def do_test(_data, _iter: int, _name: str, _output: str = None): test_correct = 0.0 _predictions = [] for words, tag in _data: mn.reset_computation_graph() my_scores = calc_scores(words, False) scores = mn.forward(my_scores) predict = np.argmax(scores) _predictions.append(i2t[predict]) if predict == tag: test_correct += 1 # -- cur_acc = test_correct/len(_data) post_ss = "" if _iter is not None: # in training if cur_acc > dev_records[1]: dev_records[0], dev_records[1] = _iter, cur_acc model.save(args.model) # save best! post_ss = f"; best=Iter{dev_records[0]}({dev_records[1]:.4f})" # -- # output if _output is not None: assert len(_predictions) == len(_data) with open(_output, 'w') as fd: for _pred, _dd in zip(_predictions, _data): _ws = " ".join([i2w[_widx] for _widx in _dd[0]]) fd.write(f"{_pred} ||| {_ws}\n") # -- print(f"iter {_iter}: {_name} acc={cur_acc:.4f}" + post_ss)
def main(): args = get_args() # -- # Functions to read in the corpus w2i = defaultdict(lambda: len(w2i)) t2i = defaultdict(lambda: len(t2i)) UNK = w2i["<unk>"] def read_dataset(filename): with open(filename, "r") as f: for line in f: tag, words = line.lower().strip().split(" ||| ") yield ([w2i[x] for x in words.split(" ")], t2i[tag]) # Read in the data train = list(read_dataset(args.train)) w2i = defaultdict(lambda: UNK, w2i) dev = list(read_dataset(args.dev)) test = list(read_dataset(args.test)) nwords = len(w2i) ntags = len(t2i) # -- # get i2w for outputting i2w = ["UNK"] * len(w2i) i2t = ["UNK"] * len(t2i) for _w, _i in w2i.items(): if _i>0: i2w[_i] = _w for _t, _i in t2i.items(): i2t[_i] = _t # -- # Create a model (collection of parameters) model = mn.Model() trainer = mn.MomentumTrainer(model, lrate=args.lrate, mrate=args.mrate) # Define the model EMB_SIZE = args.emb_size HID_SIZE = args.hid_size HID_LAY = args.hid_layer W_emb = model.add_parameters((nwords, EMB_SIZE)) # Word embeddings W_h = [model.add_parameters((HID_SIZE, EMB_SIZE if lay == 0 else HID_SIZE), initializer='xavier_uniform') for lay in range(HID_LAY)] b_h = [model.add_parameters((HID_SIZE)) for lay in range(HID_LAY)] W_sm = model.add_parameters((ntags, HID_SIZE), initializer='xavier_uniform') # Softmax weights b_sm = model.add_parameters((ntags)) # Softmax bias # A function to calculate scores for one value def calc_scores(words, is_training): # word drop in training if is_training: _word_drop = args.word_drop if _word_drop > 0.: words = [(UNK if s<_word_drop else w) for w,s in zip(words, np.random.random(len(words)))] # -- emb = mn.lookup(W_emb, words) # [len, D] emb = mn.dropout(emb, args.emb_drop, is_training) h = mn.sum(emb, axis=0) # [D] for W_h_i, b_h_i in zip(W_h, b_h): h = mn.tanh(mn.dot(W_h_i, h) + b_h_i) # [D] h = mn.dropout(h, args.hid_drop, is_training) return mn.dot(W_sm, h) + b_sm # [C] # dev/test dev_records = [-1, 0] # best_iter, best_acc def do_test(_data, _iter: int, _name: str, _output: str = None): test_correct = 0.0 _predictions = [] for words, tag in _data: mn.reset_computation_graph() my_scores = calc_scores(words, False) scores = mn.forward(my_scores) predict = np.argmax(scores) _predictions.append(i2t[predict]) if predict == tag: test_correct += 1 # -- cur_acc = test_correct/len(_data) post_ss = "" if _iter is not None: # in training if cur_acc > dev_records[1]: dev_records[0], dev_records[1] = _iter, cur_acc model.save(args.model) # save best! post_ss = f"; best=Iter{dev_records[0]}({dev_records[1]:.4f})" # -- # output if _output is not None: assert len(_predictions) == len(_data) with open(_output, 'w') as fd: for _pred, _dd in zip(_predictions, _data): _ws = " ".join([i2w[_widx] for _widx in _dd[0]]) fd.write(f"{_pred} ||| {_ws}\n") # -- print(f"iter {_iter}: {_name} acc={cur_acc:.4f}" + post_ss) # start the training for ITER in range(args.iters): # Perform training random.shuffle(train) train_loss = 0.0 start = time.time() _cur_steps = 0 _accu_step = args.accu_step for words, tag in train: mn.reset_computation_graph() my_scores = calc_scores(words, True) my_loss = mn.log_loss(my_scores, tag) my_loss = my_loss * (1./_accu_step) # div for batch _cur_loss = mn.forward(my_loss) train_loss += _cur_loss * _accu_step mn.backward(my_loss) _cur_steps += 1 if _cur_steps % _accu_step == 0: trainer.update() # update every accu_step # ===== # check gradient # if True: if args.do_gradient_check: # -- def _forw(): my_scores = calc_scores(words, False) my_loss = mn.log_loss(my_scores, tag) return mn.forward(my_loss), my_loss # -- # computed grad mn.reset_computation_graph() arr_loss, my_loss = _forw() mn.backward(my_loss) # approx. grad eps = 1e-3 for p in model.params: if np.prod(p.shape[0]) == nwords: # pick one word pick_idx = np.random.choice(words) * EMB_SIZE + np.random.randint(EMB_SIZE) else: pick_idx = np.random.randint(len(p.data.reshape(-1))) p.data.reshape(-1)[pick_idx] += eps loss0, _ = _forw() p.data.reshape(-1)[pick_idx] -= 2*eps loss1, _ = _forw() p.data.reshape(-1)[pick_idx] += eps approx_grad = (loss0-loss1) / (2*eps) calc_grad = p.get_dense_grad().reshape(-1)[pick_idx] assert np.isclose(approx_grad, calc_grad, rtol=1.e-3, atol=1.e-6) # clear for p in model.params: p.grad = None print("Pass gradient checking!!") # ===== print("iter %r: train loss/sent=%.4f, time=%.2fs" % (ITER, train_loss/len(train), time.time()-start)) # dev do_test(dev, ITER, "dev") # lrate decay trainer.lrate *= args.lrate_decay # -- # load best model and final test model.load(args.model) # load best model do_test(dev, None, "dev", args.dev_output) do_test(test, None, "test", args.test_output)
def _forw(): my_scores = calc_scores(words, False) my_loss = mn.log_loss(my_scores, tag) return mn.forward(my_loss), my_loss