def tensor_train_template(init_rho, pb_index, rank=1): """Get rho_n from rho in a Tensor Train representation. Parameters ---------- rho : np.ndarray """ n_vec = np.zeros((rank, ), dtype=DTYPE) n_vec[0] = 1.0 root_array = np.tensordot(init_rho, n_vec, axes=0) root = Tensor(name='root', array=root_array, axis=None) max_terms = len(pb_index) # +2: i and j root[0] = (Leaf(name=max_terms), 0) root[1] = (Leaf(name=max_terms + 1), 0) for i in pb_index: assert rank <= i train = [root] for k in range(max_terms): if k < max_terms - 1: array = np.eye(rank, pb_index[k] * rank) array = np.reshape(array, (rank, -1, rank)) else: array = np.eye(rank, pb_index[k]) spf = Tensor(name=k, array=array, axis=0) l = Leaf(name=k) spf[0] = (train[-1], 2) spf[1] = (l, 0) train.append(spf) return root
def test_train(fname=None): # Type settings corr = Correlation(k_max=max_terms) corr.symm_coeff = np.diag(corr_dict['s'].toarray()) corr.asymm_coeff = np.diag(corr_dict['a'].toarray()) corr.exp_coeff = np.diag(corr_dict['gamma'].toarray()) corr.delta_coeff = 0.0 # delta_coeff corr.print() n_dims = [max_tier] * max_terms heom = Hierachy(n_dims, H, V, corr) # Adopt TT tensor_train = tensor_train_template(rho_0, n_dims) root = tensor_train[0] leaves_dict = {leaf.name: leaf for leaf in root.leaves()} all_terms = [] for term in heom.diff(): all_terms.append([(leaves_dict[str(fst)], snd) for fst, snd in term]) solver = MultiLayer(root, all_terms) #solver = ProjectorSplitting(root, all_terms) solver.ode_method = 'RK45' solver.snd_order = False solver.atol = 1.e-7 solver.rtol = 1.e-7 solver.ps_method = 'split-unite' projector = np.zeros((max_tier, 1)) projector[0] = 1.0 logger = Logger(filename=fname, level='info').logger for n, (time, _) in enumerate( solver.propagator(steps=count, ode_inter=dt_unit, split=False)): if n % callback_interval == 0: head = root.array for t in tensor_train[1:]: spf = Tensor.partial_product(t.array, 1, projector, 0) head = Tensor.partial_product(head, head.ndim - 1, spf, 0) rho = np.reshape(head, (4, -1))[:, 0] logger.info("{} {} {} {} {}".format(time, rho[0], rho[1], rho[2], rho[3])) return
def tensor_tree_template(init_rho, pb_index, rank=1, nbranch=2): """Get rho_n from rho in a Tensor Tree representation. Parameters ---------- rho : np.ndarray """ n_state = get_n_state(init_rho) n_vec = np.zeros((rank, ), dtype=DTYPE) n_vec[0] = 1.0 root_array = np.tensordot(init_rho, n_vec, axes=0) max_terms = len(pb_index) for i in pb_index: assert rank <= i # generate leaves leaves = list(range(max_terms)) class new_spf(object): counter = 0 prefix = 'SPF' def __new__(cls): name = cls.prefix + str(cls.counter) cls.counter += 1 return name importance = list(reversed(range(len(pb_index)))) graph, spf_root = huffman_tree( leaves, importances=importance, obj_new=new_spf, n_branch=nbranch, ) root = 'root' graph[root] = [str(max_terms), str(max_terms + 1), spf_root] print(graph, root) root = Tensor.generate(graph, root) root.set_array(root_array) bond_dict = {} # Leaves l_range = list(pb_index) + [n_state] * 2 for s, i, t, j in root.linkage_visitor(): if isinstance(t, Leaf): bond_dict[(s, i, t, j)] = l_range[int(t.name)] else: bond_dict[(s, i, t, j)] = rank autocomplete(root, bond_dict) return root
def test_train(fname=None): # HEOM metas corr.print() n_dims = [max_tier] * max_terms heom = Hierachy(n_dims, H, V, corr) # 2-site TT tensor_train = tensor_train_template(rho_0, n_dims, rank=1) root = tensor_train[0] leaves_dict = {leaf.name: leaf for leaf in root.leaves()} all_terms = [] for term in heom.diff(): all_terms.append([(leaves_dict[str(fst)], snd) for fst, snd in term]) solver = MultiLayer(root, all_terms) solver.ode_method = 'RK45' solver.snd_order = False solver.svd_err = 1.e-8 solver.svd_rank = max_tier solver.ps_method = 'unite' projector = np.zeros((max_tier, 1)) projector[0] = 1.0 logger = Logger(filename=fname, level='info').logger logger2 = Logger(filename=fname + '_norm', level='info').logger for n, (time, _) in enumerate(solver.propagator(steps=count, ode_inter=dt_unit, split=True)): #print('n = {}: '.format(n)) #for t in tensor_train: # print('{}: {}'.format(t, t.shape)) if n % callback_interval == 0: head = root.array for t in tensor_train[1:]: spf = Tensor.partial_product(t.array, 1, projector, 0) head = Tensor.partial_product(head, head.ndim - 1, spf, 0) rho = np.reshape(head, (4, -1))[:, 0] logger2.warning("{} {}".format(time, rho[0] + rho[3])) logger.info("{} {} {} {} {}".format(time, rho[0], rho[1], rho[2], rho[3])) return
def simple_heom(init_rho, n_indices): """Get rho_n from rho with the conversion: rho[i, j, n_0, ..., n_(k-1)] Parameters ---------- rho : np.ndarray """ n_state = get_n_state(init_rho) # Let: rho_n[0, :, :] = rho and rho_n[n, :, :] = 0 ext = np.zeros((np.prod(n_indices), )) ext[0] = 1.0 new_shape = [n_state, n_state] + list(n_indices) rho_n = np.reshape(np.tensordot(init_rho, ext, axes=0), new_shape) root = Tensor(name='root', array=rho_n, axis=None) d = len(n_indices) root[0] = (Leaf(name=d), 0) root[1] = (Leaf(name=d + 1), 0) for k in range(d): # +2: i and j root[k + 2] = (Leaf(name=k), 0) return root
def test_drude_train(): eta = 0.05 # reorganization energy (dimensionless) gamma_c = 0.05 # vibrational frequency (dimensionless) max_tier = 10 max_terms = 3 J = pyheom.Drudian(eta, gamma_c) corr_dict = pyheom.noise_decomposition( J, T=1, # temperature (dimensionless) type_LTC='PSD', n_PSD=max_terms - 1, type_PSD='N-1/N') s = corr_dict['s'].toarray() a = corr_dict['a'].toarray() gamma = corr_dict['gamma'].toarray() delta = 0 omega_1 = 0.05 omega_2 = 0.02 H = np.array([[omega_1, omega_2], [omega_2, 0]]) V = np.array([[0, 0], [0, 1]]) corr = Correlation(k_max=max_terms, beta=1) corr.symm_coeff = np.diag(s) corr.asymm_coeff = np.diag(a) corr.exp_coeff = np.diag(gamma) corr.delta_coeff = delta corr.print() heom = Hierachy([max_tier] * max_terms, H, V, corr) rho_0 = np.zeros((2, 2)) rho_0[0, 0] = 1 # TT HEOM tensor_train = tensor_train_template(rho_0, [max_tier] * max_terms, rank=max_tier) root = tensor_train[0] leaves_dict = {leaf.name: leaf for leaf in root.leaves()} all_terms = [] for term in heom.diff(): all_terms.append([(leaves_dict[str(fst)], snd) for fst, snd in term]) solver = MultiLayer(root, all_terms) solver.ode_method = 'RK45' solver.snd_order = False solver.max_ode_steps = 100000 # Define the obersevable of interest projector = np.zeros((max_tier, 1)) projector[0] = 1.0 dat = [] for n, (time, r) in enumerate(solver.propagator( steps=20000, ode_inter=0.01, )): head = root.array for t in tensor_train[1:]: spf = Tensor.partial_product(t.array, 1, projector, 0) head = Tensor.partial_product(head, head.ndim - 1, spf, 0) rho = np.reshape(head, (4, -1))[:, 0] flat_data = [time] + list(rho) dat.append(flat_data) print("Time {} | Pop_1 {} | Total {}".format(time, rho[0], rho[0] + rho[-1])) return np.array(dat)
def test_mctdh(fname=None): sys_leaf = Leaf(name='sys0') ph_leaves = [] for n, (omega, g) in enumerate(ph_parameters, 1): ph_leaf = Leaf(name='ph{}'.format(n)) ph_leaves.append(ph_leaf) def ph_spf(): t = Tensor(axis=0) t.name = 'spf' + str(hex(id(t)))[-4:] return t graph, root = huffman_tree(ph_leaves, obj_new=ph_spf, n_branch=2) try: graph[root].insert(0, sys_leaf) except KeyError: ph_leaf = root root = Tensor() graph[root] = [sys_leaf, ph_leaf] finally: root.name = 'wfn' root.axis = None stack = [root] while stack: parent = stack.pop() for child in graph[parent]: parent.link_to(parent.order, child, 0) if child in graph: stack.append(child) # Define the detailed parameters for the ML-MCTDH tree h_list = model.wfn_h_list(sys_leaf, ph_leaves) solver = MultiLayer(root, h_list) bond_dict = {} # Leaves for s, i, t, j in root.linkage_visitor(): if t.name.startswith('sys'): bond_dict[(s, i, t, j)] = 2 else: if isinstance(t, Leaf): bond_dict[(s, i, t, j)] = max_tier else: bond_dict[(s, i, t, j)] = rank_wfn solver.autocomplete(bond_dict) # set initial root array init_proj = np.array([[A, 0.0], [B, 0.0]]) / np.sqrt(A**2 + B**2) root_array = Tensor.partial_product(root.array, 0, init_proj, 1) root.set_array(root_array) solver = MultiLayer(root, h_list) solver.ode_method = 'RK45' solver.cmf_steps = solver.max_ode_steps # constant mean-field solver.ps_method = 'split' solver.svd_err = 1.0e-14 # Define the obersevable of interest logger = Logger(filename=prefix + fname, level='info').logger logger2 = Logger(filename=prefix + 'en_' + fname, level='info').logger for n, (time, r) in enumerate( solver.propagator( steps=count, ode_inter=dt_unit, split=True, )): if n % callback_interval == 0: t = Quantity(time).convert_to(unit='fs').value rho = r.partial_env(0, proper=False) logger.info("{} {} {} {} {}".format(t, rho[0, 0], rho[0, 1], rho[1, 0], rho[1, 1])) en = np.trace(rho @ model.h) logger2.info('{} {}'.format(t, en))
def ph_spf(): t = Tensor(axis=0) t.name = 'spf' + str(hex(id(t)))[-4:] return t
def ph_spf(): t = Tensor(axis=0, normalized=True) t.name = str(hex(id(t)))[-4:] return t
def ml(fname, e, v, primitive_dim, spf_dim, ph_parameters, steps=2000, ode_inter=0.1): logger = Logger(filename=fname).logger # define parameters sys_hamiltonian = np.array([[e, v], [v, -e]], dtype=DTYPE) projector = np.array([[1.0, 0.0], [0.0, -1.0]], dtype=DTYPE) # S in H_SB = S x B primitive_dim = primitive_dim spf_dim = spf_dim # Define all Leaf tensors and hamiltonian we need h_list = [] sys_leaf = Leaf(name='sys0') h_list.append([(sys_leaf, -1.0j * sys_hamiltonian)]) ph_parameters = ph_parameters leaves = [] for n, (omega, g) in enumerate(ph_parameters, 1): ph = Phonon(primitive_dim, omega) ph_leaf = Leaf(name='ph{}'.format(n)) leaves.append(ph_leaf) # hamiltonian ph part h_list.append([(ph_leaf, -1.0j * ph.hamiltonian)]) # e-ph part op = ph.annihilation_operator + ph.creation_operator h_list.append([(ph_leaf, g * op), (sys_leaf, -1.0j * projector)]) def ph_spf(): t = Tensor(axis=0, normalized=True) t.name = str(hex(id(t)))[-4:] return t graph, root = huffman_tree(leaves, obj_new=ph_spf, n_branch=2) try: graph[root].insert(0, sys_leaf) except KeyError: ph_leaf = root root = Tensor() graph[root] = [sys_leaf, ph_leaf] finally: root.name = 'wfn' root.axis = None root.normalized = True stack = [root] while stack: parent = stack.pop() for child in graph[parent]: parent.link_to(parent.order, child, 0) if child in graph: stack.append(child) logger.info(f"graph:{graph}") # Define the detailed parameters for the ML-MCTDH tree solver = MultiLayer(root, h_list) bond_dict = {} # Leaves for s, i, t, j in root.linkage_visitor(): if t.name and t.name.startswith('sys'): bond_dict[(s, i, t, j)] = 2 else: if isinstance(t, Leaf): bond_dict[(s, i, t, j)] = primitive_dim else: bond_dict[(s, i, t, j)] = spf_dim solver.autocomplete(bond_dict) logger.info(f"bond_dict:{bond_dict}") # set initial root array a, b = 1.0, 0 init_proj = np.array([[a, 0.0], [b, 0.0]]) / np.sqrt(a**2 + b**2) root_array = Tensor.partial_product(root.array, 0, init_proj, 1) root.set_array(root_array) # Define the computation details solver.ode_method = 'RK45' solver.snd_order = False solver.cmf_steps = 100 # Define the obersevable of interest logger.info('''# time rho00 rho01 rho10 rho11''') for time, _ in solver.propagator( steps=steps, ode_inter=ode_inter, split=True, ): t = time for tensor in root.visitor(axis=None): tensor.reset() tensor.normalize(forced=True) rho = root.partial_env(0, proper=False) for tensor in root.visitor(axis=None): tensor.reset() flat_data = [t] + list(np.reshape(rho, -1)) logger.info('{} {} {} {} {}'.format(*flat_data))
def sbm_ft(including_bath=False, snd=False): # Define parameters of the model. sbm = SpinBosonModel( including_bath=including_bath, e1=0., e2=Quantity(6500, 'cm-1').value_in_au, v=Quantity(500, 'cm-1').value_in_au, omega_list=[Quantity(2100, 'cm-1').value_in_au], lambda_list=([Quantity(750, 'cm-1').value_in_au]), dim_list=[10], stop=Quantity(10000, 'cm-1').value_in_au, n=32, dim=30, lambda_g=Quantity(2250, 'cm-1').value_in_au, omega_g=Quantity(500, 'cm-1').value_in_au, lambda_d=Quantity(1250, 'cm-1').value_in_au, omega_d=Quantity(50, 'cm-1').value_in_au, mu=Quantity(250, 'cm-1').value_in_au, tau=Quantity(3, 'fs').value_in_au, t_d=Quantity(6, 'fs').value_in_au, omega=Quantity(13000, 'cm-1').value_in_au, ) # Define the topological structure of the ML-MCTDH tree graph, root = { 'ROOT': ['ELECs', 'I0s'], 'ELECs': ['ELEC', "ELEC'"], 'I0s': ['I0', "I0'"], }, 'ROOT' root = Tensor.generate(graph, root) # Define the detailed parameters for the MC-MCTDH tree solver = MultiLayer(root, sbm.h_list, f_list=sbm.f_list, use_str_name=True) bond_dict = {} # Leaves for s, i, t, j in root.linkage_visitor(): if isinstance(t, Leaf): try: dim = sbm.dimensions[t.name] except KeyError: dim = sbm.dimensions[t.name[:-1]] bond_dict[(s, i, t, j)] = dim s_ax = s.axis p, p_ax = s[s_ax] bond_dict[(p, p_ax, s, s_ax)] = dim**2 if dim < 9 else 50 solver.autocomplete(bond_dict, max_entangled=True) # Define the computation details solver.settings(cmf_steps=10, ode_method='RK45', ps_method='split-unite', snd_order=snd) logging.info("Size of a wfn: {} complexes".format(len(root.vectorize()))) # Do the imaginary time propogation inv_tem = 1 / 1000 steps = 100 for time, _ in solver.propagator( steps=steps, ode_inter=Quantity(inv_tem / steps / 2, unit='K-1').value_in_au, split=True, imaginary=True): t = 2 * Quantity(time).convert_to(unit='K-1').value z = solver.relative_partition_function kelvin = 'inf' if abs(t) < 1.e-14 else 1.0 / t logging.warning('Temperatue: {} K; ln(Z/Z_0): {}'.format( kelvin, np.log(z))) # Define the obersevable of interest projector = np.array([[0., 0.], [0., 1.]]) op = [[[root[0][0][1][0], projector]]] # Do the real time propogation tp_list = [] steps = 100 root.is_normalized = True for time, _ in solver.propagator(steps=steps, ode_inter=Quantity(10 / steps, 'fs').value_in_au, split=True, imaginary=False): t = Quantity(time).convert_to(unit='fs').value p = solver.expection(op=op) logging.warning('Time: {:.2f} fs; P2: {}'.format(t, p)) tp_list.append((t, p)) return np.array(tp_list)
def sbm_zt(including_bath=False, split=False, snd=False): sbm_para_dict = { 'including_bath': including_bath, 'e1': 0., 'e2': Quantity(6500, 'cm-1').value_in_au, 'v': Quantity(500, 'cm-1').value_in_au, "omega_list": [ Quantity(2100, 'cm-1').value_in_au, Quantity(650, 'cm-1').value_in_au, Quantity(400, 'cm-1').value_in_au, Quantity(150, 'cm-1').value_in_au ], 'lambda_list': ([Quantity(750, 'cm-1').value_in_au] * 4), 'dim_list': [10, 14, 20, 30], 'stop': Quantity(3 * 2250, 'cm-1').value_in_au, 'n': 32, 'dim': 30, 'lambda_g': Quantity(2250, 'cm-1').value_in_au, 'omega_g': Quantity(500, 'cm-1').value_in_au, 'lambda_d': Quantity(1250, 'cm-1').value_in_au, 'omega_d': Quantity(50, 'cm-1').value_in_au, 'mu': Quantity(250, 'cm-1').value_in_au, 'tau': Quantity(30, 'fs').value_in_au, 't_d': Quantity(60, 'fs').value_in_au, 'omega': Quantity(13000, 'cm-1').value_in_au, } sbm = SpinBosonModel(**sbm_para_dict) # Define the topological structure of the ML-MCTDH tree graph, root = sbm.autograph(n_branch=2) root = Tensor.generate(graph, root) # Define the detailed parameters for the MC-MCTDH tree solver = MultiLayer(root, sbm.h_list, f_list=sbm.f_list, use_str_name=True) bond_dict = {} # Leaves for s, i, t, j in root.linkage_visitor(): if isinstance(t, Leaf): bond_dict[(s, i, t, j)] = sbm.dimensions[t.name] # ELEC part elec_r = root[0][0] for s, i, t, j in elec_r.linkage_visitor(leaf=False): raise NotImplementedError() # INNER part inner_r = root[1][0] if including_bath else root if including_bath: bond_dict[(root, 1, inner_r, 0)] = 60 for s, i, t, j in inner_r.linkage_visitor(leaf=False): bond_dict[(s, i, t, j)] = 50 # OUTER part if including_bath: outer_r = root[2][0] bond_dict[(root, 2, outer_r, 0)] = 20 for s, i, t, j in root[2][0].linkage_visitor(leaf=False): bond_dict[(s, i, t, j)] = 10 solver.autocomplete(bond_dict, max_entangled=False) # Define the computation details solver.settings( max_ode_steps=100, cmf_steps=(1 if split else 10), ode_method='RK45', ps_method='s', snd_order=snd, ) root.is_normalized = True # Define the obersevable of interest projector = np.array([[0., 0.], [0., 1.]]) op = [[[root[0][0], projector]]] t_p = [] for time, _ in solver.propagator( steps=20, ode_inter=Quantity(0.2, 'fs').value_in_au, split=split, move_energy=True, ): t, p = (Quantity(time).convert_to(unit='fs').value, solver.expection(op=op)) t_p.append((t, p)) logging.warning('Time: {:.2f} fs, P2: {}'.format(t, p)) if np.abs(p) > 0.5: break # Save the results msg = 'split' if split else 'origin' msg2 = 'snd' if snd else 'fst' np.savetxt('sbm-zt-{}-{}.dat'.format(msg, msg2), t_p)
def test_drude_tree(): eta = 0.05 # reorganization energy (dimensionless) gamma_c = 0.05 # vibrational frequency (dimensionless) max_tier = 10 max_terms = 3 J = pyheom.Drudian(eta, gamma_c) corr_dict = pyheom.noise_decomposition( J, T=1, # temperature (dimensionless) type_LTC='PSD', n_PSD=max_terms - 1, type_PSD='N-1/N') s = corr_dict['s'].toarray() a = corr_dict['a'].toarray() gamma = corr_dict['gamma'].toarray() delta = 0 omega_1 = 0.05 omega_2 = 0.02 H = np.array([[omega_1, omega_2], [omega_2, 0]]) V = np.array([[0, 0], [0, 1]]) corr = Correlation(k_max=max_terms, beta=1) corr.symm_coeff = np.diag(s) corr.asymm_coeff = np.diag(a) corr.exp_coeff = np.diag(gamma) corr.delta_coeff = delta corr.print() heom = Hierachy([max_tier] * max_terms, H, V, corr) rho_0 = np.zeros((2, 2)) rho_0[0, 0] = 1 root = tensor_tree_template(rho_0, [max_tier] * max_terms, rank=max_tier // 2) solver = MultiLayer(root, heom.diff(), use_str_name=True) solver.ode_method = 'RK45' solver.snd_order = False solver.max_ode_steps = 100000 dat = [] for n, (time, r) in enumerate(solver.propagator( steps=20000, ode_inter=0.01, )): if n % 100 == 0: head = root.array print(head.shape) rho = Tensor.partial_product(r.array, 0, r[0][0].array, 0) rho = np.reshape(rho, (-1, 4)) flat_data = [time] + list(rho[0]) dat.append(flat_data) print("Time: {} | Pop 0: {} | Total: {}".format( flat_data[0], flat_data[1], flat_data[1] + flat_data[-1])) return np.array(dat)
def sbm_zt(including_bath=False, split=False, snd=False): omega = 13000 sbm = SpinBosonModel( including_bath=including_bath, e1=0., e2=Quantity(6500, 'cm-1').value_in_au, v=Quantity(500, 'cm-1').value_in_au, omega_list=[ Quantity(2100, 'cm-1').value_in_au, Quantity(650, 'cm-1').value_in_au, Quantity(400, 'cm-1').value_in_au, Quantity(150, 'cm-1').value_in_au ], lambda_list=([Quantity(750, 'cm-1').value_in_au] * 4), dim_list=[10, 14, 20, 30], stop=Quantity(3 * 2250, 'cm-1').value_in_au, n=32, dim=30, lambda_g=Quantity(2250, 'cm-1').value_in_au, omega_g=Quantity(500, 'cm-1').value_in_au, lambda_d=Quantity(1250, 'cm-1').value_in_au, omega_d=Quantity(50, 'cm-1').value_in_au, mu=Quantity(250, 'cm-1').value_in_au, tau=Quantity(30, 'fs').value_in_au, t_d=Quantity(60, 'fs').value_in_au, omega=Quantity(omega, 'cm-1').value_in_au, ) # Define the topological structure of the ML-MCTDH tree graph, root = sbm.autograph(n_branch=2) root = Tensor.generate(graph, root) # Define the detailed parameters for the MC-MCTDH tree solver = MultiLayer(root, sbm.h_list, f_list=sbm.f_list, use_str_name=True) bond_dict = {} # Leaves for s, i, t, j in root.linkage_visitor(): if isinstance(t, Leaf): bond_dict[(s, i, t, j)] = sbm.dimensions[t.name] # ELEC part elec_r = root[0][0] for s, i, t, j in elec_r.linkage_visitor(leaf=False): raise NotImplementedError() # INNER part inner_r = root[1][0] if including_bath else root if including_bath: bond_dict[(root, 1, inner_r, 0)] = 60 for s, i, t, j in inner_r.linkage_visitor(leaf=False): bond_dict[(s, i, t, j)] = 50 # OUTER part if including_bath: outer_r = root[2][0] bond_dict[(root, 2, outer_r, 0)] = 20 for s, i, t, j in root[2][0].linkage_visitor(leaf=False): bond_dict[(s, i, t, j)] = 10 solver.autocomplete(bond_dict, max_entangled=False) # Define the computation details solver.settings( max_ode_steps=100, cmf_steps=(1 if split else 10), ode_method='RK45', ps_method='s', snd_order=snd, ) print("Size of a wfn: {} complexes".format(len(root.vectorize()))) root.is_normalized = True # Define the obersevable of interest projector = np.array([[0., 0.], [0., 1.]]) op = [[[root[0][0], projector]]] t_p = [] for time, _ in solver.propagator( steps=20, ode_inter=Quantity(0.2, 'fs').value_in_au, split=split, move_energy=True, ): t, p = (Quantity(time).convert_to(unit='fs').value, solver.expection(op=op)) t_p.append((t, p)) logging.warning('Time: {:.2f} fs, P2: {}'.format(t, p)) if np.abs(p) > 0.5: break return np.array(t_p)
def ml(dof, e, v, eta, cutoff, scale=5, loc=None, steps=2000, ode_inter=0.1): f_ = 'dof{}-eta{}.log'.format(dof, eta) logger = Logger(filename=f_).logger # define parameters e = Quantity(e, 'cm-1').value_in_au v = Quantity(v, 'cm-1').value_in_au eta = Quantity(eta, 'cm-1').value_in_au omega0 = Quantity(cutoff, 'cm-1').value_in_au sys_hamiltonian = np.array([[-e / 2.0, v], [v, e / 2.0]], dtype=DTYPE) projector = np.array([[0.0, 0.0], [0.0, 1.0]], dtype=DTYPE) # S in H_SB = S x B primitive_dim = 100 spf_dim = 20 # Spectrum function def spec_func(omega): if 0 < omega < omega0: return eta else: return 0.0 # Define all Leaf tensors and hamiltonian we need h_list = [] sys_leaf = Leaf(name='sys0') h_list.append([(sys_leaf, -1.0j * sys_hamiltonian)]) ph_parameters = linear_discretization(spec_func, omega0, dof) if loc is not None: adj_pair = (ph_parameters[loc][0], ph_parameters[loc][1] * scale) ph_parameters[loc] = adj_pair leaves = [] for n, (omega, g) in enumerate(ph_parameters, 1): ph = Phonon(primitive_dim, omega) ph_leaf = Leaf(name='ph{}'.format(n)) leaves.append(ph_leaf) # hamiltonian ph part h_list.append([(ph_leaf, -1.0j * ph.hamiltonian)]) # e-ph part op = ph.annihilation_operator + ph.creation_operator h_list.append([(ph_leaf, g * op), (sys_leaf, -1.0j * projector)]) def ph_spf(n=0): n += 1 return Tensor(name='spf{}'.format(n), axis=0) graph, root = huffman_tree(leaves, obj_new=ph_spf, n_branch=2) try: graph[root].insert(0, sys_leaf) except KeyError: ph_leaf = root root = Tensor() graph[root] = [sys_leaf, ph_leaf] finally: root.name = 'wfn' root.axis = None print(graph) stack = [root] while stack: parent = stack.pop() for child in graph[parent]: parent.link_to(parent.order, child, 0) if child in graph: stack.append(child) # Define the detailed parameters for the ML-MCTDH tree solver = MultiLayer(root, h_list) bond_dict = {} # Leaves for s, i, t, j in root.linkage_visitor(): if t.name.startswith('sys'): bond_dict[(s, i, t, j)] = 2 else: if isinstance(t, Leaf): bond_dict[(s, i, t, j)] = primitive_dim else: bond_dict[(s, i, t, j)] = spf_dim solver.autocomplete(bond_dict) # set initial root array a, b = 1.0, 1.0 init_proj = np.array([[a, 0.0], [b, 0.0]]) / np.sqrt(a**2 + b**2) root_array = Tensor.partial_product(root.array, 0, init_proj, 1) root.set_array(root_array) # Define the computation details solver.ode_method = 'RK45' solver.snd_order = True solver.cmf_steps = 1 root.is_normalized = True # Define the obersevable of interest logger.info('''# time/fs rho00 rho01 rho10 rho11''') for time, _ in solver.propagator( steps=steps, ode_inter=Quantity(ode_inter, 'fs').value_in_au, split=True, ): t = Quantity(time).convert_to(unit='fs').value for tensor in root.visitor(axis=None): tensor.reset() rho = root.partial_env(0, proper=False) for tensor in root.visitor(axis=None): tensor.reset() flat_data = [t] + list(np.reshape(rho, -1)) logger.info('{} {} {} {} {}'.format(*flat_data))
def ph_spf(n=0): n += 1 return Tensor(name='spf{}'.format(n), axis=0)