Ejemplo n.º 1
0
def tensor_train_template(init_rho, pb_index, rank=1):
    """Get rho_n from rho in a Tensor Train representation.

    Parameters
    ----------
    rho : np.ndarray
    """
    n_vec = np.zeros((rank, ), dtype=DTYPE)
    n_vec[0] = 1.0
    root_array = np.tensordot(init_rho, n_vec, axes=0)

    root = Tensor(name='root', array=root_array, axis=None)
    max_terms = len(pb_index)

    # +2: i and j
    root[0] = (Leaf(name=max_terms), 0)
    root[1] = (Leaf(name=max_terms + 1), 0)

    for i in pb_index:
        assert rank <= i

    train = [root]
    for k in range(max_terms):
        if k < max_terms - 1:
            array = np.eye(rank, pb_index[k] * rank)
            array = np.reshape(array, (rank, -1, rank))
        else:
            array = np.eye(rank, pb_index[k])
        spf = Tensor(name=k, array=array, axis=0)
        l = Leaf(name=k)
        spf[0] = (train[-1], 2)
        spf[1] = (l, 0)
        train.append(spf)

    return root
Ejemplo n.º 2
0
def test_train(fname=None):
    # Type settings
    corr = Correlation(k_max=max_terms)
    corr.symm_coeff = np.diag(corr_dict['s'].toarray())
    corr.asymm_coeff = np.diag(corr_dict['a'].toarray())
    corr.exp_coeff = np.diag(corr_dict['gamma'].toarray())
    corr.delta_coeff = 0.0  # delta_coeff
    corr.print()

    n_dims = [max_tier] * max_terms
    heom = Hierachy(n_dims, H, V, corr)

    # Adopt TT
    tensor_train = tensor_train_template(rho_0, n_dims)
    root = tensor_train[0]
    leaves_dict = {leaf.name: leaf for leaf in root.leaves()}
    all_terms = []
    for term in heom.diff():
        all_terms.append([(leaves_dict[str(fst)], snd) for fst, snd in term])

    solver = MultiLayer(root, all_terms)
    #solver = ProjectorSplitting(root, all_terms)
    solver.ode_method = 'RK45'
    solver.snd_order = False
    solver.atol = 1.e-7
    solver.rtol = 1.e-7
    solver.ps_method = 'split-unite'

    projector = np.zeros((max_tier, 1))
    projector[0] = 1.0
    logger = Logger(filename=fname, level='info').logger
    for n, (time, _) in enumerate(
            solver.propagator(steps=count, ode_inter=dt_unit, split=False)):
        if n % callback_interval == 0:
            head = root.array
            for t in tensor_train[1:]:
                spf = Tensor.partial_product(t.array, 1, projector, 0)
                head = Tensor.partial_product(head, head.ndim - 1, spf, 0)

            rho = np.reshape(head, (4, -1))[:, 0]
            logger.info("{} {} {} {} {}".format(time, rho[0], rho[1], rho[2],
                                                rho[3]))
    return
Ejemplo n.º 3
0
def tensor_tree_template(init_rho, pb_index, rank=1, nbranch=2):
    """Get rho_n from rho in a Tensor Tree representation.

    Parameters
    ----------
    rho : np.ndarray
    """
    n_state = get_n_state(init_rho)
    n_vec = np.zeros((rank, ), dtype=DTYPE)
    n_vec[0] = 1.0
    root_array = np.tensordot(init_rho, n_vec, axes=0)
    max_terms = len(pb_index)

    for i in pb_index:
        assert rank <= i

    # generate leaves
    leaves = list(range(max_terms))

    class new_spf(object):
        counter = 0
        prefix = 'SPF'

        def __new__(cls):
            name = cls.prefix + str(cls.counter)
            cls.counter += 1
            return name

    importance = list(reversed(range(len(pb_index))))
    graph, spf_root = huffman_tree(
        leaves,
        importances=importance,
        obj_new=new_spf,
        n_branch=nbranch,
    )

    root = 'root'
    graph[root] = [str(max_terms), str(max_terms + 1), spf_root]

    print(graph, root)

    root = Tensor.generate(graph, root)
    root.set_array(root_array)
    bond_dict = {}
    # Leaves
    l_range = list(pb_index) + [n_state] * 2
    for s, i, t, j in root.linkage_visitor():
        if isinstance(t, Leaf):
            bond_dict[(s, i, t, j)] = l_range[int(t.name)]
        else:
            bond_dict[(s, i, t, j)] = rank
    autocomplete(root, bond_dict)

    return root
Ejemplo n.º 4
0
def test_train(fname=None):
    # HEOM metas
    corr.print()

    n_dims = [max_tier] * max_terms
    heom = Hierachy(n_dims, H, V, corr)

    # 2-site TT
    tensor_train = tensor_train_template(rho_0, n_dims, rank=1)
    root = tensor_train[0]
    leaves_dict = {leaf.name: leaf for leaf in root.leaves()}
    all_terms = []
    for term in heom.diff():
        all_terms.append([(leaves_dict[str(fst)], snd) for fst, snd in term])

    solver = MultiLayer(root, all_terms)
    solver.ode_method = 'RK45'
    solver.snd_order = False
    solver.svd_err = 1.e-8
    solver.svd_rank = max_tier
    solver.ps_method = 'unite'

    projector = np.zeros((max_tier, 1))
    projector[0] = 1.0
    logger = Logger(filename=fname, level='info').logger
    logger2 = Logger(filename=fname + '_norm', level='info').logger
    for n, (time, _) in enumerate(solver.propagator(steps=count, ode_inter=dt_unit, split=True)):
        #print('n = {}: '.format(n))
        #for t in tensor_train:
        #    print('{}: {}'.format(t, t.shape))
        if n % callback_interval == 0:
            head = root.array
            for t in tensor_train[1:]:
                spf = Tensor.partial_product(t.array, 1, projector, 0)
                head = Tensor.partial_product(head, head.ndim - 1, spf, 0)

            rho = np.reshape(head, (4, -1))[:, 0]
            logger2.warning("{} {}".format(time, rho[0] + rho[3]))
            logger.info("{} {} {} {} {}".format(time, rho[0], rho[1], rho[2], rho[3]))
    return
Ejemplo n.º 5
0
def simple_heom(init_rho, n_indices):
    """Get rho_n from rho with the conversion:
        rho[i, j, n_0, ..., n_(k-1)]

    Parameters
    ----------
    rho : np.ndarray
    """
    n_state = get_n_state(init_rho)
    # Let: rho_n[0, :, :] = rho and rho_n[n, :, :] = 0
    ext = np.zeros((np.prod(n_indices), ))
    ext[0] = 1.0
    new_shape = [n_state, n_state] + list(n_indices)
    rho_n = np.reshape(np.tensordot(init_rho, ext, axes=0), new_shape)

    root = Tensor(name='root', array=rho_n, axis=None)
    d = len(n_indices)
    root[0] = (Leaf(name=d), 0)
    root[1] = (Leaf(name=d + 1), 0)
    for k in range(d):  # +2: i and j
        root[k + 2] = (Leaf(name=k), 0)

    return root
Ejemplo n.º 6
0
def test_drude_train():
    eta = 0.05  # reorganization energy (dimensionless)
    gamma_c = 0.05  # vibrational frequency (dimensionless)
    max_tier = 10

    max_terms = 3
    J = pyheom.Drudian(eta, gamma_c)
    corr_dict = pyheom.noise_decomposition(
        J,
        T=1,  # temperature (dimensionless)
        type_LTC='PSD',
        n_PSD=max_terms - 1,
        type_PSD='N-1/N')

    s = corr_dict['s'].toarray()
    a = corr_dict['a'].toarray()
    gamma = corr_dict['gamma'].toarray()
    delta = 0

    omega_1 = 0.05
    omega_2 = 0.02
    H = np.array([[omega_1, omega_2], [omega_2, 0]])

    V = np.array([[0, 0], [0, 1]])

    corr = Correlation(k_max=max_terms, beta=1)
    corr.symm_coeff = np.diag(s)
    corr.asymm_coeff = np.diag(a)
    corr.exp_coeff = np.diag(gamma)
    corr.delta_coeff = delta
    corr.print()
    heom = Hierachy([max_tier] * max_terms, H, V, corr)

    rho_0 = np.zeros((2, 2))
    rho_0[0, 0] = 1

    # TT HEOM
    tensor_train = tensor_train_template(rho_0, [max_tier] * max_terms,
                                         rank=max_tier)
    root = tensor_train[0]

    leaves_dict = {leaf.name: leaf for leaf in root.leaves()}
    all_terms = []
    for term in heom.diff():
        all_terms.append([(leaves_dict[str(fst)], snd) for fst, snd in term])

    solver = MultiLayer(root, all_terms)
    solver.ode_method = 'RK45'
    solver.snd_order = False
    solver.max_ode_steps = 100000

    # Define the obersevable of interest
    projector = np.zeros((max_tier, 1))
    projector[0] = 1.0

    dat = []
    for n, (time,
            r) in enumerate(solver.propagator(
                steps=20000,
                ode_inter=0.01,
            )):
        head = root.array
        for t in tensor_train[1:]:
            spf = Tensor.partial_product(t.array, 1, projector, 0)
            head = Tensor.partial_product(head, head.ndim - 1, spf, 0)

        rho = np.reshape(head, (4, -1))[:, 0]
        flat_data = [time] + list(rho)
        dat.append(flat_data)
        print("Time {} | Pop_1 {} | Total {}".format(time, rho[0],
                                                     rho[0] + rho[-1]))

    return np.array(dat)
Ejemplo n.º 7
0
def test_mctdh(fname=None):
    sys_leaf = Leaf(name='sys0')

    ph_leaves = []
    for n, (omega, g) in enumerate(ph_parameters, 1):
        ph_leaf = Leaf(name='ph{}'.format(n))
        ph_leaves.append(ph_leaf)

    def ph_spf():
        t = Tensor(axis=0)
        t.name = 'spf' + str(hex(id(t)))[-4:]
        return t

    graph, root = huffman_tree(ph_leaves, obj_new=ph_spf, n_branch=2)
    try:
        graph[root].insert(0, sys_leaf)
    except KeyError:
        ph_leaf = root
        root = Tensor()
        graph[root] = [sys_leaf, ph_leaf]
    finally:
        root.name = 'wfn'
        root.axis = None

    stack = [root]
    while stack:
        parent = stack.pop()
        for child in graph[parent]:
            parent.link_to(parent.order, child, 0)
            if child in graph:
                stack.append(child)

    # Define the detailed parameters for the ML-MCTDH tree
    h_list = model.wfn_h_list(sys_leaf, ph_leaves)
    solver = MultiLayer(root, h_list)
    bond_dict = {}
    # Leaves
    for s, i, t, j in root.linkage_visitor():
        if t.name.startswith('sys'):
            bond_dict[(s, i, t, j)] = 2
        else:
            if isinstance(t, Leaf):
                bond_dict[(s, i, t, j)] = max_tier
            else:
                bond_dict[(s, i, t, j)] = rank_wfn
    solver.autocomplete(bond_dict)
    # set initial root array
    init_proj = np.array([[A, 0.0], [B, 0.0]]) / np.sqrt(A**2 + B**2)
    root_array = Tensor.partial_product(root.array, 0, init_proj, 1)
    root.set_array(root_array)

    solver = MultiLayer(root, h_list)
    solver.ode_method = 'RK45'
    solver.cmf_steps = solver.max_ode_steps  # constant mean-field
    solver.ps_method = 'split'
    solver.svd_err = 1.0e-14

    # Define the obersevable of interest
    logger = Logger(filename=prefix + fname, level='info').logger
    logger2 = Logger(filename=prefix + 'en_' + fname, level='info').logger
    for n, (time, r) in enumerate(
            solver.propagator(
                steps=count,
                ode_inter=dt_unit,
                split=True,
            )):
        if n % callback_interval == 0:
            t = Quantity(time).convert_to(unit='fs').value
            rho = r.partial_env(0, proper=False)
            logger.info("{}    {} {} {} {}".format(t, rho[0, 0], rho[0, 1],
                                                   rho[1, 0], rho[1, 1]))
            en = np.trace(rho @ model.h)
            logger2.info('{}    {}'.format(t, en))
Ejemplo n.º 8
0
 def ph_spf():
     t = Tensor(axis=0)
     t.name = 'spf' + str(hex(id(t)))[-4:]
     return t
Ejemplo n.º 9
0
 def ph_spf():
     t = Tensor(axis=0, normalized=True)
     t.name = str(hex(id(t)))[-4:]
     return t
Ejemplo n.º 10
0
def ml(fname,
       e,
       v,
       primitive_dim,
       spf_dim,
       ph_parameters,
       steps=2000,
       ode_inter=0.1):
    logger = Logger(filename=fname).logger

    # define parameters
    sys_hamiltonian = np.array([[e, v], [v, -e]], dtype=DTYPE)
    projector = np.array([[1.0, 0.0], [0.0, -1.0]],
                         dtype=DTYPE)  # S in H_SB = S x B

    primitive_dim = primitive_dim
    spf_dim = spf_dim

    # Define all Leaf tensors and hamiltonian we need
    h_list = []
    sys_leaf = Leaf(name='sys0')
    h_list.append([(sys_leaf, -1.0j * sys_hamiltonian)])

    ph_parameters = ph_parameters

    leaves = []
    for n, (omega, g) in enumerate(ph_parameters, 1):
        ph = Phonon(primitive_dim, omega)
        ph_leaf = Leaf(name='ph{}'.format(n))
        leaves.append(ph_leaf)
        # hamiltonian ph part
        h_list.append([(ph_leaf, -1.0j * ph.hamiltonian)])
        # e-ph part
        op = ph.annihilation_operator + ph.creation_operator
        h_list.append([(ph_leaf, g * op), (sys_leaf, -1.0j * projector)])

    def ph_spf():
        t = Tensor(axis=0, normalized=True)
        t.name = str(hex(id(t)))[-4:]
        return t

    graph, root = huffman_tree(leaves, obj_new=ph_spf, n_branch=2)
    try:
        graph[root].insert(0, sys_leaf)
    except KeyError:
        ph_leaf = root
        root = Tensor()
        graph[root] = [sys_leaf, ph_leaf]
    finally:
        root.name = 'wfn'
        root.axis = None
        root.normalized = True
    stack = [root]
    while stack:
        parent = stack.pop()
        for child in graph[parent]:
            parent.link_to(parent.order, child, 0)
            if child in graph:
                stack.append(child)
    logger.info(f"graph:{graph}")

    # Define the detailed parameters for the ML-MCTDH tree
    solver = MultiLayer(root, h_list)
    bond_dict = {}
    # Leaves
    for s, i, t, j in root.linkage_visitor():
        if t.name and t.name.startswith('sys'):
            bond_dict[(s, i, t, j)] = 2
        else:
            if isinstance(t, Leaf):
                bond_dict[(s, i, t, j)] = primitive_dim
            else:
                bond_dict[(s, i, t, j)] = spf_dim
    solver.autocomplete(bond_dict)
    logger.info(f"bond_dict:{bond_dict}")
    # set initial root array
    a, b = 1.0, 0
    init_proj = np.array([[a, 0.0], [b, 0.0]]) / np.sqrt(a**2 + b**2)
    root_array = Tensor.partial_product(root.array, 0, init_proj, 1)
    root.set_array(root_array)

    # Define the computation details
    solver.ode_method = 'RK45'
    solver.snd_order = False
    solver.cmf_steps = 100
    # Define the obersevable of interest
    logger.info('''# time    rho00  rho01  rho10  rho11''')
    for time, _ in solver.propagator(
            steps=steps,
            ode_inter=ode_inter,
            split=True,
    ):
        t = time
        for tensor in root.visitor(axis=None):
            tensor.reset()
            tensor.normalize(forced=True)
        rho = root.partial_env(0, proper=False)
        for tensor in root.visitor(axis=None):
            tensor.reset()
        flat_data = [t] + list(np.reshape(rho, -1))
        logger.info('{}    {}  {}  {}  {}'.format(*flat_data))
Ejemplo n.º 11
0
def sbm_ft(including_bath=False, snd=False):
    # Define parameters of the model.
    sbm = SpinBosonModel(
        including_bath=including_bath,
        e1=0.,
        e2=Quantity(6500, 'cm-1').value_in_au,
        v=Quantity(500, 'cm-1').value_in_au,
        omega_list=[Quantity(2100, 'cm-1').value_in_au],
        lambda_list=([Quantity(750, 'cm-1').value_in_au]),
        dim_list=[10],
        stop=Quantity(10000, 'cm-1').value_in_au,
        n=32,
        dim=30,
        lambda_g=Quantity(2250, 'cm-1').value_in_au,
        omega_g=Quantity(500, 'cm-1').value_in_au,
        lambda_d=Quantity(1250, 'cm-1').value_in_au,
        omega_d=Quantity(50, 'cm-1').value_in_au,
        mu=Quantity(250, 'cm-1').value_in_au,
        tau=Quantity(3, 'fs').value_in_au,
        t_d=Quantity(6, 'fs').value_in_au,
        omega=Quantity(13000, 'cm-1').value_in_au,
    )

    # Define the topological structure of the ML-MCTDH tree
    graph, root = {
        'ROOT': ['ELECs', 'I0s'],
        'ELECs': ['ELEC', "ELEC'"],
        'I0s': ['I0', "I0'"],
    }, 'ROOT'
    root = Tensor.generate(graph, root)

    # Define the detailed parameters for the MC-MCTDH tree
    solver = MultiLayer(root, sbm.h_list, f_list=sbm.f_list, use_str_name=True)
    bond_dict = {}
    # Leaves
    for s, i, t, j in root.linkage_visitor():
        if isinstance(t, Leaf):
            try:
                dim = sbm.dimensions[t.name]
            except KeyError:
                dim = sbm.dimensions[t.name[:-1]]
            bond_dict[(s, i, t, j)] = dim
            s_ax = s.axis
            p, p_ax = s[s_ax]
            bond_dict[(p, p_ax, s, s_ax)] = dim**2 if dim < 9 else 50
    solver.autocomplete(bond_dict, max_entangled=True)

    # Define the computation details
    solver.settings(cmf_steps=10,
                    ode_method='RK45',
                    ps_method='split-unite',
                    snd_order=snd)
    logging.info("Size of a wfn: {} complexes".format(len(root.vectorize())))

    # Do the imaginary time propogation
    inv_tem = 1 / 1000
    steps = 100
    for time, _ in solver.propagator(
            steps=steps,
            ode_inter=Quantity(inv_tem / steps / 2, unit='K-1').value_in_au,
            split=True,
            imaginary=True):
        t = 2 * Quantity(time).convert_to(unit='K-1').value
        z = solver.relative_partition_function
        kelvin = 'inf' if abs(t) < 1.e-14 else 1.0 / t
        logging.warning('Temperatue: {} K; ln(Z/Z_0): {}'.format(
            kelvin, np.log(z)))

    # Define the obersevable of interest
    projector = np.array([[0., 0.], [0., 1.]])
    op = [[[root[0][0][1][0], projector]]]

    # Do the real time propogation
    tp_list = []
    steps = 100
    root.is_normalized = True
    for time, _ in solver.propagator(steps=steps,
                                     ode_inter=Quantity(10 / steps,
                                                        'fs').value_in_au,
                                     split=True,
                                     imaginary=False):
        t = Quantity(time).convert_to(unit='fs').value
        p = solver.expection(op=op)
        logging.warning('Time: {:.2f} fs; P2: {}'.format(t, p))
        tp_list.append((t, p))
    return np.array(tp_list)
Ejemplo n.º 12
0
def sbm_zt(including_bath=False, split=False, snd=False):
    sbm_para_dict = {
        'including_bath':
        including_bath,
        'e1':
        0.,
        'e2':
        Quantity(6500, 'cm-1').value_in_au,
        'v':
        Quantity(500, 'cm-1').value_in_au,
        "omega_list": [
            Quantity(2100, 'cm-1').value_in_au,
            Quantity(650, 'cm-1').value_in_au,
            Quantity(400, 'cm-1').value_in_au,
            Quantity(150, 'cm-1').value_in_au
        ],
        'lambda_list': ([Quantity(750, 'cm-1').value_in_au] * 4),
        'dim_list': [10, 14, 20, 30],
        'stop':
        Quantity(3 * 2250, 'cm-1').value_in_au,
        'n':
        32,
        'dim':
        30,
        'lambda_g':
        Quantity(2250, 'cm-1').value_in_au,
        'omega_g':
        Quantity(500, 'cm-1').value_in_au,
        'lambda_d':
        Quantity(1250, 'cm-1').value_in_au,
        'omega_d':
        Quantity(50, 'cm-1').value_in_au,
        'mu':
        Quantity(250, 'cm-1').value_in_au,
        'tau':
        Quantity(30, 'fs').value_in_au,
        't_d':
        Quantity(60, 'fs').value_in_au,
        'omega':
        Quantity(13000, 'cm-1').value_in_au,
    }
    sbm = SpinBosonModel(**sbm_para_dict)

    # Define the topological structure of the ML-MCTDH tree
    graph, root = sbm.autograph(n_branch=2)
    root = Tensor.generate(graph, root)

    # Define the detailed parameters for the MC-MCTDH tree
    solver = MultiLayer(root, sbm.h_list, f_list=sbm.f_list, use_str_name=True)
    bond_dict = {}
    # Leaves
    for s, i, t, j in root.linkage_visitor():
        if isinstance(t, Leaf):
            bond_dict[(s, i, t, j)] = sbm.dimensions[t.name]
    # ELEC part
    elec_r = root[0][0]
    for s, i, t, j in elec_r.linkage_visitor(leaf=False):
        raise NotImplementedError()
    # INNER part
    inner_r = root[1][0] if including_bath else root
    if including_bath:
        bond_dict[(root, 1, inner_r, 0)] = 60
    for s, i, t, j in inner_r.linkage_visitor(leaf=False):
        bond_dict[(s, i, t, j)] = 50
    # OUTER part
    if including_bath:
        outer_r = root[2][0]
        bond_dict[(root, 2, outer_r, 0)] = 20
        for s, i, t, j in root[2][0].linkage_visitor(leaf=False):
            bond_dict[(s, i, t, j)] = 10
    solver.autocomplete(bond_dict, max_entangled=False)

    # Define the computation details
    solver.settings(
        max_ode_steps=100,
        cmf_steps=(1 if split else 10),
        ode_method='RK45',
        ps_method='s',
        snd_order=snd,
    )
    root.is_normalized = True
    # Define the obersevable of interest
    projector = np.array([[0., 0.], [0., 1.]])
    op = [[[root[0][0], projector]]]
    t_p = []
    for time, _ in solver.propagator(
            steps=20,
            ode_inter=Quantity(0.2, 'fs').value_in_au,
            split=split,
            move_energy=True,
    ):
        t, p = (Quantity(time).convert_to(unit='fs').value,
                solver.expection(op=op))
        t_p.append((t, p))
        logging.warning('Time: {:.2f} fs, P2: {}'.format(t, p))
        if np.abs(p) > 0.5:
            break

    # Save the results
    msg = 'split' if split else 'origin'
    msg2 = 'snd' if snd else 'fst'
    np.savetxt('sbm-zt-{}-{}.dat'.format(msg, msg2), t_p)
Ejemplo n.º 13
0
def test_drude_tree():
    eta = 0.05  # reorganization energy (dimensionless)
    gamma_c = 0.05  # vibrational frequency (dimensionless)
    max_tier = 10

    max_terms = 3
    J = pyheom.Drudian(eta, gamma_c)
    corr_dict = pyheom.noise_decomposition(
        J,
        T=1,  # temperature (dimensionless)
        type_LTC='PSD',
        n_PSD=max_terms - 1,
        type_PSD='N-1/N')

    s = corr_dict['s'].toarray()
    a = corr_dict['a'].toarray()
    gamma = corr_dict['gamma'].toarray()
    delta = 0

    omega_1 = 0.05
    omega_2 = 0.02
    H = np.array([[omega_1, omega_2], [omega_2, 0]])

    V = np.array([[0, 0], [0, 1]])

    corr = Correlation(k_max=max_terms, beta=1)
    corr.symm_coeff = np.diag(s)
    corr.asymm_coeff = np.diag(a)
    corr.exp_coeff = np.diag(gamma)
    corr.delta_coeff = delta
    corr.print()
    heom = Hierachy([max_tier] * max_terms, H, V, corr)

    rho_0 = np.zeros((2, 2))
    rho_0[0, 0] = 1

    root = tensor_tree_template(rho_0, [max_tier] * max_terms,
                                rank=max_tier // 2)

    solver = MultiLayer(root, heom.diff(), use_str_name=True)
    solver.ode_method = 'RK45'
    solver.snd_order = False
    solver.max_ode_steps = 100000

    dat = []
    for n, (time,
            r) in enumerate(solver.propagator(
                steps=20000,
                ode_inter=0.01,
            )):
        if n % 100 == 0:

            head = root.array

            print(head.shape)

            rho = Tensor.partial_product(r.array, 0, r[0][0].array, 0)
            rho = np.reshape(rho, (-1, 4))

            flat_data = [time] + list(rho[0])
            dat.append(flat_data)
            print("Time: {} | Pop 0: {} | Total: {}".format(
                flat_data[0], flat_data[1], flat_data[1] + flat_data[-1]))

    return np.array(dat)
Ejemplo n.º 14
0
def sbm_zt(including_bath=False, split=False, snd=False):
    omega = 13000
    sbm = SpinBosonModel(
        including_bath=including_bath,
        e1=0.,
        e2=Quantity(6500, 'cm-1').value_in_au,
        v=Quantity(500, 'cm-1').value_in_au,
        omega_list=[
            Quantity(2100, 'cm-1').value_in_au,
            Quantity(650, 'cm-1').value_in_au,
            Quantity(400, 'cm-1').value_in_au,
            Quantity(150, 'cm-1').value_in_au
        ],
        lambda_list=([Quantity(750, 'cm-1').value_in_au] * 4),
        dim_list=[10, 14, 20, 30],
        stop=Quantity(3 * 2250, 'cm-1').value_in_au,
        n=32,
        dim=30,
        lambda_g=Quantity(2250, 'cm-1').value_in_au,
        omega_g=Quantity(500, 'cm-1').value_in_au,
        lambda_d=Quantity(1250, 'cm-1').value_in_au,
        omega_d=Quantity(50, 'cm-1').value_in_au,
        mu=Quantity(250, 'cm-1').value_in_au,
        tau=Quantity(30, 'fs').value_in_au,
        t_d=Quantity(60, 'fs').value_in_au,
        omega=Quantity(omega, 'cm-1').value_in_au,
    )

    # Define the topological structure of the ML-MCTDH tree
    graph, root = sbm.autograph(n_branch=2)
    root = Tensor.generate(graph, root)

    # Define the detailed parameters for the MC-MCTDH tree
    solver = MultiLayer(root, sbm.h_list, f_list=sbm.f_list, use_str_name=True)
    bond_dict = {}
    # Leaves
    for s, i, t, j in root.linkage_visitor():
        if isinstance(t, Leaf):
            bond_dict[(s, i, t, j)] = sbm.dimensions[t.name]
    # ELEC part
    elec_r = root[0][0]
    for s, i, t, j in elec_r.linkage_visitor(leaf=False):
        raise NotImplementedError()
    # INNER part
    inner_r = root[1][0] if including_bath else root
    if including_bath:
        bond_dict[(root, 1, inner_r, 0)] = 60
    for s, i, t, j in inner_r.linkage_visitor(leaf=False):
        bond_dict[(s, i, t, j)] = 50
    # OUTER part
    if including_bath:
        outer_r = root[2][0]
        bond_dict[(root, 2, outer_r, 0)] = 20
        for s, i, t, j in root[2][0].linkage_visitor(leaf=False):
            bond_dict[(s, i, t, j)] = 10
    solver.autocomplete(bond_dict, max_entangled=False)

    # Define the computation details
    solver.settings(
        max_ode_steps=100,
        cmf_steps=(1 if split else 10),
        ode_method='RK45',
        ps_method='s',
        snd_order=snd,
    )
    print("Size of a wfn: {} complexes".format(len(root.vectorize())))
    root.is_normalized = True
    # Define the obersevable of interest
    projector = np.array([[0., 0.], [0., 1.]])
    op = [[[root[0][0], projector]]]
    t_p = []
    for time, _ in solver.propagator(
            steps=20,
            ode_inter=Quantity(0.2, 'fs').value_in_au,
            split=split,
            move_energy=True,
    ):
        t, p = (Quantity(time).convert_to(unit='fs').value,
                solver.expection(op=op))
        t_p.append((t, p))
        logging.warning('Time: {:.2f} fs, P2: {}'.format(t, p))
        if np.abs(p) > 0.5:
            break
    return np.array(t_p)
Ejemplo n.º 15
0
def ml(dof, e, v, eta, cutoff, scale=5, loc=None, steps=2000, ode_inter=0.1):
    f_ = 'dof{}-eta{}.log'.format(dof, eta)
    logger = Logger(filename=f_).logger

    # define parameters
    e = Quantity(e, 'cm-1').value_in_au
    v = Quantity(v, 'cm-1').value_in_au
    eta = Quantity(eta, 'cm-1').value_in_au
    omega0 = Quantity(cutoff, 'cm-1').value_in_au
    sys_hamiltonian = np.array([[-e / 2.0, v], [v, e / 2.0]], dtype=DTYPE)
    projector = np.array([[0.0, 0.0], [0.0, 1.0]],
                         dtype=DTYPE)  # S in H_SB = S x B

    primitive_dim = 100
    spf_dim = 20

    # Spectrum function
    def spec_func(omega):
        if 0 < omega < omega0:
            return eta
        else:
            return 0.0

    # Define all Leaf tensors and hamiltonian we need
    h_list = []
    sys_leaf = Leaf(name='sys0')
    h_list.append([(sys_leaf, -1.0j * sys_hamiltonian)])

    ph_parameters = linear_discretization(spec_func, omega0, dof)
    if loc is not None:
        adj_pair = (ph_parameters[loc][0], ph_parameters[loc][1] * scale)
        ph_parameters[loc] = adj_pair
    leaves = []
    for n, (omega, g) in enumerate(ph_parameters, 1):
        ph = Phonon(primitive_dim, omega)
        ph_leaf = Leaf(name='ph{}'.format(n))
        leaves.append(ph_leaf)
        # hamiltonian ph part
        h_list.append([(ph_leaf, -1.0j * ph.hamiltonian)])
        # e-ph part
        op = ph.annihilation_operator + ph.creation_operator
        h_list.append([(ph_leaf, g * op), (sys_leaf, -1.0j * projector)])

    def ph_spf(n=0):
        n += 1
        return Tensor(name='spf{}'.format(n), axis=0)

    graph, root = huffman_tree(leaves, obj_new=ph_spf, n_branch=2)
    try:
        graph[root].insert(0, sys_leaf)
    except KeyError:
        ph_leaf = root
        root = Tensor()
        graph[root] = [sys_leaf, ph_leaf]
    finally:
        root.name = 'wfn'
        root.axis = None

    print(graph)
    stack = [root]
    while stack:
        parent = stack.pop()
        for child in graph[parent]:
            parent.link_to(parent.order, child, 0)
            if child in graph:
                stack.append(child)

    # Define the detailed parameters for the ML-MCTDH tree
    solver = MultiLayer(root, h_list)
    bond_dict = {}
    # Leaves
    for s, i, t, j in root.linkage_visitor():
        if t.name.startswith('sys'):
            bond_dict[(s, i, t, j)] = 2
        else:
            if isinstance(t, Leaf):
                bond_dict[(s, i, t, j)] = primitive_dim
            else:
                bond_dict[(s, i, t, j)] = spf_dim
    solver.autocomplete(bond_dict)
    # set initial root array
    a, b = 1.0, 1.0
    init_proj = np.array([[a, 0.0], [b, 0.0]]) / np.sqrt(a**2 + b**2)
    root_array = Tensor.partial_product(root.array, 0, init_proj, 1)
    root.set_array(root_array)

    # Define the computation details
    solver.ode_method = 'RK45'
    solver.snd_order = True
    solver.cmf_steps = 1
    root.is_normalized = True
    # Define the obersevable of interest
    logger.info('''# time/fs    rho00  rho01  rho10  rho11''')
    for time, _ in solver.propagator(
            steps=steps,
            ode_inter=Quantity(ode_inter, 'fs').value_in_au,
            split=True,
    ):
        t = Quantity(time).convert_to(unit='fs').value
        for tensor in root.visitor(axis=None):
            tensor.reset()
        rho = root.partial_env(0, proper=False)
        for tensor in root.visitor(axis=None):
            tensor.reset()
        flat_data = [t] + list(np.reshape(rho, -1))
        logger.info('{}    {}  {}  {}  {}'.format(*flat_data))
Ejemplo n.º 16
0
 def ph_spf(n=0):
     n += 1
     return Tensor(name='spf{}'.format(n), axis=0)