Ejemplo n.º 1
0
    def test_reflection_pad_1d(self):
        m = ReflectionPad1d(2)
        inputs = mnp.arange(8).reshape(1, 2, 4)
        outputs = m(inputs)

        expected = Tensor([[[2, 1, 0, 1, 2, 3, 2, 1], [6, 5, 4, 5, 6, 7, 6,
                                                       5]]])
        assert mnp.array_equal(outputs, expected)
Ejemplo n.º 2
0
    def test_reflection_pad_2d(self):
        m = ReflectionPad2d(2)
        inputs = mnp.arange(9).reshape(1, 1, 3, 3)
        outputs = m(inputs)

        expected = Tensor([[[[8, 7, 6, 7, 8, 7, 6], [5, 4, 3, 4, 5, 4, 3],
                             [2, 1, 0, 1, 2, 1, 0], [5, 4, 3, 4, 5, 4, 3],
                             [8, 7, 6, 7, 8, 7, 6], [5, 4, 3, 4, 5, 4, 3],
                             [2, 1, 0, 1, 2, 1, 0]]]])
        assert mnp.array_equal(outputs, expected)
Ejemplo n.º 3
0
    def test_constant_pad_1d(self):
        m = ConstantPad1d(2, 3.5)
        inputs = mnp.arange(8, dtype=mindspore.float32).reshape(1, 2, 4)
        outputs = m(inputs)
        print(outputs)
        expected = Tensor([[[3.5, 3.5, 0., 1., 2., 3., 3.5, 3.5],
                            [3.5, 3.5, 4., 5., 6., 7., 3.5, 3.5]]],
                          mindspore.float32)
        assert mnp.array_equal(outputs, expected)
        m = ConstantPad1d((3, 1), 3.5)
        outputs = m(inputs)

        expected = Tensor([[[3.5, 3.5, 3.5, 0., 1., 2., 3., 3.5],
                            [3.5, 3.5, 3.5, 4., 5., 6., 7., 3.5]]],
                          mindspore.float32)
        assert mnp.array_equal(outputs, expected)
Ejemplo n.º 4
0
 def test_reflection_pad_3d(self):
     m = ReflectionPad3d(1)
     inputs = mnp.arange(8, dtype=mindspore.float32).reshape(1, 1, 2, 2, 2)
     print(inputs)
     outputs = m(inputs)
     print(outputs)
     expected = Tensor([[[[[7., 6., 7., 6.], [5., 4., 5., 4.],
                           [7., 6., 7., 6.], [5., 4., 5., 4.]],
                          [[3., 2., 3., 2.], [1., 0., 1., 0.],
                           [3., 2., 3., 2.], [1., 0., 1., 0.]],
                          [[7., 6., 7., 6.], [5., 4., 5., 4.],
                           [7., 6., 7., 6.], [5., 4., 5., 4.]],
                          [[3., 2., 3., 2.], [1., 0., 1., 0.],
                           [3., 2., 3., 2.], [1., 0., 1., 0.]]]]],
                       mindspore.float32)
     assert mnp.array_equal(outputs, expected)
Ejemplo n.º 5
0
    def test_zero_pad_2d(self):
        m = ZeroPad2d(2)
        inputs = mnp.arange(9).reshape(1, 1, 3, 3)
        outputs = m(inputs)

        expected = Tensor([[[[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
                             [0, 0, 0, 1, 2, 0, 0], [0, 0, 3, 4, 5, 0, 0],
                             [0, 0, 6, 7, 8, 0, 0], [0, 0, 0, 0, 0, 0, 0],
                             [0, 0, 0, 0, 0, 0, 0]]]])

        assert mnp.array_equal(outputs, expected)
        # using different paddings for different sides
        m = ZeroPad2d((1, 1, 2, 0))
        outputs = m(inputs)
        print(outputs)

        expected = Tensor([[[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 2, 0],
                             [0, 3, 4, 5, 0], [0, 6, 7, 8, 0]]]])
        assert mnp.array_equal(outputs, expected)
Ejemplo n.º 6
0
def test_arange():
    actual = onp.arange(10)
    expected = mnp.arange(10).asnumpy()
    match_array(actual, expected)

    actual = onp.arange(0, 10)
    expected = mnp.arange(0, 10).asnumpy()
    match_array(actual, expected)

    actual = onp.arange(start=10)
    expected = mnp.arange(start=10).asnumpy()
    match_array(actual, expected)

    actual = onp.arange(start=10, step=0.1)
    expected = mnp.arange(start=10, step=0.1).asnumpy()
    match_array(actual, expected, error=6)

    actual = onp.arange(10, step=0.1)
    expected = mnp.arange(10, step=0.1).asnumpy()
    match_array(actual, expected, error=6)

    actual = onp.arange(0.1, 9.9)
    expected = mnp.arange(0.1, 9.9).asnumpy()
    match_array(actual, expected, error=6)
Ejemplo n.º 7
0
 def construct(self, input_x):
     shape = input_x.shape
     dim_size = shape[self.dim]
     reversed_indexes = mnp.arange(dim_size - 1, -1, -1)
     output = ops.Gather()(input_x, reversed_indexes, self.dim)
     return output
Ejemplo n.º 8
0
def arange(start, stop=None, step=None, dtype=None):
    return mnp.arange(start, stop, step, dtype)