Ejemplo n.º 1
0
def MultiLayerPerceptron(*args, **kwargs):
    '''
    positional arguments:
      the number of hidden units of each layer
    keyword arguments(optional):
      activation:         ReLU by default
      affine_monitor:     bool
      activation_monitor: bool
      storage:            dictionary
  '''
    assert all(isinstance(arg, int) for arg in args)
    try:
        activation = kwargs.pop('activation', 'ReLU')
        activation = getattr(builder, activation)()
    except:
        raise Exception('unsupported activation function')
    affine_monitor = kwargs.pop('affine_monitor', False)
    activation_monitor = kwargs.pop('activation_monitor', False)
    if affine_monitor or activation_monitor:
        try:
            storage = kwargs['storage']
        except:
            raise Exception('storage required to monitor intermediate result')

    network = builder.Sequential()
    for i, arg in enumerate(args[:-1]):
        network.append(builder.Affine(arg))
        if affine_monitor:
            network.append(builder.Export('affine%d' % i, storage))
        network.append(activation)
        if activation_monitor:
            network.append(builder.Export('activation%d' % i, storage))
    network.append(builder.Affine(args[-1]))

    return network
Ejemplo n.º 2
0
from solver_primitives import *

sys.path.append('../')
from utilities.data_utility import load_cifar10
data = load_cifar10(path='../utilities/cifar/', center=True, rescale=True)
X = data[0][:16]

hidden_layers = 4
shapes = (1024, ) * hidden_layers + (10, )
activation = builder.ReLU
storage = {}
mlp = builder.Sequential()

for i, shape in enumerate(shapes[:-1]):
    mlp.append(builder.Affine(shape))
    mlp.append(builder.Export('affine%d' % i, storage))
    mlp.append(activation())
mlp.append(builder.Affine(shapes[-1]))

model = builder.Model(mlp, 'softmax', (3072, ))
'''
for key, value in model.param_configs.items():
  if 'weight' in key:
    value['init_rule'] = 'gaussian'
    value['init_config'] = {'stdvar' : 1}
'''

initialize(model)
for key, value in model.params.items():
    if 'weight' in key:
        print np.std(value)
Ejemplo n.º 3
0
from custom_layers import *
from solver_primitives import *

sys.path.append('../')
from utilities.data_utility import load_cifar10

data = load_cifar10(path='../utilities/cifar/', center=True, rescale=True)

hidden_layers = 4
shapes = (1024, ) * hidden_layers + (10, )
activation = builder.ReLU
storage = {}
mlp = builder.Sequential()
for i, shape in enumerate(shapes[:-1]):
    mlp.append(builder.Affine(shape))
    mlp.append(builder.Export('affine%d' % i, storage))
    mlp.append(activation())
mlp.append(builder.Affine(shapes[-1]))
mlp.append(builder.Export('affine%d' % (len(shapes) - 1), storage))
model = builder.Model(mlp, 'softmax', (3072, ))

batch_size = 128
batches = len(data[0]) // batch_size
batch_index = 0
# raise Exception()

iterations = 10000
interval = 10

# settings = {}
settings = {'learning_rate': 0.01}
Ejemplo n.º 4
0
'''

ACTIVATION = 'ReLU'
DEVICE = 0
DR_INTERVAL = 10
shapes = (1024, ) * 4 + (10, )

activation = getattr(builder, ACTIVATION)
set_context(gpu(DEVICE))

storage = {}
chd_list = []
mlp = builder.Sequential()
for i, shape in enumerate(shapes[:-1]):
    mlp.append(builder.Affine(shape))
    mlp.append(builder.Export('affine%d' % i, storage))
    mlp.append(activation())
    mlp.append(builder.Export('activation%d' % i, storage))
    mlp.append(ChannelDivision(np.ones(shape)))
    chd_list.append(mlp[-1])
    mlp.append(builder.Export('chd%d' % i, storage))

mlp.append(builder.Affine(shapes[-1]))
model = builder.Model(mlp, 'softmax', (3072, ))

batch_size = 100
batches = len(data[0]) // batch_size
batch_index = 0

iterations = 25000
interval = 10