Ejemplo n.º 1
0
async def on_start(vm, stack):
    ms_hub.status_light.on("black")
    rotate_hub_display_to_value("3")
    blinking_frames = [hub.Image(frame) for frame in blinking_animation]
    vm.system.display.show(blinking_frames,
                           clear=False,
                           delay=round(1000 / 8),
                           loop=True,
                           fade=1)

    left_hand = Motor("B")
    right_hand = Motor("F")

    # Calibrate
    left_hand.run_to_position(0)
    right_hand.run_to_position(0)

    vm.system.sound.play("/extra_files/Humming")
    for i in range(2):
        right_hand.run_for_degrees(-100, 50)
        right_hand.run_for_degrees(100, 50)

        left_hand.run_for_degrees(100, 50)
        left_hand.run_for_degrees(-100, 50)

    left_turn = MotorPair("B", "E")
    right_turn = MotorPair("A", "F")

    vm.system.sound.play("/extra_files/Humming")
    for i in range(2):
        right_turn.move(100, "degrees", steering=100, speed=50)
        right_turn.move(-100, "degrees", steering=100, speed=50)

        left_turn.move(100, "degrees", steering=-100, speed=50)
        left_turn.move(-100, "degrees", steering=-100, speed=50)

    wheels = MotorPair("A", "E")
    wheels.move(14 * math.pi, "cm", steering=100, speed=80)
    wheels.move(14 * math.pi, "cm", steering=-100, speed=80)

    right_hand.run_to_position(270, direction="counterclockwise")
    wait_for_seconds(1)
    right_hand.run_for_seconds(1, 50)

    await vm.system.sound.play_async("/extra_files/Tadaa")

    wait_for_seconds(1)
    right_hand.run_to_position(0, direction="counterclockwise")
Ejemplo n.º 2
0
# driving with Tricky

wheel_radius = 2.8
pen_radius = 8.6
axis_radius = 5.6

line_length = 5

# Create your objects here.
hub = MSHub()

# Write your program here.
hub.speaker.beep()

motor = Motor('C')
motor.run_to_position(165)


def pen_up():
    motor.run_for_degrees(-90)


def pen_down():
    motor.run_for_degrees(90)


motor_pair = MotorPair('B', 'A')
motor_pair.set_default_speed(20)
motor_pair.set_motor_rotation(wheel_radius * 2 * math.pi, 'cm')

pen_down()
Ejemplo n.º 3
0
# # Configure motors

# %%
print("Configuring motors...")
motor_left_arm = Motor('B')  # Left arm
motor_right_arm = Motor('F')  # Right arm
motors_arms = MotorPair('B', 'F')
motors_wheels = MotorPair('A', 'E')
print("DONE!")

# %% [markdown]
# # Set arm motors to starting position

# %%
print("Setting arm motors to position 0...")
motor_left_arm.run_to_position(0)
motor_right_arm.run_to_position(0)
print("DONE!")

# %% [markdown]
# # Overwrite `Timer`

# %%
print("Overwriting timer...")


class Timer():
    """
    Replacement Timer class that allows using floats (i.e., seconds with a decimal place). 
    """
    def __init__(self):
Ejemplo n.º 4
0
motor_right_arm = Motor('F') # Right arm

motor_left_arm.set_default_speed(40)
motor_right_arm.set_default_speed(-40)

motors_arms = MotorPair('B', 'F')
print("DONE!")

# %% [markdown]
# # Set arm motors to starting position
# This isn't part of the original program, but I think it is good practice to make sure motors always start in the same state.
#

# %%
print("Setting arm motors to position 0...")
motor_left_arm.run_to_position(0)
motor_right_arm.run_to_position(0)
print("DONE!")

# %% [markdown]
# # Move shopper Charlie
#
# So far, we've used `move` to move the wheel motors. 
# However, when using `move`, the program will not continue until the specified value is reached. 
# This is a problem, since we want to move the wheels *and* the arms at the same time.
# Therefore, we will use `start` and `stop`. This comes at the cost of being unable to
# define a stopping condition based on the motors alone (e.g., distance, time). 
# We have to stop them at certain point of the program (as we do here) or based on a 
# sensory input. 
#
# I wonder if there's a way to perform async execution using the vanilla (Micro)Python.
Ejemplo n.º 5
0
class AutonomousCar:
    def __init__(self, settings):
        self.settings = settings
        self.go_ahead = True
        self.turn = False
        self.turn_angle = 30
        if bool(random.getrandbits(1)):
            self.turn_angle *= -1
        self.initiate_objects()
        if settings['run_test']:
            self.test_function()
        else:
            self.calibrate()
            self.the_loop()

    def initiate_objects(self):
        self.hub = MSHub()
        self.hub.status_light.on('orange')
        self.motor_front = Motor(self.settings['motor_front_port'])
        self.motor_rear = Motor(self.settings['motor_rear_port'])
        self.dist_sens = DistanceSensor(self.settings['dist_sens_port'])

    def calibrate(self):
        self.motor_front.run_to_position(self.settings['motor_front_angle'])

    def test_function(self):
        self.hub.light_matrix.show_image('PACMAN')
        sounds_and_colors = [(65, "blue"), (70, "azure"), (60, "cyan")]
        for i in sounds_and_colors:
            self.hub.speaker.beep(i[0], 0.3)
            self.hub.status_light.on(i[1])
        self.hub.light_matrix.off()

    def end_turn(self):
        self.turn = False
        self.motor_front.run_for_degrees(self.turn_angle * -1)

    def the_loop(self):
        self.hub.light_matrix.write('GO')
        self.hub.status_light.on('green')
        loop_time_diff = 0
        loop_start_time = time.time()
        turn_time_diff = 0
        turn_start_time = None
        while loop_time_diff < self.settings['how_long_run']:
            how_far = self.dist_sens.get_distance_cm()
            rear_speed = self.settings.get('motor_rear_speed')
            if self.turn:
                self.hub.status_light.on('yellow')
                turn_time_control = time.time()
                turn_time_diff = turn_time_control - turn_start_time
                if isinstance(
                        how_far, int
                ) and how_far <= self.settings['dist_threshold_low']:
                    self.go_ahead = False
                    self.end_turn()
                elif turn_time_diff >= self.settings['turn_in_seconds']:
                    self.end_turn()
            elif self.go_ahead:
                self.hub.status_light.on('green')
                rear_speed = rear_speed * -1
                if isinstance(
                        how_far, int
                ) and how_far <= self.settings['dist_threshold_low']:
                    self.go_ahead = False
            else:
                self.hub.status_light.on('blue')
                if isinstance(
                        how_far, int
                ) and how_far >= self.settings['dist_threshold_high']:
                    self.turn = True
                    turn_start_time = time.time()
                    self.motor_front.run_for_degrees(self.turn_angle)
                    self.go_ahead = True
            self.motor_rear.start(rear_speed)
            wait_for_seconds(0.25)
            loop_time_control = time.time()
            loop_time_diff = loop_time_control - loop_start_time
        self.motor_rear.stop()
        self.calibrate()
        self.hub.light_matrix.write('STOP')
Ejemplo n.º 6
0
# # Configure motors

# %%
print("Configuring motors...")
motor_left_arm = Motor('B')  # Left arm
motor_right_arm = Motor('F')  # Right arm
motors_arms = MotorPair('B', 'F')
motors_wheels = MotorPair('A', 'E')
print("DONE!")

# %% [markdown]
# # Set arm motors to starting position

# %%
print("Setting arm motors to position 0...")
motor_left_arm.run_to_position(0)
motor_right_arm.run_to_position(0)
print("DONE!")

# %% [markdown]
# # Configure sensor

# %%
print("Configuring sensors...")
color_sensor = ColorSensor('C')

distance_sensor = DistanceSensor('D')
distance_sensor.light_up_all()
print("DONE!")

# %% [markdown]
# %% [markdown]
# # Configure motors

# %%
print("Configuring motors...")
motor_steer = Motor('A')  # Front wheels (for steering)
motor_power = Motor('B')  # Back wheels (for moving)
print("DONE!")

# %% [markdown]
# # Set steering motor to starting position

# %%
print("Setting steering motor to position 0...")
motor_steer.run_to_position(45, speed=100)
motor_steer.run_to_position(0, speed=100)
print("DONE!")

# %% [markdown]
# # Move MVP

# %%
print("Steering...")
motor_steer.run_to_position(50, speed=35)
print("DONE!")

# %%
print("Moving...")
motor_power.set_default_speed(80)
motor_power.run_for_rotations(-16)
# %%
print("Turning center button off...")
hub.status_light.on('black')
print("DONE!")

# %% [markdown]
# # Set arm motors to starting position
# In the original Scratch program, there's a `Charlie - Calibrate` block. I don't know exactly how the calibration is done, but in the end I think that it just sets the motor to position 0.
# Notice that moving motors to a specific position needs to be done individually (and sequentially). In other words, we cannot run a `MotorPair` to a position, only one motor at a time.
#

# %%
print("Setting arm motors to position 0...")
motor_b = Motor('B')  # Left arm
motor_f = Motor('F')  # Right arm
motor_b.run_to_position(0)
motor_f.run_to_position(0)
print("DONE!")

# %% [markdown]
# # Configure motors

# %%
print("Configuring motors...")
motors_movement = MotorPair('A', 'E')
motors_movement.set_default_speed(80)
print("DONE!")

# %% [markdown]
# # Program color reactions
# %%
print("Configuring motors...")
motor_left_arm = Motor('B')  # Left arm
motor_right_arm = Motor('F')  # Right arm
motors_arms = MotorPair('B', 'F')

motor_left_arm.set_default_speed(-100)
motor_right_arm.set_default_speed(100)
print("DONE!")

# %% [markdown]
# # Set arm motors to starting position

# %%
print("Setting arm motors to position 0...")
motor_left_arm.run_to_position(0)
motor_right_arm.run_to_position(0)
print("DONE!")

# %% [markdown]
# # Make Charlie push himself around
# If Charlie doesn't move properly, try:
# * adjusting the wheels on his poles
# * playing with the waiting time between movement of the right arm (`t_wait`)
# * putting him on another surface

# %%
print("Skiing...")

# Original value is 6.
# I set this to 3 due to space constraints.
Ejemplo n.º 10
0
# hub.status_light.on('black')
hub.led(0, 0, 0)

# %% [markdown]
# # Initialize motors

# %%
print("Configuring motors...")
motor_steer = Motor('A')  # Front wheels (for steering)
motor_power = Motor('C')  # Back wheels (for moving)

motor_turret = Motor('B')  # Turrent spinning

# %%
print("Setting motors to position 0...")
motor_steer.run_to_position(45, speed=100)
motor_steer.run_to_position(0, speed=100)

motor_turret.run_to_position(0, speed=75)
print("DONE!")

# %% [markdown]
# # Initialize distance sensor

# %%
print("Initializing distance sensor...")
distance_sensor = DistanceSensor('D')
print("DONE!")

# %% [markdown]
# # Put the AAT MS5 in motion
Ejemplo n.º 11
0
# %%
print("Displaying happy face...")
hub.light_matrix.show_image('HAPPY')
print("DONE!")

# %% [markdown]
# # Set arm motors to starting position
# In the original Scratch program, there's a `Charlie - Calibrate` block. I don't know exactly how the calibration is done, but in the end I think that it just sets the motor to position 0.
# Notice that moving motors to a specific position needs to be done individually (and sequentially). In other words, we cannot run a `MotorPair` to a position, only one motor at a time.
#

# %%
print("Setting arm motors to position 0...")
motor_b = Motor('B')  # Left arm
motor_f = Motor('F')  # Right arm
motor_b.run_to_position(0)
motor_f.run_to_position(0)
print("DONE!")

# %% [markdown]
# # Dance time!

# %%
print("Dancing steps 1...")

app.start_sound('Party Blower')

for ii in range(0, 2):
    motor_f.run_for_degrees(-100)
    motor_f.run_for_degrees(100)