret, f)

        with open(os.path.join(result_dir, 'test_{}.json'.format(model_name)), 'w') as f:
            ret = metrics.print_metrics_custom_bins(test_actual, test_predictions)
            ret = {k: float(v) for k, v in ret.items()}
            json.dump(ret, f)

        save_results(test_names, test_ts, test_predictions, test_actual,
                     os.path.join(args.output_dir, 'cf_predictions', model_name + '.csv'))
Ejemplo n.º 5
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--period', type=str, default='all', help='specifies which period extract features from',
                        choices=['first4days', 'first8days', 'last12hours', 'first25percent', 'first50percent', 'all'])
    parser.add_argument('--features', type=str, default='all', help='specifies what features to extract',
                        choices=['all', 'len', 'all_but_len'])
    args = parser.parse_args()
    print(args)

    train_reader = LengthOfStayReader(dataset_dir='../../../data/length-of-stay/train/',
                                      listfile='../../../data/length-of-stay/train_listfile.csv')

    val_reader = LengthOfStayReader(dataset_dir='../../../data/length-of-stay/train/',
                                    listfile='../../../data/length-of-stay/val_listfile.csv')

    test_reader = LengthOfStayReader(dataset_dir='../../../data/length-of-stay/test/',
                                     listfile='../../../data/length-of-stay/test_listfile.csv')

    print('Reading data and extracting features ...')
    n_train = min(100000, train_reader.get_number_of_examples())
    n_val = min(100000, val_reader.get_number_of_examples())

    (train_X, train_y, train_names, train_ts) = read_and_extract_features(
        train_reader, n_train, args.period, args.features)

    (val_X, val_y, val_names, val_ts) = read_and_extract_features(
        val_reader, n_val, args.period, args.features)

    (test_X, test_y, test_names, test_ts) = read_and_extract_features(
        test_reader, test_reader.get_number_of_examples(), args.period, args.features)

    print('Imputing missing values ...')
    imputer = Imputer(missing_values=np.nan, strategy='mean', axis=0, verbose=0, copy=True)
    imputer.fit(train_X)
    train_X = np.array(imputer.transform(train_X), dtype=np.float32)
    val_X = np.array(imputer.transform(val_X), dtype=np.float32)
    test_X = np.array(imputer.transform(test_X), dtype=np.float32)

    print('Normalizing the data to have zero mean and unit variance ...')
    scaler = StandardScaler()
    scaler.fit(train_X)
    train_X = scaler.transform(train_X)
    val_X = scaler.transform(val_X)
    test_X = scaler.transform(test_X)

    file_name = "{}.{}".format(args.period, args.features)

    linreg = LinearRegression()
    linreg.fit(train_X, train_y)

    common_utils.create_directory('results')

    with open(os.path.join("results", 'train_{}.json'.format(file_name)), "w") as res_file:
        ret = print_metrics_regression(train_y, linreg.predict(train_X))
        ret = {k: float(v) for k, v in ret.items()}
        json.dump(ret, res_file)

    with open(os.path.join('results', 'val_{}.json'.format(file_name)), 'w') as res_file:
        ret = print_metrics_regression(val_y, linreg.predict(val_X))
        ret = {k: float(v) for k, v in ret.items()}
        json.dump(ret, res_file)

    prediction = linreg.predict(test_X)

    with open(os.path.join('results', 'test_{}.json'.format(file_name)), 'w') as res_file:
        ret = print_metrics_regression(test_y, prediction)
        ret = {k: float(v) for k, v in ret.items()}
        json.dump(ret, res_file)

    save_results(test_names, test_ts, prediction, test_y, os.path.join('predictions', file_name + '.csv'))
Ejemplo n.º 6
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--period', type=str, default='all', help='specifies which period extract features from',
                        choices=['first4days', 'first8days', 'last12hours', 'first25percent', 'first50percent', 'all'])
    parser.add_argument('--features', type=str, default='all', help='specifies what features to extract',
                        choices=['all', 'len', 'all_but_len'])
    args = parser.parse_args()
    print(args)

    # penalties = ['l2', 'l2', 'l2', 'l2', 'l2', 'l2', 'l1', 'l1', 'l1', 'l1', 'l1']
    # Cs = [1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001, 1.0, 0.1, 0.01, 0.001, 0.0001]
    penalties = ['l2']
    Cs = [0.00001]

    train_reader = LengthOfStayReader(dataset_dir='../../../data/length-of-stay/train/',
                                      listfile='../../../data/length-of-stay/train_listfile.csv')

    val_reader = LengthOfStayReader(dataset_dir='../../../data/length-of-stay/train/',
                                    listfile='../../../data/length-of-stay/val_listfile.csv')

    test_reader = LengthOfStayReader(dataset_dir='../../../data/length-of-stay/test/',
                                     listfile='../../../data/length-of-stay/test_listfile.csv')

    print('Reading data and extracting features ...')
    n_train = min(100000, train_reader.get_number_of_examples())
    n_val = min(100000, val_reader.get_number_of_examples())

    (train_X, train_y, train_actual, train_names, train_ts) = read_and_extract_features(
        train_reader, n_train, args.period, args.features)

    (val_X, val_y, val_actual, val_names, val_ts) = read_and_extract_features(
        val_reader, n_val, args.period, args.features)

    (test_X, test_y, test_actual, test_names, test_ts) = read_and_extract_features(
        test_reader, test_reader.get_number_of_examples(), args.period, args.features)

    print("train set shape:  {}".format(train_X.shape))
    print("validation set shape: {}".format(val_X.shape))
    print("test set shape: {}".format(test_X.shape))

    print('Imputing missing values ...')
    imputer = Imputer(missing_values=np.nan, strategy='mean', axis=0, verbose=0, copy=True)
    imputer.fit(train_X)
    train_X = np.array(imputer.transform(train_X), dtype=np.float32)
    val_X = np.array(imputer.transform(val_X), dtype=np.float32)
    test_X = np.array(imputer.transform(test_X), dtype=np.float32)

    print('Normalizing the data to have zero mean and unit variance ...')
    scaler = StandardScaler()
    scaler.fit(train_X)
    train_X = scaler.transform(train_X)
    val_X = scaler.transform(val_X)
    test_X = scaler.transform(test_X)

    common_utils.create_directory('cf_results')

    for (penalty, C) in zip(penalties, Cs):
        model_name = '{}.{}.{}.C{}'.format(args.period, args.features, penalty, C)

        train_activations = np.zeros(shape=train_y.shape, dtype=float)
        val_activations = np.zeros(shape=val_y.shape, dtype=float)
        test_activations = np.zeros(shape=test_y.shape, dtype=float)

        for task_id in range(n_bins):
            logreg = LogisticRegression(penalty=penalty, C=C, random_state=42)
            logreg.fit(train_X, train_y[:, task_id])

            train_preds = logreg.predict_proba(train_X)
            train_activations[:, task_id] = train_preds[:, 1]

            val_preds = logreg.predict_proba(val_X)
            val_activations[:, task_id] = val_preds[:, 1]

            test_preds = logreg.predict_proba(test_X)
            test_activations[:, task_id] = test_preds[:, 1]

        train_predictions = np.array([metrics.get_estimate_custom(x, n_bins) for x in train_activations])
        val_predictions = np.array([metrics.get_estimate_custom(x, n_bins) for x in val_activations])
        test_predictions = np.array([metrics.get_estimate_custom(x, n_bins) for x in test_activations])

        with open(os.path.join('cf_results', 'train_{}.json'.format(model_name)), 'w') as f:
            ret = metrics.print_metrics_custom_bins(train_actual, train_predictions)
            ret = {k: float(v) for k, v in ret.items()}
            json.dump(ret, f)

        with open(os.path.join('cf_results', 'val_{}.json'.format(model_name)), 'w') as f:
            ret = metrics.print_metrics_custom_bins(val_actual, val_predictions)
            ret = {k: float(v) for k, v in ret.items()}
            json.dump(ret, f)

        with open(os.path.join('cf_results', 'test_{}.json'.format(model_name)), 'w') as f:
            ret = metrics.print_metrics_custom_bins(test_actual, test_predictions)
            ret = {k: float(v) for k, v in ret.items()}
            json.dump(ret, f)

        save_results(test_names, test_ts, test_predictions, test_actual,
                     os.path.join('cf_predictions', model_name + '.csv'))
Ejemplo n.º 7
0
        process_one_chunk("train", chunk_index)
        cnt_trained = chunk_index - n_trained_chunks + 1

        if (cnt_trained % 5 == 0):
            val_loss = process_one_chunk("test", chunk_index)
            if ((cnt_trained / 5) % args.save_every == 0):
                state_name = 'states/%s.chunk%d.test%.8f.state' % (
                    network_name, chunk_index, val_loss)

                print "==> saving ... %s" % state_name
                network.save_params(state_name, chunk_index)

        print "chunk %d took %.3fs" % (chunk_index,
                                       float(time.time()) - start_time)

        chunks_per_epoch = train_reader.get_number_of_examples() // chunk_size
        if (cnt_trained % chunks_per_epoch == 0):
            train_reader.random_shuffle()
            val_reader.random_shuffle()

elif args.mode == 'test':
    # ensure that the code uses test_reader
    del train_reader
    del val_reader

    test_reader = LengthOfStayReader(
        dataset_dir='../../data/length-of-stay/test/',
        listfile='../../data/length-of-stay/test_listfile.csv')

    n_batches = test_reader.get_number_of_examples() // args.batch_size
    y_true = []
Ejemplo n.º 8
0
    # ensure that the code uses test_reader
    del train_data_gen
    del val_data_gen

    if args.deep_supervision:
        del train_data_loader
        del val_data_loader
    else:
        del train_reader
        del val_reader

    test_reader = LengthOfStayReader(
        dataset_dir='../../data/length-of-stay/test/',
        listfile='../../data/length-of-stay/test_listfile.csv')

    test_nbatches = test_reader.get_number_of_examples() // args.batch_size
    test_nbatches = 10000
    test_data_gen = utils.BatchGen(reader=test_reader,
                                   discretizer=discretizer,
                                   normalizer=normalizer,
                                   partition=args.partition,
                                   batch_size=args.batch_size,
                                   steps=test_nbatches)
    labels = []
    predictions = []
    for i in range(test_nbatches):
        print "\rpredicting {} / {}".format(i, test_nbatches),
        x, y_processed, y = test_data_gen.next(return_y_true=True)
        x = np.array(x)
        pred = model.predict_on_batch(x)
        predictions += list(pred)