Ejemplo n.º 1
0
def _initialize_weight_default(shape=None, layer_type='conv', bias=False):
    if layer_type not in ('conv', 'bn', 'fc'):
        raise ValueError('The layer type is not known, the supported are conv, bn and fc')
    if bias and layer_type == 'bn':
        return Zero()
    if layer_type == 'conv':
        return One()
    if layer_type == 'bn':
        return One()
    return One()
Ejemplo n.º 2
0
def _initialize_weight_goog(shape=None, layer_type='conv', bias=False):
    if layer_type not in ('conv', 'bn', 'fc'):
        raise ValueError('The layer type is not known, the supported are conv, bn and fc')
    if bias:
        return Zero()
    if layer_type == 'conv':
        assert isinstance(shape, (tuple, list)) and len(
            shape) == 3, 'The shape must be 3 scalars, and are in_chs, ks, out_chs respectively'
        n = shape[1] * shape[1] * shape[2]
        return Normal(math.sqrt(2.0 / n))
    if layer_type == 'bn':
        return One()
    assert isinstance(shape, (tuple, list)) and len(
        shape) == 2, 'The shape must be 2 scalars, and are in_chs, out_chs respectively'
    n = shape[1]
    init_range = 1.0 / math.sqrt(n)
    return Uniform(init_range)
Ejemplo n.º 3
0
def weight_variable(shape, factor=0.1):
    return One()
Ejemplo n.º 4
0
def test_zero_dimension_with_zero_shape():
    with pytest.raises(ValueError) as ex:
        Tensor(shape=(1, 0, 3), dtype=mindspore.float32, init=One())
    assert "Shape can not contain zero value." in str(ex.value)
def weight_variable():
    return One()