Ejemplo n.º 1
0
def annot_to_vtk(annot_file, vtk_file, output_vtk=''):
    """
    Load a FreeSurfer .annot file and save as a VTK format file.

    Parameters
    ----------
    annot_file : string
        name of FreeSurfer .annot file
    vtk_file : string
        name of VTK surface file
    output_vtk : string
        name of output VTK file, where each vertex is assigned
        the corresponding shape value

    Returns
    -------
    labels : list
        integers (one label per vertex)
    output_vtk : string
        name of output VTK file, where each vertex is assigned
        the corresponding shape value

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.io_free import annot_to_vtk
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> annot_file = os.path.join(path, 'arno', 'freesurfer', 'lh.aparc.annot')
    >>> vtk_file = os.path.join(path, 'arno', 'freesurfer', 'lh.pial.vtk')
    >>> output_vtk = ''
    >>> #
    >>> labels, output_vtk = annot_to_vtk(annot_file, vtk_file, output_vtk)
    >>> #
    >>> # View:
    >>> from mindboggle.utils.plots import plot_vtk
    >>> plot_vtk(output_vtk)

    """
    import os
    import nibabel as nb
    from mindboggle.utils.io_vtk import rewrite_scalars

    labels, colortable, names = nb.freesurfer.read_annot(annot_file)

    if not output_vtk:
        output_vtk = os.path.join(os.getcwd(),
            os.path.basename(annot_file).strip('.annot') + '.vtk')

    rewrite_scalars(vtk_file, output_vtk, labels, 'Labels')

    if not os.path.exists(output_vtk):
        raise(IOError(output_vtk + " not found"))

    return labels, output_vtk
Ejemplo n.º 2
0
def curvature_to_vtk(surface_file, vtk_file, output_vtk):
    """
    Convert FreeSurfer curvature, thickness, or convexity file to VTK format.

    Parameters
    ----------
    surface_file : string
        name of FreeSurfer surface file
    vtk_file : string
        name of VTK surface file
    output_vtk : string
        name of output VTK file

    Returns
    -------
    output_vtk : string
        name of output VTK file, where each vertex is assigned
        the corresponding shape value

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.io_vtk import curvature_to_vtk
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> surface_file = os.path.join(path, 'arno', 'freesurfer', 'lh.thickness')
    >>> vtk_file = os.path.join(path, 'arno', 'freesurfer', 'lh.pial.vtk')
    >>> output_vtk = ''
    >>> #
    >>> curvature_to_vtk(surface_file, vtk_file, output_vtk)
    >>> #
    >>> # View:
    >>> from mindboggle.utils.plots import plot_vtk
    >>> plot_vtk('lh.thickness.vtk')

    """
    import os
    import nibabel as nb

    from mindboggle.utils.io_vtk import rewrite_scalars

    curvature_values = nb.freesurfer.read_morph_data(surface_file)
    scalar_names = os.path.basename(surface_file)

    if not output_vtk:
        output_vtk = os.path.join(os.getcwd(),
                                  os.path.basename(surface_file)+'.vtk')
    rewrite_scalars(vtk_file, output_vtk, curvature_values, scalar_names)
    if not os.path.exists(output_vtk):
        raise(IOError(output_vtk + " not found"))

    return output_vtk
Ejemplo n.º 3
0
def plot_vtk(vtk_file, mask_file='', masked_output=''):
    """
    Use mayavi2 to visualize VTK surface mesh data.

    Inputs
    ------
    vtk_file : string
        name of VTK surface mesh file

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.plots import plot_vtk
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> vtk_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.mean_curvature.vtk')
    >>> mask_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> masked_output = ''
    >>> plot_vtk(vtk_file, mask_file, masked_output)

    """
    import os
#    import subprocess

    # Filter mesh with the non -1 values from a second (same-size) mesh:
    if mask_file:

        from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars

        scalars, name = read_scalars(vtk_file)
        mask, name = read_scalars(mask_file)
        if not masked_output:
            masked_output = 'temp.vtk'
        rewrite_scalars(vtk_file, masked_output, scalars, 'masked', mask)

        cmd = ["mayavi2", "-d", masked_output, "-m", "Surface"]

    else:

        cmd = ["mayavi2", "-d", vtk_file, "-m", "Surface"]

# Note: subprocess won't allow me to put the command in the background:
#    p = subprocess.Popen(cmd)
#    p.communicate()
    cmd = ' '.join(cmd) + ' &'
    print(cmd)
    os.system(cmd)
Ejemplo n.º 4
0
def plot_vtk(vtk_file, mask_file='', masked_output=''):
    """
    Use mayavi2 to visualize VTK surface mesh data.

    Inputs
    ------
    vtk_file : string
        name of VTK surface mesh file

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.plots import plot_vtk
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> vtk_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.mean_curvature.vtk')
    >>> mask_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> masked_output = ''
    >>> plot_vtk(vtk_file, mask_file, masked_output)

    """
    from mindboggle.utils.utils import execute

    # Filter mesh with the non -1 values from a second (same-size) mesh:
    if mask_file:

        from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars

        scalars, name = read_scalars(vtk_file)
        mask, name = read_scalars(mask_file)
        if not masked_output:
            masked_output = 'temp.vtk'
        rewrite_scalars(vtk_file, masked_output, scalars, 'masked', mask)

        cmd = ["mayavi2", "-d", masked_output, "-m", "Surface"]

    else:

        cmd = ["mayavi2", "-d", vtk_file, "-m", "Surface"]
    cmd.extend('&')
    execute(cmd, 'os')
Ejemplo n.º 5
0
def extract_borders_2nd_surface(labels_file, mask_file="", values_file=""):
    """
    Extract borders (between labels) on a surface.
    Options: Mask out values; extract border values on a second surface.

    Parameters
    ----------
    labels_file : string
        file name for surface mesh with labels
    mask_file : string
        file name for surface mesh with mask (>-1) values
    values_file : string
        file name for surface mesh with values to extract along borders

    Returns
    -------
    border_file : string
        file name for surface mesh with label borders (-1 background values)
    border_values : numpy array
        values for all vertices (-1 for vertices not along label borders)

    Examples
    --------
    >>> # Extract depth values along label borders in sulci (mask):
    >>> import os
    >>> from mindboggle.labels.labels import extract_borders_2nd_surface
    >>> from mindboggle.utils.plots import plot_vtk
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> labels_file = os.path.join(path, 'arno', 'labels', 'lh.labels.DKT25.manual.vtk')
    >>> mask_file = os.path.join(path, 'arno', 'features', 'sulci.vtk')
    >>> values_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
    >>> #
    >>> border_file, border_values = extract_borders_2nd_surface(labels_file, mask_file, values_file)
    >>> #
    >>> plot_vtk(border_file)

    """
    import os
    import numpy as np
    from mindboggle.utils.io_vtk import read_scalars, read_vtk, rewrite_scalars
    from mindboggle.utils.mesh import find_neighbors
    from mindboggle.labels.labels import extract_borders

    # Load labeled surface file
    faces, foo1, foo2, foo3, npoints, labels, foo4, foo5 = read_vtk(labels_file, return_first=True, return_array=True)

    # Detect borders
    neighbor_lists = find_neighbors(faces, npoints)
    indices_borders, foo1, foo2 = extract_borders(range(npoints), labels, neighbor_lists)

    # Filter values with label borders
    border_values = -1 * np.ones(npoints)
    if values_file:
        values, name = read_scalars(values_file, return_first=True, return_array=True)
        border_values[indices_borders] = values[indices_borders]
    else:
        border_values[indices_borders] = 1

    # Mask values (for mask >-1)
    if mask_file:
        mask_values, name = read_scalars(mask_file)
    else:
        mask_values = []

    # Write out label boundary vtk file
    border_file = os.path.join(os.getcwd(), "borders_" + os.path.basename(labels_file))
    rewrite_scalars(labels_file, border_file, border_values, "label_borders_in_mask", mask_values)

    if not os.path.exists(border_file):
        raise (IOError(border_file + " not found"))

    return border_file, border_values
Ejemplo n.º 6
0
def extract_subfolds(depth_file,
                     folds,
                     min_size=10,
                     depth_factor=0.25,
                     depth_ratio=0.1,
                     tolerance=0.01,
                     save_file=False):
    """
    Use depth to segment folds into subfolds in a triangular surface mesh.

    Note ::

        The function extract_sulci() performs about the same whether folds
        or subfolds are used as input.  The latter leads to some loss of
        small subfolds and possibly holes for small subfolds in the middle
        of other subfolds.

    Note about the watershed() function:
    The watershed() function performs individual seed growing from deep seeds,
    repeats segmentation from the resulting seeds until each seed's segment
    touches a boundary. The function segment() fills in the rest. Finally
    segments are joined if their seeds are too close to each other.
    Despite these precautions, the order of seed selection in segment() could
    possibly influence the resulting borders between adjoining segments.
    [The propagate() function is slower and insensitive to depth,
     but is not biased by seed order.]

    Parameters
    ----------
    depth_file : string
        surface mesh file in VTK format with faces and depth scalar values
    folds : list of integers
        fold numbers for all vertices (-1 for non-fold vertices)
    min_size : integer
        minimum number of vertices for a subfold
    depth_factor : float
        watershed() depth_factor:
        factor to determine whether to merge two neighboring watershed catchment
        basins -- they are merged if the Euclidean distance between their basin
        seeds is less than this fraction of the maximum Euclidean distance
        between points having minimum and maximum depths
    depth_ratio : float
        watershed() depth_ratio:
        the minimum fraction of depth for a neighboring shallower
        watershed catchment basin (otherwise merged with the deeper basin)
    tolerance : float
        watershed() tolerance:
        tolerance for detecting differences in depth between vertices
    save_file : Boolean
        save output VTK file?

    Returns
    -------
    subfolds : list of integers
        fold numbers for all vertices (-1 for non-fold vertices)
    n_subfolds :  int
        number of subfolds
    subfolds_file : string (if save_file)
        name of output VTK file with fold IDs (-1 for non-fold vertices)

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    >>> from mindboggle.utils.mesh import find_neighbors_from_file
    >>> from mindboggle.features.folds import extract_subfolds
    >>> from mindboggle.utils.plots import plot_surfaces
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> depth_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file)
    >>> min_size = 10
    >>> depth_factor = 0.5
    >>> depth_ratio = 0.1
    >>> tolerance = 0.01
    >>> #
    >>> subfolds, n_subfolds, subfolds_file = extract_subfolds(depth_file,
    >>>     folds, min_size, depth_factor, depth_ratio, tolerance, True)
    >>> #
    >>> # View:
    >>> rewrite_scalars(depth_file, 'subfolds.vtk', subfolds, 'subfolds', subfolds)
    >>> plot_surfaces('subfolds.vtk')

    """
    import os
    import numpy as np
    from time import time
    from mindboggle.utils.io_vtk import rewrite_scalars, read_vtk
    from mindboggle.utils.mesh import find_neighbors
    from mindboggle.utils.segment import segment, propagate, watershed

    print("Segment folds into subfolds")
    t0 = time()

    #-------------------------------------------------------------------------
    # Load depth values for all vertices
    #-------------------------------------------------------------------------
    faces, lines, indices, points, npoints, depths, \
        name, input_vtk = read_vtk(depth_file, return_first=True, return_array=True)

    #-------------------------------------------------------------------------
    # Find neighbors for each vertex
    #-------------------------------------------------------------------------
    neighbor_lists = find_neighbors(faces, npoints)

    #-------------------------------------------------------------------------
    # Segment folds into "watershed basins"
    #-------------------------------------------------------------------------
    indices_folds = [i for i, x in enumerate(folds) if x != -1]
    subfolds, seed_indices = watershed(depths,
                                       points,
                                       indices_folds,
                                       neighbor_lists,
                                       min_size,
                                       depth_factor=0.25,
                                       depth_ratio=0.1,
                                       tolerance=0.01,
                                       regrow=True)

    # Print statement
    n_subfolds = len([x for x in np.unique(subfolds) if x != -1])
    print('  ...Extracted {0} subfolds ({1:.2f} seconds)'.format(
        n_subfolds,
        time() - t0))

    #-------------------------------------------------------------------------
    # Return subfolds, number of subfolds, file name
    #-------------------------------------------------------------------------
    if save_file:
        subfolds_file = os.path.join(os.getcwd(), 'subfolds.vtk')
        rewrite_scalars(depth_file, subfolds_file, subfolds, 'subfolds',
                        subfolds)

        if not os.path.exists(subfolds_file):
            raise (IOError(subfolds_file + " not found"))

    else:
        subfolds_file = None

    return subfolds, n_subfolds, subfolds_file
Ejemplo n.º 7
0
def extract_subfolds(depth_file, folds, min_size=10, depth_factor=0.25,
                     depth_ratio=0.1, tolerance=0.01, save_file=False):
    """
    Use depth to segment folds into subfolds in a triangular surface mesh.

    Note ::

        The function extract_sulci() performs about the same whether folds
        or subfolds are used as input.  The latter leads to some loss of
        small subfolds and possibly holes for small subfolds in the middle
        of other subfolds.

    Note about the watershed() function:
    The watershed() function performs individual seed growing from deep seeds,
    repeats segmentation from the resulting seeds until each seed's segment
    touches a boundary. The function segment() fills in the rest. Finally
    segments are joined if their seeds are too close to each other.
    Despite these precautions, the order of seed selection in segment() could
    possibly influence the resulting borders between adjoining segments.
    [The propagate() function is slower and insensitive to depth,
     but is not biased by seed order.]

    Parameters
    ----------
    depth_file : string
        surface mesh file in VTK format with faces and depth scalar values
    folds : list of integers
        fold numbers for all vertices (-1 for non-fold vertices)
    min_size : integer
        minimum number of vertices for a subfold
    depth_factor : float
        watershed() depth_factor:
        factor to determine whether to merge two neighboring watershed catchment
        basins -- they are merged if the Euclidean distance between their basin
        seeds is less than this fraction of the maximum Euclidean distance
        between points having minimum and maximum depths
    depth_ratio : float
        watershed() depth_ratio:
        the minimum fraction of depth for a neighboring shallower
        watershed catchment basin (otherwise merged with the deeper basin)
    tolerance : float
        watershed() tolerance:
        tolerance for detecting differences in depth between vertices
    save_file : Boolean
        save output VTK file?

    Returns
    -------
    subfolds : list of integers
        fold numbers for all vertices (-1 for non-fold vertices)
    n_subfolds :  int
        number of subfolds
    subfolds_file : string (if save_file)
        name of output VTK file with fold IDs (-1 for non-fold vertices)

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    >>> from mindboggle.utils.mesh import find_neighbors_from_file
    >>> from mindboggle.features.folds import extract_subfolds
    >>> from mindboggle.utils.plots import plot_vtk
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> depth_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file)
    >>> min_size = 10
    >>> depth_factor = 0.5
    >>> depth_ratio = 0.1
    >>> tolerance = 0.01
    >>> #
    >>> subfolds, n_subfolds, subfolds_file = extract_subfolds(depth_file,
    >>>     folds, min_size, depth_factor, depth_ratio, tolerance, True)
    >>> #
    >>> # View:
    >>> rewrite_scalars(depth_file, 'subfolds.vtk', subfolds, 'subfolds', subfolds)
    >>> plot_vtk('subfolds.vtk')

    """
    import os
    import numpy as np
    from time import time
    from mindboggle.utils.io_vtk import rewrite_scalars, read_vtk
    from mindboggle.utils.mesh import find_neighbors
    from mindboggle.utils.segment import segment, propagate, watershed

    print("Segment folds into subfolds")
    t0 = time()

    #-------------------------------------------------------------------------
    # Load depth values for all vertices
    #-------------------------------------------------------------------------
    faces, lines, indices, points, npoints, depths, \
        name, input_vtk = read_vtk(depth_file, return_first=True, return_array=True)

    #-------------------------------------------------------------------------
    # Find neighbors for each vertex
    #-------------------------------------------------------------------------
    neighbor_lists = find_neighbors(faces, npoints)

    #-------------------------------------------------------------------------
    # Segment folds into "watershed basins"
    #-------------------------------------------------------------------------
    indices_folds = [i for i,x in enumerate(folds) if x > -1]
    subfolds, seed_indices = watershed(depths, points, indices_folds,
                                 neighbor_lists, min_size, depth_factor=0.25,
                                 depth_ratio=0.1, tolerance=0.01, regrow=True)

    # Print statement
    n_subfolds = len([x for x in np.unique(subfolds) if x != -1])
    print('  ...Extracted {0} subfolds ({1:.2f} seconds)'.
          format(n_subfolds, time() - t0))

    #-------------------------------------------------------------------------
    # Return subfolds, number of subfolds, file name
    #-------------------------------------------------------------------------
    if save_file:
        subfolds_file = os.path.join(os.getcwd(), 'subfolds.vtk')
        rewrite_scalars(depth_file, subfolds_file, subfolds, 'subfolds', subfolds)

        if not os.path.exists(subfolds_file):
            raise(IOError(subfolds_file + " not found"))

    else:
        subfolds_file = None

    return subfolds, n_subfolds, subfolds_file
Ejemplo n.º 8
0
    sulci_file = os.path.join(data_path, 'arno', 'features', 'sulci.vtk')
    faces, lines, indices, points, npoints, sulci, name, input_vtk = read_vtk(sulci_file)
    sulcus_ID = 1
    sulcus_indices = [i for i,x in enumerate(sulci) if x == sulcus_ID]
    sulcus_faces = remove_faces(faces, sulcus_indices)
    sulcus_neighbor_lists = find_neighbors(sulcus_faces, len(points))
    G=nx.Graph()
    G.add_nodes_from(sulcus_indices)
    for i, sulcus_neighbor_list in enumerate(sulcus_neighbor_lists):
        G.add_edges_from([[i,x] for x in sulcus_neighbor_list])
    adjacency_matrix = nx.adjacency_matrix(G, nodelist=None, weight='weight')
    indices_to_connect = [0, len(sulcus_indices)-1]
    adjacency_matrix2, W, Path, Degree, TreeNbr = min_span_tree(adjacency_matrix,
                                                                indices_to_connect)

    # Write results to vtk file and view:
    MST = np.zeros(len(points))
    MST[W] = 1
    rewrite_scalars(sulci_file, 'test_min_span_tree.vtk', MST, 'MST', MST)

    Terminal, Branching = [], []
    for vtx in xrange(0,Num):
        if Degree[vtx] ==1:
            Terminal.append(vtx)
        elif Degree[vtx] > 2:
            Branching.append(vtx)

    Path, NodeColor = prune(Path, Degree, TreeNbr, Terminal, Branching, indices_to_connect, sulcus_indices)

    #endpoints = [i for i,x in enumerate(Degree) if x == 1]
Ejemplo n.º 9
0
def segment_fundi(fundus_per_fold, sulci=[], vtk_file='', save_file=False):
    """
    Segment fundi by sulcus definitions.

    Parameters
    ----------
    fundus_per_fold : list of integers
        fundus numbers for all vertices, labeled by fold
        (-1 for non-fundus vertices)
    sulci : numpy array or list of integers
        sulcus number for each vertex, used to filter and label fundi
    vtk_file : string (if save_file)
        VTK file with sulcus number for each vertex
    save_file : Boolean
        save output VTK file?

    Returns
    -------
    fundus_per_sulcus : list of integers
        fundus numbers for all vertices, labeled by sulcus
        (-1 for non-fundus vertices)
    n_fundi :  integer
        number of fundi
    fundus_per_sulcus_file : string (if save_file)
        output VTK file with fundus numbers (-1 for non-fundus vertices)

    Examples
    --------
    >>> # Extract fundus from one or more sulci:
    >>> single_fold = True
    >>> import os
    >>> from mindboggle.utils.io_vtk import read_scalars
    >>> from mindboggle.features.fundi import extract_fundi, segment_fundi
    >>> from mindboggle.utils.plots import plot_surfaces
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> vtk_file = os.path.join(path, 'arno', 'features', 'sulci.vtk')
    >>> sulci, name = read_scalars(vtk_file, True, True)
    >>> curv_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.mean_curvature.vtk')
    >>> depth_file = os.path.join(path, 'arno', 'shapes', 'travel_depth_rescaled.vtk')
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file, True, True)
    >>> if single_fold:
    >>>     fold_number = 2 #11
    >>>     folds[folds != fold_number] = -1
    >>> min_separation = 10
    >>> erode_ratio = 0.10
    >>> erode_min_size = 10
    >>> save_file = True
    >>> fundus_per_fold, o1, o2 = extract_fundi(folds, curv_file, depth_file, min_separation, erode_ratio, erode_min_size, save_file)
    >>> o1, o2, fundus_per_sulcus_file = segment_fundi(fundus_per_fold, sulci, vtk_file, save_file)
    >>> #
    >>> # View:
    >>> plot_surfaces(fundus_per_sulcus_file)

    """

    # Extract a skeleton to connect endpoints in a fold:
    import os
    import numpy as np

    from mindboggle.utils.io_vtk import rewrite_scalars

    if isinstance(sulci, list):
        sulci = np.array(sulci)

    #-------------------------------------------------------------------------
    # Create fundi by segmenting fold fundi with overlapping sulcus labels:
    #-------------------------------------------------------------------------
    indices = [i for i, x in enumerate(fundus_per_fold) if x != -1]
    if indices and np.size(sulci):
        fundus_per_sulcus = -1 * np.ones(len(sulci))
        fundus_per_sulcus[indices] = sulci[indices]
        n_fundi = len([x for x in np.unique(fundus_per_sulcus) if x != -1])
    else:
        fundus_per_sulcus = []
        n_fundi = 0

    if n_fundi == 1:
        sdum = 'sulcus fundus'
    else:
        sdum = 'sulcus fundi'
    print('  Segmented {0} {1}'.format(n_fundi, sdum))

    #-------------------------------------------------------------------------
    # Return fundi, number of fundi, and file name:
    #-------------------------------------------------------------------------
    fundus_per_sulcus_file = None
    if n_fundi > 0:
        fundus_per_sulcus = [int(x) for x in fundus_per_sulcus]
        if save_file and os.path.exists(vtk_file):
            fundus_per_sulcus_file = os.path.join(os.getcwd(),
                                                  'fundus_per_sulcus.vtk')
            rewrite_scalars(vtk_file, fundus_per_sulcus_file,
                            fundus_per_sulcus, 'fundus_per_sulcus',
                            fundus_per_sulcus)
            if not os.path.exists(fundus_per_sulcus_file):
                raise (IOError(fundus_per_sulcus_file + " not found"))

    return fundus_per_sulcus, n_fundi, fundus_per_sulcus_file
Ejemplo n.º 10
0
def extract_sulci(labels_file, folds_or_file, hemi, sulcus_label_pair_lists,
                  unique_sulcus_label_pairs, min_boundary=1, sulcus_names=[]):
    """
    Identify sulci from folds in a brain surface according to a labeling
    protocol that includes a list of label pairs defining each sulcus.

    A fold is a group of connected, deep vertices.

    Steps for each fold  ::
        1. Remove fold if it has fewer than two labels.
        2. Remove fold if its labels do not contain a sulcus label pair.
        3. Find vertices with labels that are in only one of the fold's
           label boundary pairs. Assign the vertices the sulcus with the
           label pair if they are connected to the label boundary for that pair.
        4. If there are remaining vertices, segment into sets of vertices
           connected to label boundaries, and assign a unique ID to each segment.

    Parameters
    ----------
    labels_file : string
        file name for surface mesh VTK containing labels for all vertices
    folds_or_file : list or string
        fold number for each vertex or name of VTK file containing folds scalars
    hemi : string
        hemisphere ('lh' or 'rh')
    sulcus_label_pair_lists : list of two lists of multiple lists of integer pairs
        list containing left and right lists, each with multiple lists of
        integer pairs corresponding to label boundaries / sulcus / fundus
    unique_sulcus_label_pairs : list of unique pairs of integers
        unique label pairs
    min_boundary : integer
        minimum number of vertices for a sulcus label boundary segment
    sulcus_names : list of strings
        names of sulci

    Returns
    -------
    sulci : list of integers
        sulcus numbers for all vertices (-1 for non-sulcus vertices)
    n_sulci : integers
        number of sulci
    sulci_file : string
        name of output VTK file with sulcus numbers (-1 for non-sulcus vertices)

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    >>> from mindboggle.labels.protocol import dkt_protocol
    >>> from mindboggle.features.sulci import extract_sulci
    >>> from mindboggle.utils.plots import plot_vtk
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> # Load labels, folds, neighbor lists, and sulcus names and label pairs
    >>> labels_file = os.path.join(path, 'arno', 'labels', 'relabeled_lh.DKTatlas40.gcs.vtk')
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds_or_file, name = read_scalars(folds_file)
    >>> protocol = 'DKT31'
    >>> hemi = 'lh'
    >>> sulcus_names, sulcus_label_pair_lists, unique_sulcus_label_pairs,
    ...    label_names, label_numbers, cortex_names, cortex_numbers,
    ...    noncortex_names, noncortex_numbers = dkt_protocol(protocol)
    >>> min_boundary = 10
    >>> #
    >>> sulci, n_sulci, sulci_file = extract_sulci(labels_file, folds_or_file,
    >>>     hemi, sulcus_label_pair_lists, unique_sulcus_label_pairs,
    >>>     min_boundary, sulcus_names)
    >>> # View:
    >>> plot_vtk('sulci.vtk')

    """
    import os
    from time import time
    import numpy as np
    from mindboggle.utils.io_vtk import read_scalars, read_vtk, rewrite_scalars
    from mindboggle.utils.mesh import find_neighbors
    from mindboggle.labels.labels import extract_borders
    from mindboggle.utils.segment import propagate, segment


    # Load fold numbers if folds_or_file is a string
    if isinstance(folds_or_file, str):
        folds, name = read_scalars(folds_or_file)
    elif isinstance(folds_or_file, list):
        folds = folds_or_file

    if hemi == 'lh':
        sulcus_label_pair_lists = sulcus_label_pair_lists[0]
    elif hemi == 'rh':
        sulcus_label_pair_lists = sulcus_label_pair_lists[1]
    else:
        print("Warning: hemisphere not properly specified ('lh' or 'rh').")

    # Load points, faces, and neighbors
    faces, foo1, foo2, points, npoints, labels, foo3, foo4 = read_vtk(labels_file)
    neighbor_lists = find_neighbors(faces, npoints)

    # Array of sulcus IDs for fold vertices, initialized as -1.
    # Since we do not touch gyral vertices and vertices whose labels
    # are not in the label list, or vertices having only one label,
    # their sulcus IDs will remain -1.
    sulci = -1 * np.ones(npoints)

    #-------------------------------------------------------------------------
    # Loop through folds
    #-------------------------------------------------------------------------
    fold_numbers = [int(x) for x in np.unique(folds) if x > -1]
    n_folds = len(fold_numbers)
    print("Extract sulci from {0} folds...".format(n_folds))
    t0 = time()
    for n_fold in fold_numbers:
        fold = [i for i,x in enumerate(folds) if x == n_fold]
        len_fold = len(fold)
        # List the labels in this fold (greater than zero)
        fold_labels = [labels[x] for x in fold]
        unique_fold_labels = [int(x) for x in np.unique(fold_labels) if x > 0]

        #---------------------------------------------------------------------
        # NO MATCH -- fold has fewer than two labels
        #---------------------------------------------------------------------
        if len(unique_fold_labels) < 2:
            # Ignore: sulci already initialized with -1 values
            if not unique_fold_labels:
                print("  Fold {0} ({1} vertices): NO MATCH -- fold has no labels".
                      format(n_fold, len_fold))
            else:
                print("  Fold {0} ({1} vertices): "
                  "NO MATCH -- fold has only one label ({2})".
                  format(n_fold, len_fold, unique_fold_labels[0]))
            # Ignore: sulci already initialized with -1 values

        else:
            # Find all label boundary pairs within the fold
            indices_fold_pairs, fold_pairs, unique_fold_pairs = extract_borders(
                fold, labels, neighbor_lists, ignore_values=[],
                return_label_pairs=True)

            # Find fold label pairs in the protocol (pairs are already sorted)
            fold_pairs_in_protocol = [x for x in unique_fold_pairs
                                      if x in unique_sulcus_label_pairs]

            if unique_fold_labels:
                print("  Fold {0} labels: {1} ({2} vertices)".format(n_fold,
                      ', '.join([str(x) for x in unique_fold_labels]), len_fold))
            #-----------------------------------------------------------------
            # NO MATCH -- fold has no sulcus label pair
            #-----------------------------------------------------------------
            if not fold_pairs_in_protocol:
                print("  Fold {0}: NO MATCH -- fold has no sulcus label pair".
                      format(n_fold, len_fold))

            #-----------------------------------------------------------------
            # Possible matches
            #-----------------------------------------------------------------
            else:
                print("  Fold {0} label pairs in protocol: {1}".format(n_fold,
                      ', '.join([str(x) for x in fold_pairs_in_protocol])))

                # Labels in the protocol (includes repeats across label pairs)
                labels_in_pairs = [x for lst in fold_pairs_in_protocol for x in lst]

                # Labels that appear in one or more than one sulcus label boundary
                unique_labels = []
                nonunique_labels = []
                for label in np.unique(labels_in_pairs):
                    if len([x for x in labels_in_pairs if x == label]) == 1:
                        unique_labels.append(label)
                    else:
                        nonunique_labels.append(label)

                #-------------------------------------------------------------
                # Vertices whose labels are in only one sulcus label pair
                #-------------------------------------------------------------
                # Find vertices with a label that is in only one of the fold's
                # label pairs (the other label in the pair can exist
                # in other pairs). Assign the vertices the sulcus with the label
                # pair if they are connected to the label boundary for that pair.
                #-------------------------------------------------------------
                if len(unique_labels):

                    for pair in fold_pairs_in_protocol:
                        # If one or both labels in label pair is/are unique
                        unique_labels_in_pair = [x for x in pair if x in unique_labels]
                        n_unique = len(unique_labels_in_pair)
                        if n_unique:

                            ID = [i for i,x in enumerate(sulcus_label_pair_lists)
                                  if pair in x][0]

                            # Construct seeds from label boundary vertices
                            # (fold_pairs and pair already sorted)
                            indices_pair = [x for i,x in enumerate(indices_fold_pairs)
                                            if fold_pairs[i] == pair]

                            # Identify vertices with unique label(s) in pair
                            indices_unique_labels = [fold[i]
                                                     for i,x in enumerate(fold_labels)
                                                     if x in unique_sulcus_label_pairs]

                            # Propagate from seeds to labels in label pair
                            sulci2 = segment(indices_unique_labels, neighbor_lists,
                                             min_region_size=1,
                                             seed_lists=[indices_pair],
                                             keep_seeding=False,
                                             spread_within_labels=True,
                                             labels=labels)
                            sulci[sulci2 > -1] = ID

                            # Print statement
                            if n_unique == 1:
                                ps1 = '1 label'
                            else:
                                ps1 = 'Both labels'
                            if len(sulcus_names):
                                ps2 = sulcus_names[ID]
                            else:
                                ps2 = ''
                            print("    {0} unique to one fold pair: {1} {2}".
                                  format(ps1, ps2, unique_labels_in_pair))

                #-------------------------------------------------------------
                # Vertex labels shared by multiple label pairs
                #-------------------------------------------------------------
                # Propagate labels from label borders to vertices with labels
                # that are shared by multiple label pairs in the fold.
                #-------------------------------------------------------------
                if len(nonunique_labels):
                    # For each label shared by different label pairs
                    for label in nonunique_labels:
                        # Print statement
                        print("    Propagate sulcus label borders with label {0}".
                              format(int(label)))

                        # Construct seeds from label boundary vertices
                        seeds = -1 * np.ones(len(points))
                        for ID, label_pair_list in enumerate(sulcus_label_pair_lists):
                            label_pairs = [x for x in label_pair_list if label in x]
                            for label_pair in label_pairs:
                                indices_pair = [x for i,x in enumerate(indices_fold_pairs)
                                    if np.sort(fold_pairs[i]).tolist() == label_pair]
                                if indices_pair:

                                    # Do not include short boundary segments
                                    if min_boundary > 1:
                                        indices_pair2 = []
                                        seeds2 = segment(indices_pair, neighbor_lists)
                                        for seed2 in range(int(max(seeds2))+1):
                                            iseed2 = [i for i,x in enumerate(seeds2)
                                                      if x == seed2]
                                            if len(iseed2) >= min_boundary:
                                                indices_pair2.extend(iseed2)
                                            else:
                                                if len(iseed2) == 1:
                                                    print("    Remove assignment "
                                                          "of ID {0} from 1 vertex".
                                                          format(seed2))
                                                else:
                                                    print("    Remove assignment "
                                                          "of ID {0} from {1} vertices".
                                                          format(seed2, len(iseed2)))
                                        indices_pair = indices_pair2

                                    # Assign sulcus IDs to seeds
                                    seeds[indices_pair] = ID

                        # Identify vertices with the label
                        label_array = -1 * np.ones(len(points))
                        indices_label = [fold[i] for i,x in enumerate(fold_labels)
                                         if x == label]
                        if len(indices_label):
                            label_array[indices_label] = 1

                            # Propagate from seeds to vertices with label
                            #indices_seeds = []
                            #for seed in range(int(max(seeds))+1):
                            #    indices_seeds.append([i for i,x in enumerate(seeds)
                            #                          if x == seed])
                            #sulci2 = segment(indices_label, neighbor_lists,
                            #                 50, indices_seeds, False, True, labels)
                            sulci2 = propagate(points, faces,
                                               label_array, seeds, sulci,
                                               max_iters=10000,
                                               tol=0.001, sigma=5)
                            sulci[sulci2 > -1] = sulci2[sulci2 > -1]

    #-------------------------------------------------------------------------
    # Print out assigned sulci
    #-------------------------------------------------------------------------
    sulcus_numbers = [int(x) for x in np.unique(sulci) if x > -1]
    n_sulci = len(sulcus_numbers)
    print("Extracted {0} sulci from {1} folds ({2:.1f}s):".
          format(n_sulci, n_folds, time()-t0))
    if len(sulcus_names):
        for sulcus_number in sulcus_numbers:
            print("  {0}: {1}".format(sulcus_number, sulcus_names[sulcus_number]))
    else:
        print("  " + ", ".join([str(x) for x in sulcus_numbers]))

    #-------------------------------------------------------------------------
    # Print out unresolved sulci
    #-------------------------------------------------------------------------
    unresolved = [i for i in range(len(sulcus_label_pair_lists))
                  if i not in sulcus_numbers]
    if len(unresolved) == 1:
        print("The following sulcus is unaccounted for:")
    else:
        print("The following {0} sulci are unaccounted for:".format(len(unresolved)))
    if len(sulcus_names):
        for sulcus_number in unresolved:
            print("  {0}: {1}".format(sulcus_number, sulcus_names[sulcus_number]))
    else:
        print("  " + ", ".join([str(x) for x in unresolved]))

    #-------------------------------------------------------------------------
    # Return sulci, number of sulci, and file name
    #-------------------------------------------------------------------------
    sulci_file = os.path.join(os.getcwd(), 'sulci.vtk')
    rewrite_scalars(labels_file, sulci_file, sulci, 'sulci', sulci)
    sulci.tolist()

    return sulci, n_sulci, sulci_file
Ejemplo n.º 11
0
def rescale_by_label(input_vtk,
                     labels_or_file,
                     save_file=False,
                     output_filestring='rescaled_scalars'):
    """
    Rescale scalars for each label (such as depth values within each fold).

    Default is to normalize the scalar values of a VTK file by
    a percentile value in each vertex's surface mesh for each label.

    Parameters
    ----------
    input_vtk : string
        name of VTK file with a scalar value for each vertex
    labels_or_file : list or string
        label number for each vertex or name of VTK file with index scalars
    save_file : Boolean
        save output VTK file?
    output_filestring : string (if save_file)
        name of output file

    Returns
    -------
    rescaled_scalars : list of floats
        scalar values rescaled for each label, for label numbers not equal to -1
    rescaled_scalars_file : string (if save_file)
        name of output VTK file with rescaled scalar values for each label

    Examples
    --------
    >>> # Rescale depths by neighborhood within each label:
    >>> import os
    >>> from mindboggle.utils.mesh import rescale_by_label
    >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    >>> from mindboggle.utils.plots import plot_surfaces
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> input_vtk = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
    >>> labels_or_file = os.path.join(path, 'arno', 'features', 'subfolds.vtk')
    >>> save_file = True
    >>> output_filestring = 'rescaled_scalars'
    >>> #
    >>> rescaled_scalars, rescaled_scalars_file = rescale_by_label(input_vtk,
    >>>     labels_or_file, save_file, output_filestring)
    >>> #
    >>> # View rescaled scalar values per fold:
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file)
    >>> #
    >>> rewrite_scalars(rescaled_scalars_file, rescaled_scalars_file,
    >>>                 rescaled_scalars, 'rescaled_depths', folds)
    >>> plot_surfaces(rescaled_scalars_file)

    """
    import os
    import numpy as np
    from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars

    # Load scalars and vertex neighbor lists:
    scalars, name = read_scalars(input_vtk, True, True)
    print("  Rescaling scalar values within each label...")

    # Load label numbers:
    if isinstance(labels_or_file, str):
        labels, name = read_scalars(labels_or_file, True, True)
    elif isinstance(labels_or_file, list):
        labels = labels_or_file
    unique_labels = np.unique(labels)
    unique_labels = [x for x in unique_labels if x >= 0]

    # Loop through labels:
    for label in unique_labels:
        #print("  Rescaling scalar values within label {0} of {1} labels...".format(
        #    int(label), len(unique_labels)))
        indices = [i for i, x in enumerate(labels) if x == label]
        if indices:

            # Rescale by the maximum label scalar value:
            scalars[indices] = scalars[indices] / np.max(scalars[indices])

    rescaled_scalars = scalars.tolist()

    #-------------------------------------------------------------------------
    # Return rescaled scalars and file name
    #-------------------------------------------------------------------------
    if save_file:

        rescaled_scalars_file = os.path.join(os.getcwd(),
                                             output_filestring + '.vtk')
        rewrite_scalars(input_vtk, rescaled_scalars_file, rescaled_scalars,
                        'rescaled_scalars', labels)
        if not os.path.exists(rescaled_scalars_file):
            raise (IOError(rescaled_scalars_file + " not found"))

    else:
        rescaled_scalars_file = None

    return rescaled_scalars, rescaled_scalars_file
Ejemplo n.º 12
0
def compute_likelihood(trained_file, depth_file, curvature_file, folds,
                       save_file=False):
    """
    Compute likelihoods based on input values, folds, and estimated parameters.

    Compute likelihood values for a given VTK surface mesh file, after training
    on distributions of depth and curvature values from multiple files.

    Parameters
    ----------
    trained_file : pickle compressed file
        contains the following dictionaries containing lists of floats
        (estimates of depth or curvature means, sigmas, and weights
         trained on fold vertices either on or off sulcus label borders)
        depth_border, curv_border, depth_nonborder, curv_nonborder
    depth_file : string
        VTK surface mesh file with depth values in [0,1] for all vertices
    curvature_file : string
        VTK surface mesh file with curvature values in [-1,1] for all vertices
    folds : list of integers
        fold number for all vertices (-1 for non-fold vertices)
    save_file : Boolean
        save output VTK file?

    Returns
    -------
    likelihoods : list of floats
        likelihood values for all vertices (0 for non-fold vertices)
    likelihoods_file : string (if save_file)
        name of output VTK file with likelihood scalars
        (-1 for non-fold vertices)

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    >>> from mindboggle.shapes.likelihood import compute_likelihood
    >>> from mindboggle.utils.plots import plot_vtk
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> trained_file = os.path.join(path, 'atlases', 'depth_curv_border_nonborder_parameters.pkl')
    >>> #depth_file = os.path.join(path, 'arno', 'shapes', 'travel_depth_rescaled.vtk')
    >>> depth_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
    >>> curvature_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.mean_curvature.vtk')
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file)
    >>> save_file = True
    >>> #
    >>> compute_likelihood(trained_file, depth_file, curvature_file, folds, save_file)
    >>> # View:
    >>> plot_vtk('likelihoods.vtk', folds_file)

    """
    import os
    import numpy as np
    from math import pi
    import cPickle as pickle

    from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars


    # Initialize variables:
    tiny = 0.000000001
    L = np.zeros(len(folds))
    probs_border = np.zeros(len(folds))
    probs_nonborder = np.zeros(len(folds))

    # Load estimated depth and curvature distribution parameters:
    depth_border, curv_border, depth_nonborder, curv_nonborder = pickle.load(
        open(trained_file, "r"))

    # Load depths, curvatures:
    depths, name = read_scalars(depth_file, True, True)
    curvatures, name = read_scalars(curvature_file, True, True)

    # Prep for below:
    n = 2
    twopiexp = (2*pi)**(n/2)
    border_sigmas = depth_border['sigmas'] * curv_border['sigmas']
    nonborder_sigmas = depth_nonborder['sigmas'] * curv_nonborder['sigmas']
    norm_border = 1 / (twopiexp * border_sigmas + tiny)
    norm_nonborder = 1 / (twopiexp * nonborder_sigmas + tiny)
    I = [i for i,x in enumerate(folds) if x != -1]

    N = depth_border['sigmas'].shape[0]
    for j in range(N):

        # Border:
        expB = depth_border['weights'][j] * \
            ((depths[I]-depth_border['means'][j])**2) / \
            depth_border['sigmas'][j]**2
        expB += curv_border['weights'][j] * \
            ((curvatures[I]-curv_border['means'][j])**2) / \
            curv_border['sigmas'][j]**2
        expB = -expB / 2
        probs_border[I] = probs_border[I] + norm_border[j] * np.exp(expB)

        # Non-border:
        expNB = depth_nonborder['weights'][j] * \
            ((depths[I]-depth_nonborder['means'][j])**2) / \
            depth_nonborder['sigmas'][j]**2
        expNB += curv_nonborder['weights'][j] * \
            ((curvatures[I]-curv_nonborder['means'][j])**2) / \
            curv_nonborder['sigmas'][j]**2
        expNB = -expNB / 2
        probs_nonborder[I] = probs_nonborder[I] + norm_nonborder[j] * np.exp(expNB)

    likelihoods = probs_border / (probs_nonborder + probs_border + tiny)
    likelihoods.tolist()

    #-------------------------------------------------------------------------
    # Return likelihoods and output file name
    #-------------------------------------------------------------------------
    if save_file:

        likelihoods_file = os.path.join(os.getcwd(), 'likelihoods.vtk')
        rewrite_scalars(depth_file, likelihoods_file, likelihoods,
                        'likelihoods', likelihoods)
        if not os.path.exists(likelihoods_file):
            raise(IOError(likelihoods_file + " not found"))

    else:
        likelihoods_file = None

    return likelihoods, likelihoods_file
Ejemplo n.º 13
0
def rescale_by_label(input_vtk, labels_or_file, combine_all_labels=False,
                     nedges=10, p=99, set_max_to_1=True, save_file=False,
                     output_filestring='rescaled_scalars'):
    """
    Rescale scalars for each label (such as depth values within each fold).

    Default is to normalize the scalar values of a VTK file by
    a percentile value in each vertex's surface mesh for each label.

    Parameters
    ----------
    input_vtk : string
        name of VTK file with a scalar value for each vertex
    labels_or_file : list or string
        label number for each vertex or name of VTK file with index scalars
    combine_all_labels : Boolean
        combine all labels (scalars not equal to -1) as one label?
    nedges : integer (if norm_by_neighborhood)
        number or edges from vertex, defining the size of its neighborhood
    p : float in range of [0,100] (if norm_by_neighborhood)
        percentile used to rescale each scalar
    set_max_to_1 : Boolean
        set all rescaled values greater than 1 to 1.0?
    save_file : Boolean
        save output VTK file?
    output_filestring : string (if save_file)
        name of output file

    Returns
    -------
    rescaled_scalars : list of floats
        scalar values rescaled for each label, for label numbers not equal to -1
    rescaled_scalars_file : string (if save_file)
        name of output VTK file with rescaled scalar values for each label

    Examples
    --------
    >>> # Rescale depths by neighborhood within each label:
    >>> import os
    >>> from mindboggle.shapes.measure import rescale_by_label
    >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    >>> from mindboggle.utils.plots import plot_vtk
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> input_vtk = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
    >>> labels_or_file = os.path.join(path, 'arno', 'features', 'subfolds.vtk')
    >>> combine_all_labels = False
    >>> nedges = 10
    >>> p = 99
    >>> set_max_to_1 = True
    >>> save_file = True
    >>> output_filestring = 'rescaled_scalars'
    >>> #
    >>> rescaled_scalars, rescaled_scalars_file = rescale_by_label(input_vtk,
    >>>     labels_or_file, combine_all_labels, nedges, p,
    >>>     set_max_to_1, save_file, output_filestring)
    >>> #
    >>> # View rescaled scalar values per fold:
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file)
    >>> #
    >>> rewrite_scalars(rescaled_scalars_file, rescaled_scalars_file,
    >>>                 rescaled_scalars, 'rescaled_depths', folds)
    >>> plot_vtk(rescaled_scalars_file)

    """
    import os
    import numpy as np
    from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    from mindboggle.utils.mesh import find_neighbors_from_file

    # Load scalars and vertex neighbor lists:
    scalars, name = read_scalars(input_vtk, True, True)
    print("  Rescaling scalar values within each label...")

    # Load label numbers:
    if isinstance(labels_or_file, str):
        labels, name = read_scalars(labels_or_file, True, True)
    elif isinstance(labels_or_file, list):
        labels = labels_or_file
    unique_labels = np.unique(labels)
    unique_labels = [x for x in unique_labels if x >= 0]

    # Loop through labels:
    for label in unique_labels:
        #print("  Rescaling scalar values within label {0} of {1} labels...".format(
        #    int(label), len(unique_labels)))
        indices = [i for i,x in enumerate(labels) if x == label]
        if indices:

            # Rescale by the maximum label scalar value:
            scalars[indices] = scalars[indices] / np.max(scalars[indices])

    rescaled_scalars = scalars.tolist()

    #---------------------------------------------------------------------------
    # Return rescaled scalars and file name
    #---------------------------------------------------------------------------
    if save_file:

        rescaled_scalars_file = os.path.join(os.getcwd(), output_filestring + '.vtk')
        rewrite_scalars(input_vtk, rescaled_scalars_file,
                        rescaled_scalars, 'rescaled_scalars', labels)

    else:
        rescaled_scalars_file = None

    return rescaled_scalars, rescaled_scalars_file
Ejemplo n.º 14
0
def compute_likelihood(trained_file,
                       depth_file,
                       curvature_file,
                       folds,
                       save_file=False):
    """
    Compute likelihoods based on input values, folds, and estimated parameters.

    Compute likelihood values for a given VTK surface mesh file, after training
    on distributions of depth and curvature values from multiple files.

    Parameters
    ----------
    trained_file : pickle compressed file
        contains the following dictionaries containing lists of floats
        (estimates of depth or curvature means, sigmas, and weights
         trained on fold vertices either on or off sulcus label borders)
        depth_border, curv_border, depth_nonborder, curv_nonborder
    depth_file : string
        VTK surface mesh file with depth values in [0,1] for all vertices
    curvature_file : string
        VTK surface mesh file with curvature values in [-1,1] for all vertices
    folds : list of integers
        fold number for all vertices (-1 for non-fold vertices)
    save_file : Boolean
        save output VTK file?

    Returns
    -------
    likelihoods : list of floats
        likelihood values for all vertices (0 for non-fold vertices)
    likelihoods_file : string (if save_file)
        name of output VTK file with likelihood scalars
        (-1 for non-fold vertices)

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    >>> from mindboggle.shapes.likelihood import compute_likelihood
    >>> from mindboggle.utils.plots import plot_surfaces
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> trained_file = os.path.join(path, 'atlases', 'depth_curv_border_nonborder_parameters.pkl')
    >>> #depth_file = os.path.join(path, 'arno', 'shapes', 'travel_depth_rescaled.vtk')
    >>> depth_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
    >>> curvature_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.mean_curvature.vtk')
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file)
    >>> save_file = True
    >>> #
    >>> compute_likelihood(trained_file, depth_file, curvature_file, folds, save_file)
    >>> # View:
    >>> plot_surfaces('likelihoods.vtk', folds_file)

    """
    import os
    import numpy as np
    from math import pi
    import cPickle as pickle

    from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars

    # Initialize variables:
    tiny = 0.000000001
    L = np.zeros(len(folds))
    probs_border = np.zeros(len(folds))
    probs_nonborder = np.zeros(len(folds))

    # Load estimated depth and curvature distribution parameters:
    depth_border, curv_border, depth_nonborder, curv_nonborder = pickle.load(
        open(trained_file, "r"))

    # Load depths, curvatures:
    depths, name = read_scalars(depth_file, True, True)
    curvatures, name = read_scalars(curvature_file, True, True)

    # Prep for below:
    n = 2
    twopiexp = (2 * pi)**(n / 2)
    border_sigmas = depth_border['sigmas'] * curv_border['sigmas']
    nonborder_sigmas = depth_nonborder['sigmas'] * curv_nonborder['sigmas']
    norm_border = 1 / (twopiexp * border_sigmas + tiny)
    norm_nonborder = 1 / (twopiexp * nonborder_sigmas + tiny)
    I = [i for i, x in enumerate(folds) if x != -1]

    N = depth_border['sigmas'].shape[0]
    for j in range(N):

        # Border:
        expB = depth_border['weights'][j] * \
            ((depths[I]-depth_border['means'][j])**2) / \
            depth_border['sigmas'][j]**2
        expB += curv_border['weights'][j] * \
            ((curvatures[I]-curv_border['means'][j])**2) / \
            curv_border['sigmas'][j]**2
        expB = -expB / 2
        probs_border[I] = probs_border[I] + norm_border[j] * np.exp(expB)

        # Non-border:
        expNB = depth_nonborder['weights'][j] * \
            ((depths[I]-depth_nonborder['means'][j])**2) / \
            depth_nonborder['sigmas'][j]**2
        expNB += curv_nonborder['weights'][j] * \
            ((curvatures[I]-curv_nonborder['means'][j])**2) / \
            curv_nonborder['sigmas'][j]**2
        expNB = -expNB / 2
        probs_nonborder[
            I] = probs_nonborder[I] + norm_nonborder[j] * np.exp(expNB)

    likelihoods = probs_border / (probs_nonborder + probs_border + tiny)
    likelihoods = likelihoods.tolist()

    #-------------------------------------------------------------------------
    # Return likelihoods and output file name
    #-------------------------------------------------------------------------
    if save_file:

        likelihoods_file = os.path.join(os.getcwd(), 'likelihoods.vtk')
        rewrite_scalars(depth_file, likelihoods_file, likelihoods,
                        'likelihoods', likelihoods)
        if not os.path.exists(likelihoods_file):
            raise (IOError(likelihoods_file + " not found"))

    else:
        likelihoods_file = None

    return likelihoods, likelihoods_file
Ejemplo n.º 15
0
def segment_fundi(fundus_per_fold, sulci=[], vtk_file='', save_file=False):
    """
    Segment fundi by sulcus definitions.

    Parameters
    ----------
    fundus_per_fold : list of integers
        fundus numbers for all vertices, labeled by fold
        (-1 for non-fundus vertices)
    sulci : numpy array or list of integers
        sulcus number for each vertex, used to filter and label fundi
    vtk_file : string (if save_file)
        VTK file with sulcus number for each vertex
    save_file : Boolean
        save output VTK file?

    Returns
    -------
    fundus_per_sulcus : list of integers
        fundus numbers for all vertices, labeled by sulcus
        (-1 for non-fundus vertices)
    n_fundi :  integer
        number of fundi
    fundus_per_sulcus_file : string (if save_file)
        output VTK file with fundus numbers (-1 for non-fundus vertices)

    Examples
    --------
    >>> # Extract fundus from one or more sulci:
    >>> single_fold = True
    >>> import os
    >>> from mindboggle.utils.io_vtk import read_scalars
    >>> from mindboggle.features.fundi import extract_fundi, segment_fundi
    >>> from mindboggle.utils.plots import plot_surfaces
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> vtk_file = os.path.join(path, 'arno', 'features', 'sulci.vtk')
    >>> sulci, name = read_scalars(vtk_file, True, True)
    >>> curv_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.mean_curvature.vtk')
    >>> depth_file = os.path.join(path, 'arno', 'shapes', 'travel_depth_rescaled.vtk')
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file, True, True)
    >>> if single_fold:
    >>>     fold_number = 2 #11
    >>>     folds[folds != fold_number] = -1
    >>> min_separation = 10
    >>> erode_ratio = 0.10
    >>> erode_min_size = 10
    >>> save_file = True
    >>> fundus_per_fold, o1, o2 = extract_fundi(folds, curv_file, depth_file, min_separation, erode_ratio, erode_min_size, save_file)
    >>> o1, o2, fundus_per_sulcus_file = segment_fundi(fundus_per_fold, sulci, vtk_file, save_file)
    >>> #
    >>> # View:
    >>> plot_surfaces(fundus_per_sulcus_file)

    """

    # Extract a skeleton to connect endpoints in a fold:
    import os
    import numpy as np

    from mindboggle.utils.io_vtk import rewrite_scalars

    if isinstance(sulci, list):
        sulci = np.array(sulci)

    #-------------------------------------------------------------------------
    # Create fundi by segmenting fold fundi with overlapping sulcus labels:
    #-------------------------------------------------------------------------
    indices = [i for i,x in enumerate(fundus_per_fold) if x != -1]
    if indices and np.size(sulci):
        fundus_per_sulcus = -1 * np.ones(len(sulci))
        fundus_per_sulcus[indices] = sulci[indices]
        n_fundi = len([x for x in np.unique(fundus_per_sulcus) if x != -1])
    else:
        fundus_per_sulcus = []
        n_fundi = 0

    if n_fundi == 1:
        sdum = 'sulcus fundus'
    else:
        sdum = 'sulcus fundi'
    print('  Segmented {0} {1}'.format(n_fundi, sdum))

    #-------------------------------------------------------------------------
    # Return fundi, number of fundi, and file name:
    #-------------------------------------------------------------------------
    fundus_per_sulcus_file = None
    if n_fundi > 0:
        fundus_per_sulcus = [int(x) for x in fundus_per_sulcus]
        if save_file and os.path.exists(vtk_file):
            fundus_per_sulcus_file = os.path.join(os.getcwd(),
                                                  'fundus_per_sulcus.vtk')
            rewrite_scalars(vtk_file, fundus_per_sulcus_file,
                            fundus_per_sulcus, 'fundus_per_sulcus',
                            fundus_per_sulcus)
            if not os.path.exists(fundus_per_sulcus_file):
                raise(IOError(fundus_per_sulcus_file + " not found"))

    return fundus_per_sulcus, n_fundi, fundus_per_sulcus_file
Ejemplo n.º 16
0
def extract_fundi(folds, curv_file, depth_file, min_separation=10,
                  erode_ratio=0.1, erode_min_size=1, save_file=False):
    """
    Extract fundi from folds.

    A fundus is a branching curve that runs along the deepest and most
    highly curved portions of a fold.

    Steps ::
        1. Find fundus endpoints (outer anchors) with find_outer_anchors().
        2. Include inner anchor points.
        3. Connect anchor points using connect_points_erosion();
           inner anchors are removed if they result in endpoints.
        4. Optionally smooth with smooth_skeleton().

    Parameters
    ----------
    folds : numpy array or list of integers
        fold number for each vertex
    curv_file :  string
        surface mesh file in VTK format with mean curvature values
    depth_file :  string
        surface mesh file in VTK format with rescaled depth values
    likelihoods : list of integers
        fundus likelihood value for each vertex
    min_separation : integer
        minimum number of edges between inner/outer anchor points
    erode_ratio : float
        fraction of indices to test for removal at each iteration
        in connect_points_erosion()
    save_file : Boolean
        save output VTK file?

    Returns
    -------
    fundus_per_fold : list of integers
        fundus numbers for all vertices, labeled by fold
        (-1 for non-fundus vertices)
    n_fundi_in_folds :  integer
        number of fundi
    fundus_per_fold_file : string (if save_file)
        output VTK file with fundus numbers (-1 for non-fundus vertices)

    Examples
    --------
    >>> # Extract fundus from one or more folds:
    >>> single_fold = True
    >>> import os
    >>> from mindboggle.utils.io_vtk import read_scalars
    >>> from mindboggle.features.fundi import extract_fundi
    >>> from mindboggle.utils.plots import plot_surfaces
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> curv_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.mean_curvature.vtk')
    >>> depth_file = os.path.join(path, 'arno', 'shapes', 'travel_depth_rescaled.vtk')
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file, True, True)
    >>> if single_fold:
    >>>     fold_number = 2 #11
    >>>     folds[folds != fold_number] = -1
    >>> min_separation = 10
    >>> erode_ratio = 0.10
    >>> erode_min_size = 10
    >>> save_file = True
    >>> o1, o2, fundus_per_fold_file = extract_fundi(folds, curv_file,
    ...     depth_file, min_separation, erode_ratio, erode_min_size, save_file)
    >>> #
    >>> # View:
    >>> plot_surfaces(fundi_file)

    """

    # Extract a skeleton to connect endpoints in a fold:
    import os
    import numpy as np
    from time import time

    from mindboggle.utils.io_vtk import read_scalars, read_vtk, rewrite_scalars
    from mindboggle.utils.compute import median_abs_dev
    from mindboggle.utils.paths import find_max_values
    from mindboggle.utils.mesh import find_neighbors_from_file, find_complete_faces
    from mindboggle.utils.paths import find_outer_anchors, connect_points_erosion

    if isinstance(folds, list):
        folds = np.array(folds)

    # Load values, inner anchor threshold, and neighbors:
    faces, u1,u2, points, npoints, curvs, u3,u4 = read_vtk(curv_file, True,True)
    depths, name = read_scalars(depth_file, True, True)
    values = curvs * depths
    values0 = [x for x in values if x > 0]
    thr = np.median(values0) + 2 * median_abs_dev(values0)
    neighbor_lists = find_neighbors_from_file(curv_file)

    #-------------------------------------------------------------------------
    # Loop through folds:
    #-------------------------------------------------------------------------
    t1 = time()
    skeletons = []
    unique_fold_IDs = [x for x in np.unique(folds) if x != -1]

    if len(unique_fold_IDs) == 1:
        print("Extract a fundus from 1 fold...")
    else:
        print("Extract a fundus from each of {0} folds...".
              format(len(unique_fold_IDs)))

    for fold_ID in unique_fold_IDs:
        indices_fold = [i for i,x in enumerate(folds) if x == fold_ID]
        if indices_fold:
            print('  Fold {0}:'.format(int(fold_ID)))

            #-----------------------------------------------------------------
            # Find outer anchor points on the boundary of the surface region,
            # to serve as fundus endpoints:
            #-----------------------------------------------------------------
            outer_anchors, tracks = find_outer_anchors(indices_fold,
                neighbor_lists, values, depths, min_separation)

            #-----------------------------------------------------------------
            # Find inner anchor points:
            #-----------------------------------------------------------------
            inner_anchors = find_max_values(points, values, min_separation, thr)

            #-----------------------------------------------------------------
            # Connect anchor points to create skeleton:
            #-----------------------------------------------------------------
            B = -1 * np.ones(npoints)
            B[indices_fold] = 1
            skeleton = connect_points_erosion(B, neighbor_lists,
                outer_anchors, inner_anchors, values,
                erode_ratio, erode_min_size, save_steps=[], save_vtk='')
            if skeleton:
                skeletons.extend(skeleton)

            #-----------------------------------------------------------------
            # Remove fundus vertices if they complete triangle faces:
            #-----------------------------------------------------------------
            Iremove = find_complete_faces(skeletons, faces)
            if Iremove:
                skeletons = list(frozenset(skeletons).difference(Iremove))

    indices = [x for x in skeletons if folds[x] != -1]
    fundus_per_fold = -1 * np.ones(npoints)
    fundus_per_fold[indices] = folds[indices]
    n_fundi_in_folds = len([x for x in np.unique(fundus_per_fold)
                             if x != -1])
    if n_fundi_in_folds == 1:
        sdum = 'fold fundus'
    else:
        sdum = 'fold fundi'
    print('  ...Extracted {0} {1}; {2} total ({3:.2f} seconds)'.
          format(n_fundi_in_folds, sdum, n_fundi_in_folds, time() - t1))

    #-------------------------------------------------------------------------
    # Return fundi, number of fundi, and file name:
    #-------------------------------------------------------------------------
    if n_fundi_in_folds > 0:
        fundus_per_fold = [int(x) for x in fundus_per_fold]
        if save_file:
            fundus_per_fold_file = os.path.join(os.getcwd(),
                                                'fundus_per_fold.vtk')
            rewrite_scalars(curv_file, fundus_per_fold_file, fundus_per_fold,
                            'fundi', folds)
            if not os.path.exists(fundus_per_fold_file):
                raise(IOError(fundus_per_fold_file + " not found"))
        else:
            fundus_per_fold_file = None

    return fundus_per_fold,  n_fundi_in_folds, fundus_per_fold_file
Ejemplo n.º 17
0
def extract_sulci(labels_file,
                  folds_or_file,
                  hemi,
                  min_boundary=1,
                  sulcus_names=[]):
    """
    Identify sulci from folds in a brain surface according to a labeling
    protocol that includes a list of label pairs defining each sulcus.

    A fold is a group of connected, deep vertices.

    Steps for each fold ::

        1. Remove fold if it has fewer than two labels.
        2. Remove fold if its labels do not contain a sulcus label pair.
        3. Find vertices with labels that are in only one of the fold's
           label boundary pairs. Assign the vertices the sulcus with the label
           pair if they are connected to the label boundary for that pair.
        4. If there are remaining vertices, segment into sets of vertices
           connected to label boundaries, and assign a unique ID to each set.

    Parameters
    ----------
    labels_file : string
        file name for surface mesh VTK containing labels for all vertices
    folds_or_file : list or string
        fold number for each vertex / name of VTK file containing fold scalars
    hemi : string
        hemisphere abbreviation in {'lh', 'rh'} for sulcus labels
    min_boundary : integer
        minimum number of vertices for a sulcus label boundary segment
    sulcus_names : list of strings
        names of sulci

    Returns
    -------
    sulci : list of integers
        sulcus numbers for all vertices (-1 for non-sulcus vertices)
    n_sulci : integers
        number of sulci
    sulci_file : string
        output VTK file with sulcus numbers (-1 for non-sulcus vertices)

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    >>> from mindboggle.features.sulci import extract_sulci
    >>> from mindboggle.utils.plots import plot_surfaces
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> # Load labels, folds, neighbor lists, and sulcus names and label pairs
    >>> labels_file = os.path.join(path, 'arno', 'labels', 'relabeled_lh.DKTatlas40.gcs.vtk')
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds_or_file, name = read_scalars(folds_file)
    >>> hemi = 'lh'
    >>> min_boundary = 10
    >>> sulcus_names = []
    >>> #
    >>> sulci, n_sulci, sulci_file = extract_sulci(labels_file, folds_or_file, hemi, min_boundary, sulcus_names)
    >>> # View:
    >>> plot_surfaces('sulci.vtk')

    """
    import os
    from time import time
    import numpy as np

    from mindboggle.utils.io_vtk import read_scalars, read_vtk, rewrite_scalars
    from mindboggle.utils.mesh import find_neighbors
    from mindboggle.utils.segment import extract_borders, propagate, segment
    from mindboggle.LABELS import DKTprotocol

    # Load fold numbers if folds_or_file is a string:
    if isinstance(folds_or_file, str):
        folds, name = read_scalars(folds_or_file)
    elif isinstance(folds_or_file, list):
        folds = folds_or_file

    dkt = DKTprotocol()

    if hemi == 'lh':
        pair_lists = dkt.left_sulcus_label_pair_lists
    elif hemi == 'rh':
        pair_lists = dkt.right_sulcus_label_pair_lists
    else:
        print("Warning: hemisphere not properly specified ('lh' or 'rh').")

    # Load points, faces, and neighbors:
    faces, o1, o2, points, npoints, labels, o3, o4 = read_vtk(labels_file)
    neighbor_lists = find_neighbors(faces, npoints)

    # Array of sulcus IDs for fold vertices, initialized as -1.
    # Since we do not touch gyral vertices and vertices whose labels
    # are not in the label list, or vertices having only one label,
    # their sulcus IDs will remain -1:
    sulci = -1 * np.ones(npoints)

    #-------------------------------------------------------------------------
    # Loop through folds
    #-------------------------------------------------------------------------
    fold_numbers = [int(x) for x in np.unique(folds) if x != -1]
    n_folds = len(fold_numbers)
    print("Extract sulci from {0} folds...".format(n_folds))
    t0 = time()
    for n_fold in fold_numbers:
        fold = [i for i, x in enumerate(folds) if x == n_fold]
        len_fold = len(fold)

        # List the labels in this fold:
        fold_labels = [labels[x] for x in fold]
        unique_fold_labels = [
            int(x) for x in np.unique(fold_labels) if x != -1
        ]

        #---------------------------------------------------------------------
        # NO MATCH -- fold has fewer than two labels
        #---------------------------------------------------------------------
        if len(unique_fold_labels) < 2:
            # Ignore: sulci already initialized with -1 values:
            if not unique_fold_labels:
                print("  Fold {0} ({1} vertices): "
                      "NO MATCH -- fold has no labels".format(
                          n_fold, len_fold))
            else:
                print("  Fold {0} ({1} vertices): "
                      "NO MATCH -- fold has only one label ({2})".format(
                          n_fold, len_fold, unique_fold_labels[0]))
            # Ignore: sulci already initialized with -1 values

        else:
            # Find all label boundary pairs within the fold:
            indices_fold_pairs, fold_pairs, unique_fold_pairs = \
                extract_borders(fold, labels, neighbor_lists,
                                ignore_values=[], return_label_pairs=True)

            # Find fold label pairs in the protocol (pairs are already sorted):
            fold_pairs_in_protocol = [
                x for x in unique_fold_pairs
                if x in dkt.unique_sulcus_label_pairs
            ]

            if unique_fold_labels:
                print("  Fold {0} labels: {1} ({2} vertices)".format(
                    n_fold, ', '.join([str(x) for x in unique_fold_labels]),
                    len_fold))
            #-----------------------------------------------------------------
            # NO MATCH -- fold has no sulcus label pair
            #-----------------------------------------------------------------
            if not fold_pairs_in_protocol:
                print("  Fold {0}: NO MATCH -- fold has no sulcus label pair".
                      format(n_fold, len_fold))

            #-----------------------------------------------------------------
            # Possible matches
            #-----------------------------------------------------------------
            else:
                print("  Fold {0} label pairs in protocol: {1}".format(
                    n_fold,
                    ', '.join([str(x) for x in fold_pairs_in_protocol])))

                # Labels in the protocol (includes repeats across label pairs):
                labels_in_pairs = [
                    x for lst in fold_pairs_in_protocol for x in lst
                ]

                # Labels that appear in one or more sulcus label boundary:
                unique_labels = []
                nonunique_labels = []
                for label in np.unique(labels_in_pairs):
                    if len([x for x in labels_in_pairs if x == label]) == 1:
                        unique_labels.append(label)
                    else:
                        nonunique_labels.append(label)

                #-------------------------------------------------------------
                # Vertices whose labels are in only one sulcus label pair
                #-------------------------------------------------------------
                # Find vertices with a label that is in only one of the fold's
                # label pairs (the other label in the pair can exist in other
                # pairs). Assign the vertices the sulcus with the label pair
                # if they are connected to the label boundary for that pair.
                #-------------------------------------------------------------
                if unique_labels:

                    for pair in fold_pairs_in_protocol:

                        # If one or both labels in label pair is/are unique:
                        unique_labels_in_pair = [
                            x for x in pair if x in unique_labels
                        ]
                        n_unique = len(unique_labels_in_pair)
                        if n_unique:

                            ID = None
                            for i, pair_list in enumerate(pair_lists):
                                if not isinstance(pair_list, list):
                                    pair_list = [pair_list]
                                if pair in pair_list:
                                    ID = i
                                    break
                            if ID:
                                # Seeds from label boundary vertices
                                # (fold_pairs and pair already sorted):
                                indices_pair = [
                                    x for i, x in enumerate(indices_fold_pairs)
                                    if fold_pairs[i] == pair
                                ]

                                # Vertices with unique label(s) in pair:
                                indices_unique_labels = [
                                    fold[i] for i, x in enumerate(fold_labels)
                                    if x in dkt.unique_sulcus_label_pairs
                                ]

                                # Propagate from seeds to labels in label pair:
                                sulci2 = segment(indices_unique_labels,
                                                 neighbor_lists,
                                                 min_region_size=1,
                                                 seed_lists=[indices_pair],
                                                 keep_seeding=False,
                                                 spread_within_labels=True,
                                                 labels=labels)
                                sulci[sulci2 != -1] = ID

                                # Print statement:
                                if n_unique == 1:
                                    ps1 = '1 label'
                                else:
                                    ps1 = 'Both labels'
                                if len(sulcus_names):
                                    ps2 = sulcus_names[ID]
                                else:
                                    ps2 = ''
                                print("    {0} unique to one fold pair: "
                                      "{1} {2}".format(ps1, ps2,
                                                       unique_labels_in_pair))

                #-------------------------------------------------------------
                # Vertex labels shared by multiple label pairs
                #-------------------------------------------------------------
                # Propagate labels from label borders to vertices with labels
                # that are shared by multiple label pairs in the fold.
                #-------------------------------------------------------------
                if len(nonunique_labels):
                    # For each label shared by different label pairs:
                    for label in nonunique_labels:
                        # Print statement:
                        print("    Propagate sulcus borders with label {0}".
                              format(int(label)))

                        # Construct seeds from label boundary vertices:
                        seeds = -1 * np.ones(len(points))

                        for ID, pair_list in enumerate(pair_lists):
                            if not isinstance(pair_list, list):
                                pair_list = [pair_list]
                            label_pairs = [x for x in pair_list if label in x]
                            for label_pair in label_pairs:
                                indices_pair = [
                                    x for i, x in enumerate(indices_fold_pairs)
                                    if np.sort(fold_pairs[i]).tolist() ==
                                    label_pair
                                ]
                                if indices_pair:

                                    # Do not include short boundary segments:
                                    if min_boundary > 1:
                                        indices_pair2 = []
                                        seeds2 = segment(
                                            indices_pair, neighbor_lists)
                                        useeds2 = [
                                            x for x in np.unique(seeds2)
                                            if x != -1
                                        ]
                                        for seed2 in useeds2:
                                            iseed2 = [
                                                i for i, x in enumerate(seeds2)
                                                if x == seed2
                                            ]
                                            if len(iseed2) >= min_boundary:
                                                indices_pair2.extend(iseed2)
                                            else:
                                                if len(iseed2) == 1:
                                                    print("    Remove "
                                                          "assignment "
                                                          "of ID {0} from "
                                                          "1 vertex".format(
                                                              seed2))
                                                else:
                                                    print(
                                                        "    Remove "
                                                        "assignment "
                                                        "of ID {0} from "
                                                        "{1} vertices".format(
                                                            seed2,
                                                            len(iseed2)))
                                        indices_pair = indices_pair2

                                    # Assign sulcus IDs to seeds:
                                    seeds[indices_pair] = ID

                        # Identify vertices with the label:
                        label_array = -1 * np.ones(len(points))
                        indices_label = [
                            fold[i] for i, x in enumerate(fold_labels)
                            if x == label
                        ]
                        if len(indices_label):
                            label_array[indices_label] = 1

                            # Propagate from seeds to vertices with label:
                            #indices_seeds = []
                            #for seed in range(int(max(seeds))+1):
                            #    indices_seeds.append([i for i,x
                            #                          in enumerate(seeds)
                            #                          if x == seed])
                            #sulci2 = segment(indices_label, neighbor_lists,
                            #                 50, indices_seeds, False, True,
                            #                 labels)
                            sulci2 = propagate(points,
                                               faces,
                                               label_array,
                                               seeds,
                                               sulci,
                                               max_iters=10000,
                                               tol=0.001,
                                               sigma=5)
                            sulci[sulci2 != -1] = sulci2[sulci2 != -1]

    #-------------------------------------------------------------------------
    # Print out assigned sulci
    #-------------------------------------------------------------------------
    sulcus_numbers = [int(x) for x in np.unique(sulci) if x != -1]
    # if not np.isnan(x)]
    n_sulci = len(sulcus_numbers)
    print("Extracted {0} sulci from {1} folds ({2:.1f}s):".format(
        n_sulci, n_folds,
        time() - t0))
    if sulcus_names:
        for sulcus_number in sulcus_numbers:
            print("  {0}: {1}".format(sulcus_number,
                                      sulcus_names[sulcus_number]))
    elif sulcus_numbers:
        print("  " + ", ".join([str(x) for x in sulcus_numbers]))

    #-------------------------------------------------------------------------
    # Print out unresolved sulci
    #-------------------------------------------------------------------------
    unresolved = [i for i in range(len(pair_lists)) if i not in sulcus_numbers]
    if len(unresolved) == 1:
        print("The following sulcus is unaccounted for:")
    else:
        print("The following {0} sulci are unaccounted for:".format(
            len(unresolved)))
    if sulcus_names:
        for sulcus_number in unresolved:
            print("  {0}: {1}".format(sulcus_number,
                                      sulcus_names[sulcus_number]))
    else:
        print("  " + ", ".join([str(x) for x in unresolved]))

    #-------------------------------------------------------------------------
    # Return sulci, number of sulci, and file name
    #-------------------------------------------------------------------------
    sulci = [int(x) for x in sulci]
    sulci_file = os.path.join(os.getcwd(), 'sulci.vtk')
    rewrite_scalars(labels_file, sulci_file, sulci, 'sulci', sulci)

    if not os.path.exists(sulci_file):
        raise (IOError(sulci_file + " not found"))

    return sulci, n_sulci, sulci_file
Ejemplo n.º 18
0
def rescale_by_neighborhood(input_vtk,
                            indices=[],
                            nedges=10,
                            p=99,
                            set_max_to_1=True,
                            save_file=False,
                            output_filestring='rescaled_scalars',
                            background_value=-1):
    """
    Rescale the scalar values of a VTK file by a percentile value
    in each vertex's surface mesh neighborhood.

    Parameters
    ----------
    input_vtk : string
        name of VTK file with a scalar value for each vertex
    indices : list of integers (optional)
        indices of scalars to normalize
    nedges : integer
        number or edges from vertex, defining the size of its neighborhood
    p : float in range of [0,100]
        percentile used to normalize each scalar
    set_max_to_1 : Boolean
        set all rescaled values greater than 1 to 1.0?
    save_file : Boolean
        save output VTK file?
    output_filestring : string (if save_file)
        name of output file
    background_value : integer
        background value

    Returns
    -------
    rescaled_scalars : list of floats
        rescaled scalar values
    rescaled_scalars_file : string (if save_file)
        name of output VTK file with rescaled scalar values

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.mesh import rescale_by_neighborhood
    >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    >>> from mindboggle.utils.plots import plot_surfaces
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> input_vtk = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
    >>> indices = []
    >>> nedges = 10
    >>> p = 99
    >>> set_max_to_1 = True
    >>> save_file = True
    >>> output_filestring = 'rescaled_scalars'
    >>> background_value = -1
    >>> #
    >>> rescaled_scalars, rescaled_scalars_file = rescale_by_neighborhood(input_vtk,
    >>>     indices, nedges, p, set_max_to_1, save_file, output_filestring, background_value)
    >>> #
    >>> # View rescaled scalar values per fold:
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file)
    >>> #
    >>> rewrite_scalars(rescaled_scalars_file, rescaled_scalars_file,
    >>>                 rescaled_scalars, 'rescaled_depths', folds)
    >>> plot_surfaces(rescaled_scalars_file)

    """
    import os
    import numpy as np
    from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    from mindboggle.utils.mesh import find_neighbors_from_file, find_neighborhood

    # Load scalars and vertex neighbor lists:
    scalars, name = read_scalars(input_vtk, True, True)
    if not indices:
        indices = [i for i, x in enumerate(scalars) if x != background_value]
    print("  Rescaling {0} scalar values by neighborhood...".format(
        len(indices)))
    neighbor_lists = find_neighbors_from_file(input_vtk)

    # Loop through vertices:
    rescaled_scalars = scalars.copy()
    for index in indices:

        # Determine the scalars in the vertex's neighborhood:
        neighborhood = find_neighborhood(neighbor_lists, [index], nedges)

        # Compute a high neighborhood percentile to normalize vertex's value:
        normalization_factor = np.percentile(scalars[neighborhood], p)
        rescaled_scalar = scalars[index] / normalization_factor
        rescaled_scalars[index] = rescaled_scalar

    # Make any rescaled value greater than 1 equal to 1:
    if set_max_to_1:
        rescaled_scalars[[x for x in indices if rescaled_scalars[x] > 1.0]] = 1

    rescaled_scalars = rescaled_scalars.tolist()

    #-------------------------------------------------------------------------
    # Return rescaled scalars and file name
    #-------------------------------------------------------------------------
    if save_file:

        rescaled_scalars_file = os.path.join(os.getcwd(),
                                             output_filestring + '.vtk')
        rewrite_scalars(input_vtk, rescaled_scalars_file, rescaled_scalars,
                        'rescaled_scalars')
        if not os.path.exists(rescaled_scalars_file):
            raise (IOError(rescaled_scalars_file + " not found"))

    else:
        rescaled_scalars_file = None

    return rescaled_scalars, rescaled_scalars_file
Ejemplo n.º 19
0
def extract_fundi(folds,
                  curv_file,
                  depth_file,
                  min_separation=10,
                  erode_ratio=0.1,
                  erode_min_size=1,
                  save_file=False):
    """
    Extract fundi from folds.

    A fundus is a branching curve that runs along the deepest and most
    highly curved portions of a fold.

    Steps ::
        1. Find fundus endpoints (outer anchors) with find_outer_anchors().
        2. Include inner anchor points.
        3. Connect anchor points using connect_points_erosion();
           inner anchors are removed if they result in endpoints.

    Parameters
    ----------
    folds : numpy array or list of integers
        fold number for each vertex
    curv_file :  string
        surface mesh file in VTK format with mean curvature values
    depth_file :  string
        surface mesh file in VTK format with rescaled depth values
    likelihoods : list of integers
        fundus likelihood value for each vertex
    min_separation : integer
        minimum number of edges between inner/outer anchor points
    erode_ratio : float
        fraction of indices to test for removal at each iteration
        in connect_points_erosion()
    save_file : Boolean
        save output VTK file?

    Returns
    -------
    fundus_per_fold : list of integers
        fundus numbers for all vertices, labeled by fold
        (-1 for non-fundus vertices)
    n_fundi_in_folds :  integer
        number of fundi
    fundus_per_fold_file : string (if save_file)
        output VTK file with fundus numbers (-1 for non-fundus vertices)

    Examples
    --------
    >>> # Extract fundus from one or more folds:
    >>> single_fold = True
    >>> import os
    >>> from mindboggle.utils.io_vtk import read_scalars
    >>> from mindboggle.features.fundi import extract_fundi
    >>> from mindboggle.utils.plots import plot_surfaces
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> curv_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.mean_curvature.vtk')
    >>> depth_file = os.path.join(path, 'arno', 'shapes', 'travel_depth_rescaled.vtk')
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file, True, True)
    >>> if single_fold:
    >>>     fold_number = 2 #11
    >>>     folds[folds != fold_number] = -1
    >>> min_separation = 10
    >>> erode_ratio = 0.10
    >>> erode_min_size = 10
    >>> save_file = True
    >>> o1, o2, fundus_per_fold_file = extract_fundi(folds, curv_file,
    ...     depth_file, min_separation, erode_ratio, erode_min_size, save_file)
    >>> #
    >>> # View:
    >>> plot_surfaces(fundi_file)

    """

    # Extract a skeleton to connect endpoints in a fold:
    import os
    import numpy as np
    from time import time

    from mindboggle.utils.io_vtk import read_scalars, read_vtk, rewrite_scalars
    from mindboggle.utils.compute import median_abs_dev
    from mindboggle.utils.paths import find_max_values
    from mindboggle.utils.mesh import find_neighbors_from_file, find_complete_faces
    from mindboggle.utils.paths import find_outer_anchors, connect_points_erosion

    if isinstance(folds, list):
        folds = np.array(folds)

    # Load values, inner anchor threshold, and neighbors:
    faces, u1, u2, points, npoints, curvs, u3, u4 = read_vtk(
        curv_file, True, True)
    depths, name = read_scalars(depth_file, True, True)
    values = curvs * depths
    values0 = [x for x in values if x > 0]
    thr = np.median(values0) + 2 * median_abs_dev(values0)
    neighbor_lists = find_neighbors_from_file(curv_file)

    #-------------------------------------------------------------------------
    # Loop through folds:
    #-------------------------------------------------------------------------
    t1 = time()
    skeletons = []
    unique_fold_IDs = [x for x in np.unique(folds) if x != -1]

    if len(unique_fold_IDs) == 1:
        print("Extract a fundus from 1 fold...")
    else:
        print("Extract a fundus from each of {0} folds...".format(
            len(unique_fold_IDs)))

    for fold_ID in unique_fold_IDs:
        indices_fold = [i for i, x in enumerate(folds) if x == fold_ID]
        if indices_fold:
            print('  Fold {0}:'.format(int(fold_ID)))

            #-----------------------------------------------------------------
            # Find outer anchor points on the boundary of the surface region,
            # to serve as fundus endpoints:
            #-----------------------------------------------------------------
            outer_anchors, tracks = find_outer_anchors(indices_fold,
                                                       neighbor_lists, values,
                                                       depths, min_separation)

            #-----------------------------------------------------------------
            # Find inner anchor points:
            #-----------------------------------------------------------------
            inner_anchors = find_max_values(points, values, min_separation,
                                            thr)

            #-----------------------------------------------------------------
            # Connect anchor points to create skeleton:
            #-----------------------------------------------------------------
            B = -1 * np.ones(npoints)
            B[indices_fold] = 1
            skeleton = connect_points_erosion(B,
                                              neighbor_lists,
                                              outer_anchors,
                                              inner_anchors,
                                              values,
                                              erode_ratio,
                                              erode_min_size,
                                              save_steps=[],
                                              save_vtk='')
            if skeleton:
                skeletons.extend(skeleton)

            #-----------------------------------------------------------------
            # Remove fundus vertices if they complete triangle faces:
            #-----------------------------------------------------------------
            Iremove = find_complete_faces(skeletons, faces)
            if Iremove:
                skeletons = list(frozenset(skeletons).difference(Iremove))

    indices = [x for x in skeletons if folds[x] != -1]
    fundus_per_fold = -1 * np.ones(npoints)
    fundus_per_fold[indices] = folds[indices]
    n_fundi_in_folds = len([x for x in np.unique(fundus_per_fold) if x != -1])
    if n_fundi_in_folds == 1:
        sdum = 'fold fundus'
    else:
        sdum = 'fold fundi'
    print('  ...Extracted {0} {1}; {2} total ({3:.2f} seconds)'.format(
        n_fundi_in_folds, sdum, n_fundi_in_folds,
        time() - t1))

    #-------------------------------------------------------------------------
    # Return fundi, number of fundi, and file name:
    #-------------------------------------------------------------------------
    if n_fundi_in_folds > 0:
        fundus_per_fold = [int(x) for x in fundus_per_fold]
        if save_file:
            fundus_per_fold_file = os.path.join(os.getcwd(),
                                                'fundus_per_fold.vtk')
            rewrite_scalars(curv_file, fundus_per_fold_file, fundus_per_fold,
                            'fundi', folds)
            if not os.path.exists(fundus_per_fold_file):
                raise (IOError(fundus_per_fold_file + " not found"))
        else:
            fundus_per_fold_file = None

    return fundus_per_fold, n_fundi_in_folds, fundus_per_fold_file
Ejemplo n.º 20
0
def rescale_by_label(input_vtk, labels_or_file, save_file=False,
                     output_filestring='rescaled_scalars'):
    """
    Rescale scalars for each label (such as depth values within each fold).

    Default is to normalize the scalar values of a VTK file by
    a percentile value in each vertex's surface mesh for each label.

    Parameters
    ----------
    input_vtk : string
        name of VTK file with a scalar value for each vertex
    labels_or_file : list or string
        label number for each vertex or name of VTK file with index scalars
    save_file : Boolean
        save output VTK file?
    output_filestring : string (if save_file)
        name of output file

    Returns
    -------
    rescaled_scalars : list of floats
        scalar values rescaled for each label, for label numbers not equal to -1
    rescaled_scalars_file : string (if save_file)
        name of output VTK file with rescaled scalar values for each label

    Examples
    --------
    >>> # Rescale depths by neighborhood within each label:
    >>> import os
    >>> from mindboggle.utils.mesh import rescale_by_label
    >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    >>> from mindboggle.utils.plots import plot_surfaces
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> input_vtk = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
    >>> labels_or_file = os.path.join(path, 'arno', 'features', 'subfolds.vtk')
    >>> save_file = True
    >>> output_filestring = 'rescaled_scalars'
    >>> #
    >>> rescaled_scalars, rescaled_scalars_file = rescale_by_label(input_vtk,
    >>>     labels_or_file, save_file, output_filestring)
    >>> #
    >>> # View rescaled scalar values per fold:
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file)
    >>> #
    >>> rewrite_scalars(rescaled_scalars_file, rescaled_scalars_file,
    >>>                 rescaled_scalars, 'rescaled_depths', folds)
    >>> plot_surfaces(rescaled_scalars_file)

    """
    import os
    import numpy as np
    from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars

    # Load scalars and vertex neighbor lists:
    scalars, name = read_scalars(input_vtk, True, True)
    print("  Rescaling scalar values within each label...")

    # Load label numbers:
    if isinstance(labels_or_file, str):
        labels, name = read_scalars(labels_or_file, True, True)
    elif isinstance(labels_or_file, list):
        labels = labels_or_file
    unique_labels = np.unique(labels)
    unique_labels = [x for x in unique_labels if x >= 0]

    # Loop through labels:
    for label in unique_labels:
        #print("  Rescaling scalar values within label {0} of {1} labels...".format(
        #    int(label), len(unique_labels)))
        indices = [i for i,x in enumerate(labels) if x == label]
        if indices:

            # Rescale by the maximum label scalar value:
            scalars[indices] = scalars[indices] / np.max(scalars[indices])

    rescaled_scalars = scalars.tolist()

    #-------------------------------------------------------------------------
    # Return rescaled scalars and file name
    #-------------------------------------------------------------------------
    if save_file:

        rescaled_scalars_file = os.path.join(os.getcwd(), output_filestring + '.vtk')
        rewrite_scalars(input_vtk, rescaled_scalars_file,
                        rescaled_scalars, 'rescaled_scalars', labels)
        if not os.path.exists(rescaled_scalars_file):
            raise(IOError(rescaled_scalars_file + " not found"))

    else:
        rescaled_scalars_file = None

    return rescaled_scalars, rescaled_scalars_file
Ejemplo n.º 21
0
def plot_mask_surface(vtk_file, mask_file='', nonmask_value=-1,
                      masked_output='', remove_nonmask=False,
                      program='vtkviewer',
                      use_colormap=False, colormap_file=''):
    """
    Use vtkviewer or mayavi2 to visualize VTK surface mesh data.

    If a mask_file is provided, a temporary masked file is saved,
    and it is this file that is viewed.

    If using vtkviewer, can optionally provide colormap file
    or set $COLORMAP environment variable.

    Parameters
    ----------
    vtk_file : string
        name of VTK surface mesh file
    mask_file : string
        name of VTK surface mesh file to mask vtk_file vertices
    nonmask_value : integer
        nonmask (usually background) value
    masked_output : string
        temporary masked output file name
    remove_nonmask : Boolean
        remove vertices that are not in mask? (otherwise assign nonmask_value)
    program : string {'vtkviewer', 'mayavi2'}
        program to visualize VTK file
    use_colormap : Boolean
        use Paraview-style XML colormap file set by $COLORMAP env variable?
    colormap_file : string
        use colormap in given file if use_colormap==True?  if empty and
        use_colormap==True, use file set by $COLORMAP environment variable

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.plots import plot_mask_surface
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> vtk_file = os.path.join(path, 'arno', 'labels', 'lh.labels.DKT31.manual.vtk')
    >>> mask_file = os.path.join(path, 'test_one_label.vtk')
    >>> nonmask_value = 0 #-1
    >>> masked_output = ''
    >>> remove_nonmask = True
    >>> program = 'vtkviewer'
    >>> use_colormap = True
    >>> colormap_file = '' #'/software/mindboggle_tools/colormap.xml'
    >>> plot_mask_surface(vtk_file, mask_file, nonmask_value, masked_output, remove_nonmask, program, use_colormap, colormap_file)

    """
    import os
    import numpy as np

    from mindboggle.utils.mesh import remove_faces, reindex_faces_points
    from mindboggle.utils.utils import execute
    from mindboggle.utils.plots import plot_surfaces
    from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars, \
                                        read_vtk, write_vtk

    #-------------------------------------------------------------------------
    # Filter mesh with non-background values from a second (same-size) mesh:
    #-------------------------------------------------------------------------
    if mask_file:
        mask, name = read_scalars(mask_file, True, True)
        if not masked_output:
            masked_output = os.path.join(os.getcwd(), 'temp.vtk')
        file_to_plot = masked_output

        #---------------------------------------------------------------------
        # Remove nonmask-valued vertices:
        #---------------------------------------------------------------------
        if remove_nonmask:
            #-----------------------------------------------------------------
            # Load VTK files:
            #-----------------------------------------------------------------
            faces, lines, indices, points, npoints, scalars, scalar_names, \
            o1 = read_vtk(vtk_file, True, True)
            #-----------------------------------------------------------------
            # Find mask indices, remove nonmask faces, and reindex:
            #-----------------------------------------------------------------
            Imask = [i for i,x in enumerate(mask) if x != nonmask_value]
            mask_faces = remove_faces(faces, Imask)
            mask_faces, points, \
            original_indices = reindex_faces_points(mask_faces, points)
            #-----------------------------------------------------------------
            # Write VTK file with scalar values:
            #-----------------------------------------------------------------
            if np.ndim(scalars) == 1:
                scalar_type = type(scalars[0]).__name__
            elif np.ndim(scalars) == 2:
                scalar_type = type(scalars[0][0]).__name__
            else:
                print("Undefined scalar type!")
            write_vtk(file_to_plot, points, [], [], mask_faces,
                      scalars[original_indices].tolist(), scalar_names,
                      scalar_type=scalar_type)
        else:
            scalars, name = read_scalars(vtk_file, True, True)
            scalars[mask == nonmask_value] = nonmask_value
            rewrite_scalars(vtk_file, file_to_plot, scalars)
    else:
        file_to_plot = vtk_file

    #-------------------------------------------------------------------------
    # Display with vtkviewer.py:
    #-------------------------------------------------------------------------
    if program == 'vtkviewer':
        plot_surfaces(file_to_plot, use_colormap=use_colormap,
                      colormap_file=colormap_file)
    #-------------------------------------------------------------------------
    # Display with mayavi2:
    #-------------------------------------------------------------------------
    elif program == 'mayavi2':
        cmd = ["mayavi2", "-d", file_to_plot, "-m", "Surface", "&"]
        execute(cmd, 'os')
Ejemplo n.º 22
0
def rescale_by_neighborhood(input_vtk, indices=[], nedges=10, p=99,
    set_max_to_1=True, save_file=False, output_filestring='rescaled_scalars',
    background_value=-1):
    """
    Rescale the scalar values of a VTK file by a percentile value
    in each vertex's surface mesh neighborhood.

    Parameters
    ----------
    input_vtk : string
        name of VTK file with a scalar value for each vertex
    indices : list of integers (optional)
        indices of scalars to normalize
    nedges : integer
        number or edges from vertex, defining the size of its neighborhood
    p : float in range of [0,100]
        percentile used to normalize each scalar
    set_max_to_1 : Boolean
        set all rescaled values greater than 1 to 1.0?
    save_file : Boolean
        save output VTK file?
    output_filestring : string (if save_file)
        name of output file
    background_value : integer
        background value

    Returns
    -------
    rescaled_scalars : list of floats
        rescaled scalar values
    rescaled_scalars_file : string (if save_file)
        name of output VTK file with rescaled scalar values

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.mesh import rescale_by_neighborhood
    >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    >>> from mindboggle.utils.plots import plot_surfaces
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> input_vtk = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
    >>> indices = []
    >>> nedges = 10
    >>> p = 99
    >>> set_max_to_1 = True
    >>> save_file = True
    >>> output_filestring = 'rescaled_scalars'
    >>> background_value = -1
    >>> #
    >>> rescaled_scalars, rescaled_scalars_file = rescale_by_neighborhood(input_vtk,
    >>>     indices, nedges, p, set_max_to_1, save_file, output_filestring, background_value)
    >>> #
    >>> # View rescaled scalar values per fold:
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file)
    >>> #
    >>> rewrite_scalars(rescaled_scalars_file, rescaled_scalars_file,
    >>>                 rescaled_scalars, 'rescaled_depths', folds)
    >>> plot_surfaces(rescaled_scalars_file)

    """
    import os
    import numpy as np
    from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars
    from mindboggle.utils.mesh import find_neighbors_from_file, find_neighborhood

    # Load scalars and vertex neighbor lists:
    scalars, name = read_scalars(input_vtk, True, True)
    if not indices:
        indices = [i for i,x in enumerate(scalars) if x != background_value]
    print("  Rescaling {0} scalar values by neighborhood...".format(len(indices)))
    neighbor_lists = find_neighbors_from_file(input_vtk)

    # Loop through vertices:
    rescaled_scalars = scalars.copy()
    for index in indices:

        # Determine the scalars in the vertex's neighborhood:
        neighborhood = find_neighborhood(neighbor_lists, [index], nedges)

        # Compute a high neighborhood percentile to normalize vertex's value:
        normalization_factor = np.percentile(scalars[neighborhood], p)
        rescaled_scalar = scalars[index] / normalization_factor
        rescaled_scalars[index] = rescaled_scalar

    # Make any rescaled value greater than 1 equal to 1:
    if set_max_to_1:
        rescaled_scalars[[x for x in indices if rescaled_scalars[x] > 1.0]] = 1

    rescaled_scalars = rescaled_scalars.tolist()

    #-------------------------------------------------------------------------
    # Return rescaled scalars and file name
    #-------------------------------------------------------------------------
    if save_file:

        rescaled_scalars_file = os.path.join(os.getcwd(), output_filestring + '.vtk')
        rewrite_scalars(input_vtk, rescaled_scalars_file,
                        rescaled_scalars, 'rescaled_scalars')
        if not os.path.exists(rescaled_scalars_file):
            raise(IOError(rescaled_scalars_file + " not found"))

    else:
        rescaled_scalars_file = None

    return rescaled_scalars, rescaled_scalars_file
Ejemplo n.º 23
0
def extract_folds(depth_file, min_fold_size=50, tiny_depth=0.001, save_file=False):
    """
    Use depth to extract folds from a triangular surface mesh.

    Steps ::
        1. Compute histogram of depth measures.
        2. Define a depth threshold and find the deepest vertices.
        3. Segment deep vertices as an initial set of folds.
        4. Remove small folds.
        5. Find and fill holes in the folds.
        6. Renumber folds.

    Step 2 ::
        To extract an initial set of deep vertices from the surface mesh,
        we anticipate that there will be a rapidly decreasing distribution
        of low depth values (on the outer surface) with a long tail
        of higher depth values (in the folds), so we smooth the histogram's
        bin values, convolve to compute slopes, and find the depth value
        for the first bin with slope = 0. This is our threshold.

    Step 5 ::
        The folds could have holes in areas shallower than the depth threshold.
        Calling fill_holes() could accidentally include very shallow areas
        (in an annulus-shaped fold, for example), so we call fill_holes() with
        the argument exclude_range set close to zero to retain these areas.

    Parameters
    ----------
    depth_file : string
        surface mesh file in VTK format with faces and depth scalar values
    min_fold_size : integer
        minimum fold size (number of vertices)
    tiny_depth : float
        largest non-zero depth value that will stop a hole from being filled
    save_file : Boolean
        save output VTK file?

    Returns
    -------
    folds : list of integers
        fold numbers for all vertices (-1 for non-fold vertices)
    n_folds :  int
        number of folds
    depth_threshold :  float
        threshold defining the minimum depth for vertices to be in a fold
    bins :  list of integers
        histogram bins: each is the number of vertices within a range of depth values
    bin_edges :  list of floats
        histogram bin edge values defining the bin ranges of depth values
    folds_file : string (if save_file)
        name of output VTK file with fold IDs (-1 for non-fold vertices)

    Examples
    --------
    >>> import os
    >>> import numpy as np
    >>> import pylab
    >>> from scipy.ndimage.filters import gaussian_filter1d
    >>> from mindboggle.utils.io_vtk import read_scalars
    >>> from mindboggle.utils.mesh import find_neighbors_from_file
    >>> from mindboggle.utils.plots import plot_vtk
    >>> from mindboggle.features.folds import extract_folds
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> depth_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
    >>> neighbor_lists = find_neighbors_from_file(depth_file)
    >>> min_fold_size = 50
    >>> tiny_depth = 0.001
    >>> save_file = True
    >>> #
    >>> folds, n_folds, thr, bins, bin_edges, folds_file = extract_folds(depth_file,
    >>>     min_fold_size, tiny_depth, save_file)
    >>> #
    >>> # View folds:
    >>> plot_vtk('folds.vtk')
    >>> # Plot histogram and depth threshold:
    >>> depths, name = read_scalars(depth_file)
    >>> nbins = np.round(len(depths) / 100.0)
    >>> a,b,c = pylab.hist(depths, bins=nbins)
    >>> pylab.plot(thr*np.ones((100,1)), np.linspace(0, max(bins), 100), 'r.')
    >>> pylab.show()
    >>> # Plot smoothed histogram:
    >>> bins_smooth = gaussian_filter1d(bins.tolist(), 5)
    >>> pylab.plot(range(len(bins)), bins, '.', range(len(bins)), bins_smooth,'-')
    >>> pylab.show()

    """
    import os
    import sys
    import numpy as np
    from time import time
    from scipy.ndimage.filters import gaussian_filter1d
    from mindboggle.utils.io_vtk import rewrite_scalars, read_vtk
    from mindboggle.utils.mesh import find_neighbors
    from mindboggle.utils.morph import fill_holes
    from mindboggle.utils.segment import segment

    do_fill_holes = True

    print("Extract folds in surface mesh")
    t0 = time()

    #-------------------------------------------------------------------------
    # Load depth values for all vertices
    #-------------------------------------------------------------------------
    faces, lines, indices, points, npoints, depths, name, input_vtk = read_vtk(depth_file,
        return_first=True, return_array=True)

    #-------------------------------------------------------------------------
    # Find neighbors for each vertex
    #-------------------------------------------------------------------------
    neighbor_lists = find_neighbors(faces, npoints)

    #-------------------------------------------------------------------------
    # Compute histogram of depth measures
    #-------------------------------------------------------------------------
    min_vertices = 10000
    if npoints > min_vertices:
        nbins = np.round(npoints / 100.0)
    else:
        sys.err("  Expecting at least {0} vertices to create depth histogram".
            format(min_vertices))
    bins, bin_edges = np.histogram(depths, bins=nbins)

    #-------------------------------------------------------------------------
    # Anticipating that there will be a rapidly decreasing distribution
    # of low depth values (on the outer surface) with a long tail of higher
    # depth values (in the folds), smooth the bin values (Gaussian), convolve
    # to compute slopes, and find the depth for the first bin with slope = 0.
    #-------------------------------------------------------------------------
    bins_smooth = gaussian_filter1d(bins.tolist(), 5)
    window = [-1, 0, 1]
    bin_slopes = np.convolve(bins_smooth, window, mode='same') / (len(window) - 1)
    ibins0 = np.where(bin_slopes == 0)[0]
    if ibins0.shape:
        depth_threshold = bin_edges[ibins0[0]]
    else:
        depth_threshold = np.median(depths)

    #-------------------------------------------------------------------------
    # Find the deepest vertices
    #-------------------------------------------------------------------------
    indices_deep = [i for i,x in enumerate(depths) if x >= depth_threshold]
    if indices_deep:

        #---------------------------------------------------------------------
        # Segment deep vertices as an initial set of folds
        #---------------------------------------------------------------------
        print("  Segment vertices deeper than {0:.2f} as folds".format(depth_threshold))
        t1 = time()
        folds = segment(indices_deep, neighbor_lists)
        # Slightly slower alternative -- fill boundaries:
        #regions = -1 * np.ones(len(points))
        #regions[indices_deep] = 1
        #folds = segment_by_filling_borders(regions, neighbor_lists)
        print('  ...Segmented folds ({0:.2f} seconds)'.format(time() - t1))

        #---------------------------------------------------------------------
        # Remove small folds
        #---------------------------------------------------------------------
        if min_fold_size > 1:
            print('  Remove folds smaller than {0}'.format(min_fold_size))
            unique_folds = [x for x in np.unique(folds) if x > -1]
            for nfold in unique_folds:
                indices_fold = [i for i,x in enumerate(folds) if x == nfold]
                if len(indices_fold) < min_fold_size:
                    folds[indices_fold] = -1

        #---------------------------------------------------------------------
        # Find and fill holes in the folds
        # Note: Surfaces surrounded by folds can be mistaken for holes,
        #       so exclude_range includes outer surface values close to zero.
        #---------------------------------------------------------------------
        if do_fill_holes:
            print("  Find and fill holes in the folds")
            folds = fill_holes(folds, neighbor_lists, values=depths,
                               exclude_range=[0, tiny_depth])

        #---------------------------------------------------------------------
        # Renumber folds so they are sequential
        #---------------------------------------------------------------------
        renumber_folds = -1 * np.ones(len(folds))
        fold_numbers = [int(x) for x in np.unique(folds) if x > -1]
        for i_fold, n_fold in enumerate(fold_numbers):
            fold = [i for i,x in enumerate(folds) if x == n_fold]
            renumber_folds[fold] = i_fold
        folds = renumber_folds
        n_folds = i_fold + 1

        # Print statement
        print('  ...Extracted {0} folds ({1:.2f} seconds)'.
              format(n_folds, time() - t0))
    else:
        print('  No deep vertices')

    #-------------------------------------------------------------------------
    # Return folds, number of folds, file name
    #-------------------------------------------------------------------------
    if save_file:

        folds_file = os.path.join(os.getcwd(), 'folds.vtk')
        rewrite_scalars(depth_file, folds_file, folds, 'folds', folds)

        if not os.path.exists(folds_file):
            raise(IOError(folds_file + " not found"))

    else:
        folds_file = None

    return folds.tolist(), n_folds, depth_threshold, bins, bin_edges, folds_file
Ejemplo n.º 24
0
def plot_mask_surface(vtk_file, mask_file='', nonmask_value=-1,
                      masked_output='', remove_nonmask=False,
                      program='vtkviewer',
                      use_colormap=False, colormap_file=''):
    """
    Use vtkviewer or mayavi2 to visualize VTK surface mesh data.

    If a mask_file is provided, a temporary masked file is saved,
    and it is this file that is viewed.

    If using vtkviewer, can optionally provide colormap file
    or set $COLORMAP environment variable.

    Parameters
    ----------
    vtk_file : string
        name of VTK surface mesh file
    mask_file : string
        name of VTK surface mesh file to mask vtk_file vertices
    nonmask_value : integer
        nonmask (usually background) value
    masked_output : string
        temporary masked output file name
    remove_nonmask : Boolean
        remove vertices that are not in mask? (otherwise assign nonmask_value)
    program : string {'vtkviewer', 'mayavi2'}
        program to visualize VTK file
    use_colormap : Boolean
        use Paraview-style XML colormap file set by $COLORMAP env variable?
    colormap_file : string
        use colormap in given file if use_colormap==True?  if empty and
        use_colormap==True, use file set by $COLORMAP environment variable

    Examples
    --------
    >>> import os
    >>> from mindboggle.utils.plots import plot_mask_surface
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> vtk_file = os.path.join(path, 'arno', 'labels', 'lh.labels.DKT31.manual.vtk')
    >>> mask_file = os.path.join(path, 'test_one_label.vtk')
    >>> nonmask_value = 0 #-1
    >>> masked_output = ''
    >>> remove_nonmask = True
    >>> program = 'vtkviewer'
    >>> use_colormap = True
    >>> colormap_file = '' #'/software/mindboggle_tools/colormap.xml'
    >>> plot_mask_surface(vtk_file, mask_file, nonmask_value, masked_output, remove_nonmask, program, use_colormap, colormap_file)

    """
    import os
    import numpy as np

    from mindboggle.utils.mesh import remove_faces, reindex_faces_points
    from mindboggle.utils.utils import execute
    from mindboggle.utils.plots import plot_surfaces
    from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars, \
                                        read_vtk, write_vtk

    #-------------------------------------------------------------------------
    # Filter mesh with non-background values from a second (same-size) mesh:
    #-------------------------------------------------------------------------
    if mask_file:
        mask, name = read_scalars(mask_file, True, True)
        if not masked_output:
            masked_output = os.path.join(os.getcwd(), 'temp.vtk')
        file_to_plot = masked_output

        #---------------------------------------------------------------------
        # Remove nonmask-valued vertices:
        #---------------------------------------------------------------------
        if remove_nonmask:
            #-----------------------------------------------------------------
            # Load VTK files:
            #-----------------------------------------------------------------
            faces, lines, indices, points, npoints, scalars, scalar_names, \
            o1 = read_vtk(vtk_file, True, True)
            #-----------------------------------------------------------------
            # Find mask indices, remove nonmask faces, and reindex:
            #-----------------------------------------------------------------
            Imask = [i for i,x in enumerate(mask) if x != nonmask_value]
            mask_faces = remove_faces(faces, Imask)
            mask_faces, points, \
            original_indices = reindex_faces_points(mask_faces, points)
            #-----------------------------------------------------------------
            # Write VTK file with scalar values:
            #-----------------------------------------------------------------
            if np.ndim(scalars) == 1:
                scalar_type = type(scalars[0]).__name__
            elif np.ndim(scalars) == 2:
                scalar_type = type(scalars[0][0]).__name__
            else:
                print("Undefined scalar type!")
            write_vtk(file_to_plot, points, [], [], mask_faces,
                      scalars[original_indices].tolist(), scalar_names,
                      scalar_type=scalar_type)
        else:
            scalars, name = read_scalars(vtk_file, True, True)
            scalars[mask == nonmask_value] = nonmask_value
            rewrite_scalars(vtk_file, file_to_plot, scalars)
    else:
        file_to_plot = vtk_file

    #-------------------------------------------------------------------------
    # Display with vtkviewer.py:
    #-------------------------------------------------------------------------
    if program == 'vtkviewer':
        plot_surfaces(file_to_plot, use_colormap=use_colormap,
                      colormap_file=colormap_file)
    #-------------------------------------------------------------------------
    # Display with mayavi2:
    #-------------------------------------------------------------------------
    elif program == 'mayavi2':
        cmd = ["mayavi2", "-d", file_to_plot, "-m", "Surface", "&"]
        execute(cmd, 'os')
Ejemplo n.º 25
0
def extract_fundi(folds, sulci, curv_file, depth_file, min_separation=10,
                  erode_ratio=0.1, erode_min_size=1, save_file=False):
    """
    Extract fundi from folds.

    A fundus is a branching curve that runs along the deepest and most
    highly curved portions of a sulcus fold.

    Steps ::
        1. Find fundus endpoints (outer anchors) with find_outer_anchors().
        2. Include inner anchor points.
        3. Connect anchor points using connect_points_erosion().
        4. Segment fundi by sulcus definitions.
        Possible postprocessing step: smooth with smooth_skeleton().

    Parameters
    ----------
    folds : list of integers
        fold number for each vertex
    curv_file :  string
        surface mesh file in VTK format with mean curvature values
    depth_file :  string
        surface mesh file in VTK format with rescaled depth values
    sulci : list of integers
        sulcus number for each vertex
    likelihoods : list of integers
        fundus likelihood value for each vertex
    min_separation : integer
        minimum number of edges between inner/outer anchor points
    erode_ratio : float
        fraction of indices to test for removal at each iteration
        in connect_points_erosion()
    save_file : Boolean
        save output VTK file?

    Returns
    -------
    fundi : list of integers
        fundus numbers for all vertices (-1 for non-fundus vertices)
    n_fundi :  integer
        number of fundi
    fundi_file : string (if save_file)
        name of output VTK file with fundus numbers (-1 for non-fundus vertices)

    Examples
    --------
    >>> # Extract fundus from one or more folds:
    >>> single_fold = True
    >>> import os
    >>> from mindboggle.utils.io_vtk import read_scalars
    >>> from mindboggle.features.fundi import extract_fundi
    >>> from mindboggle.utils.plots import plot_vtk
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> sulci_file = os.path.join(path, 'arno', 'features', 'sulci.vtk')
    >>> sulci, name = read_scalars(sulci_file, True, True)
    >>> curv_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.mean_curvature.vtk')
    >>> depth_file = os.path.join(path, 'arno', 'shapes', 'travel_depth_rescaled.vtk')
    >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk')
    >>> folds, name = read_scalars(folds_file, True, True)
    >>> if single_fold:
    >>>     fold_number = 2 #11
    >>>     folds[folds != fold_number] = -1
    >>> min_separation = 10
    >>> erode_ratio = 0.10
    >>> erode_min_size = 10
    >>> save_file = True
    >>> fundi, n_fundi, fundi_file = extract_fundi(folds, sulci, curv_file,
    >>>     depth_file, min_separation, erode_ratio, erode_min_size, save_file)
    >>> #
    >>> # View:
    >>> plot_vtk(fundi_file)

    """

    # Extract a skeleton to connect endpoints in a fold:
    import os
    import numpy as np
    from time import time

    from mindboggle.utils.io_vtk import read_scalars, read_vtk, rewrite_scalars
    from mindboggle.utils.compute import median_abs_dev
    from mindboggle.utils.paths import find_max_values
    from mindboggle.utils.mesh import find_neighbors_from_file
    from mindboggle.utils.paths import find_outer_anchors, connect_points_erosion

    # Load values, threshold, and neighbors:
    u1,u2,u3, points, npoints, curvs, u4,u5 = read_vtk(curv_file, True,True)
    depths, name = read_scalars(depth_file, True, True)
    values = curvs * depths
    values0 = [x for x in values if x > 0]
    thr = np.median(values0) + 2 * median_abs_dev(values0)
    neighbor_lists = find_neighbors_from_file(curv_file)

    #-------------------------------------------------------------------------
    # Loop through folds:
    #-------------------------------------------------------------------------
    t1 = time()
    skeletons = []
    unique_fold_IDs = [x for x in np.unique(folds) if x != -1]

    if len(unique_fold_IDs) == 1:
        print("Extract a fundus from 1 fold...")
    else:
        print("Extract a fundus from each of {0} folds...".
              format(len(unique_fold_IDs)))

    for fold_ID in unique_fold_IDs:
        indices_fold = [i for i,x in enumerate(folds) if x == fold_ID]
        if indices_fold:
            print('  Fold {0}:'.format(int(fold_ID)))

            #-----------------------------------------------------------------
            # Find outer anchor points on the boundary of the surface region,
            # to serve as fundus endpoints :
            #-----------------------------------------------------------------
            outer_anchors, tracks = find_outer_anchors(indices_fold,
                neighbor_lists, values, depths, min_separation)

            #-----------------------------------------------------------------
            # Find inner anchor points:
            #-----------------------------------------------------------------
            inner_anchors = find_max_values(points, values, min_separation, thr)

            #-----------------------------------------------------------------
            # Connect endpoints to create skeleton:
            #-----------------------------------------------------------------
            B = -1 * np.ones(npoints)
            B[indices_fold] = 1
            skeleton = connect_points_erosion(B, neighbor_lists,
                outer_anchors, inner_anchors, values,
                erode_ratio, erode_min_size, save_steps=[], save_vtk='')
            if skeleton:
                skeletons.extend(skeleton)

    #-------------------------------------------------------------------------
    # Create fundi by segmenting skeletons with overlapping sulcus labels:
    #-------------------------------------------------------------------------
    fundi = -1 * np.ones(npoints)
    indices = [x for x in skeletons if sulci[x] != -1]
    fundi[indices] = sulci[indices]

    n_fundi = len([x for x in np.unique(fundi) if x != -1])
    if n_fundi == 1:
        sdum = 'fundus'
    else:
        sdum = 'fundi'
    print('  ...Extracted {0} {1} ({2:.2f} seconds)'.
          format(n_fundi, sdum, time() - t1))

    #-------------------------------------------------------------------------
    # Return fundi, number of fundi, and file name:
    #-------------------------------------------------------------------------
    fundi = fundi.tolist()

    if save_file:
        fundi_file = os.path.join(os.getcwd(), 'fundi.vtk')
        rewrite_scalars(curv_file, fundi_file, fundi, 'fundi', folds)
    else:
        fundi_file = None

    return fundi, n_fundi, fundi_file
Ejemplo n.º 26
0
def extract_folds(depth_file,
                  min_fold_size=50,
                  tiny_depth=0.001,
                  save_file=False):
    """
    Use depth to extract folds from a triangular surface mesh.

    Steps ::
        1. Compute histogram of depth measures.
        2. Define a depth threshold and find the deepest vertices.
        3. Segment deep vertices as an initial set of folds.
        4. Remove small folds.
        5. Find and fill holes in the folds.
        6. Renumber folds.

    Step 2 ::
        To extract an initial set of deep vertices from the surface mesh,
        we anticipate that there will be a rapidly decreasing distribution
        of low depth values (on the outer surface) with a long tail
        of higher depth values (in the folds), so we smooth the histogram's
        bin values, convolve to compute slopes, and find the depth value
        for the first bin with slope = 0. This is our threshold.

    Step 5 ::
        The folds could have holes in areas shallower than the depth threshold.
        Calling fill_holes() could accidentally include very shallow areas
        (in an annulus-shaped fold, for example), so we call fill_holes() with
        the argument exclude_range set close to zero to retain these areas.

    Parameters
    ----------
    depth_file : string
        surface mesh file in VTK format with faces and depth scalar values
    min_fold_size : integer
        minimum fold size (number of vertices)
    tiny_depth : float
        largest non-zero depth value that will stop a hole from being filled
    save_file : Boolean
        save output VTK file?

    Returns
    -------
    folds : list of integers
        fold numbers for all vertices (-1 for non-fold vertices)
    n_folds :  int
        number of folds
    depth_threshold :  float
        threshold defining the minimum depth for vertices to be in a fold
    bins :  list of integers
        histogram bins: each is the number of vertices within a range of depth values
    bin_edges :  list of floats
        histogram bin edge values defining the bin ranges of depth values
    folds_file : string (if save_file)
        name of output VTK file with fold IDs (-1 for non-fold vertices)

    Examples
    --------
    >>> import os
    >>> import numpy as np
    >>> import pylab
    >>> from scipy.ndimage.filters import gaussian_filter1d
    >>> from mindboggle.utils.io_vtk import read_scalars
    >>> from mindboggle.utils.mesh import find_neighbors_from_file
    >>> from mindboggle.utils.plots import plot_surfaces
    >>> from mindboggle.features.folds import extract_folds
    >>> path = os.environ['MINDBOGGLE_DATA']
    >>> depth_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
    >>> neighbor_lists = find_neighbors_from_file(depth_file)
    >>> min_fold_size = 50
    >>> tiny_depth = 0.001
    >>> save_file = True
    >>> #
    >>> folds, n_folds, thr, bins, bin_edges, folds_file = extract_folds(depth_file,
    >>>     min_fold_size, tiny_depth, save_file)
    >>> #
    >>> # View folds:
    >>> plot_surfaces('folds.vtk')
    >>> # Plot histogram and depth threshold:
    >>> depths, name = read_scalars(depth_file)
    >>> nbins = np.round(len(depths) / 100.0)
    >>> a,b,c = pylab.hist(depths, bins=nbins)
    >>> pylab.plot(thr*np.ones((100,1)), np.linspace(0, max(bins), 100), 'r.')
    >>> pylab.show()
    >>> # Plot smoothed histogram:
    >>> bins_smooth = gaussian_filter1d(bins.tolist(), 5)
    >>> pylab.plot(range(len(bins)), bins, '.', range(len(bins)), bins_smooth,'-')
    >>> pylab.show()

    """
    import os
    import sys
    import numpy as np
    from time import time
    from scipy.ndimage.filters import gaussian_filter1d
    from mindboggle.utils.io_vtk import rewrite_scalars, read_vtk
    from mindboggle.utils.mesh import find_neighbors
    from mindboggle.utils.morph import fill_holes
    from mindboggle.utils.segment import segment

    do_fill_holes = True

    print("Extract folds in surface mesh")
    t0 = time()

    #-------------------------------------------------------------------------
    # Load depth values for all vertices
    #-------------------------------------------------------------------------
    faces, lines, indices, points, npoints, depths, name, input_vtk = read_vtk(
        depth_file, return_first=True, return_array=True)

    #-------------------------------------------------------------------------
    # Find neighbors for each vertex
    #-------------------------------------------------------------------------
    neighbor_lists = find_neighbors(faces, npoints)

    #-------------------------------------------------------------------------
    # Compute histogram of depth measures
    #-------------------------------------------------------------------------
    min_vertices = 10000
    if npoints > min_vertices:
        nbins = np.round(npoints / 100.0)
    else:
        sys.err("  Expecting at least {0} vertices to create depth histogram".
                format(min_vertices))
    bins, bin_edges = np.histogram(depths, bins=nbins)

    #-------------------------------------------------------------------------
    # Anticipating that there will be a rapidly decreasing distribution
    # of low depth values (on the outer surface) with a long tail of higher
    # depth values (in the folds), smooth the bin values (Gaussian), convolve
    # to compute slopes, and find the depth for the first bin with slope = 0.
    #-------------------------------------------------------------------------
    bins_smooth = gaussian_filter1d(bins.tolist(), 5)
    window = [-1, 0, 1]
    bin_slopes = np.convolve(bins_smooth, window,
                             mode='same') / (len(window) - 1)
    ibins0 = np.where(bin_slopes == 0)[0]
    if ibins0.shape:
        depth_threshold = bin_edges[ibins0[0]]
    else:
        depth_threshold = np.median(depths)

    #-------------------------------------------------------------------------
    # Find the deepest vertices
    #-------------------------------------------------------------------------
    indices_deep = [i for i, x in enumerate(depths) if x >= depth_threshold]
    if indices_deep:

        #---------------------------------------------------------------------
        # Segment deep vertices as an initial set of folds
        #---------------------------------------------------------------------
        print("  Segment vertices deeper than {0:.2f} as folds".format(
            depth_threshold))
        t1 = time()
        folds = segment(indices_deep, neighbor_lists)
        # Slightly slower alternative -- fill boundaries:
        #regions = -1 * np.ones(len(points))
        #regions[indices_deep] = 1
        #folds = segment_by_filling_borders(regions, neighbor_lists)
        print('  ...Segmented folds ({0:.2f} seconds)'.format(time() - t1))

        #---------------------------------------------------------------------
        # Remove small folds
        #---------------------------------------------------------------------
        if min_fold_size > 1:
            print('  Remove folds smaller than {0}'.format(min_fold_size))
            unique_folds = [x for x in np.unique(folds) if x != -1]
            for nfold in unique_folds:
                indices_fold = [i for i, x in enumerate(folds) if x == nfold]
                if len(indices_fold) < min_fold_size:
                    folds[indices_fold] = -1

        #---------------------------------------------------------------------
        # Find and fill holes in the folds
        # Note: Surfaces surrounded by folds can be mistaken for holes,
        #       so exclude_range includes outer surface values close to zero.
        #---------------------------------------------------------------------
        if do_fill_holes:
            print("  Find and fill holes in the folds")
            folds = fill_holes(folds,
                               neighbor_lists,
                               values=depths,
                               exclude_range=[0, tiny_depth])

        #---------------------------------------------------------------------
        # Renumber folds so they are sequential
        #---------------------------------------------------------------------
        renumber_folds = -1 * np.ones(len(folds))
        fold_numbers = [int(x) for x in np.unique(folds) if x != -1]
        for i_fold, n_fold in enumerate(fold_numbers):
            fold = [i for i, x in enumerate(folds) if x == n_fold]
            renumber_folds[fold] = i_fold
        folds = renumber_folds
        n_folds = i_fold + 1

        # Print statement
        print('  ...Extracted {0} folds ({1:.2f} seconds)'.format(
            n_folds,
            time() - t0))
    else:
        print('  No deep vertices')

    folds = [int(x) for x in folds]

    #-------------------------------------------------------------------------
    # Return folds, number of folds, file name
    #-------------------------------------------------------------------------
    if save_file:

        folds_file = os.path.join(os.getcwd(), 'folds.vtk')
        rewrite_scalars(depth_file, folds_file, folds, 'folds', folds)

        if not os.path.exists(folds_file):
            raise (IOError(folds_file + " not found"))

    else:
        folds_file = None

    return folds, n_folds, depth_threshold, bins, bin_edges, folds_file