Ejemplo n.º 1
0
 def __init__(self, model):
     # Setup the net
     torch.device("cuda")
     torch.cuda.set_device(0)
     torch.backends.cudnn.enabled = True
     self.net = CrowdCounter(cfg.GPU_ID, cfg.NET, torch.nn.MSELoss(),
                             pytorch_ssim.SSIM(window_size=11))
     self.net.load_state_dict(torch.load(model))
     self.net.cuda()
     self.net.eval()
     # IMPORTANT: when changing model, make sure you change config for the dataset it was trained in to make sure mean and std are correct
     self.mean, self.std = cfg.MEAN_STD
Ejemplo n.º 2
0
 def __init__(self, args):
     # setup the net
     torch.device("cuda")
     torch.cuda.set_device(0)
     torch.backends.cudnn.enabled = True
     self.net = CrowdCounter(cfg.GPU_ID, cfg.NET, torch.nn.MSELoss(),
                             pytorch_ssim.SSIM(window_size=11))
     self.net.load_state_dict(torch.load(args.model))
     self.net.cuda()
     self.net.eval()
     # IMPORTANT: when changing model, make sure you change config for the dataset it was trained in to make sure mean, std, h and w are correct
     self.mean, self.std = cfg.MEAN_STD
     self.h, self.w = cfg.STD_SIZE
     print(self.net)  # print net structure
     # video capture object
     self.vid = VideoCapture(args.video)
Ejemplo n.º 3
0
    def __init__(self, dataloader, cfg_data, pwd):

        self.cfg_data = cfg_data

        self.data_mode = cfg.DATASET
        self.exp_name = cfg.EXP_NAME
        self.exp_path = cfg.EXP_PATH
        self.pwd = pwd

        self.net_name = cfg.NET

        if self.net_name in ['SANet']:
            loss_1_fn = nn.MSELoss()
            from misc import pytorch_ssim
            loss_2_fn = pytorch_ssim.SSIM(window_size=11)

        self.net = CrowdCounter(cfg.GPU_ID, self.net_name, loss_1_fn,
                                loss_2_fn).cuda()
        self.optimizer = optim.Adam(self.net.CCN.parameters(),
                                    lr=cfg.LR,
                                    weight_decay=1e-4)
        # self.optimizer = optim.SGD(self.net.parameters(), cfg.LR, momentum=0.95,weight_decay=5e-4)
        self.scheduler = StepLR(self.optimizer,
                                step_size=cfg.NUM_EPOCH_LR_DECAY,
                                gamma=cfg.LR_DECAY)

        self.train_record = {
            'best_mae': 1e20,
            'best_mse': 1e20,
            'best_model_name': ''
        }
        self.timer = {
            'iter time': Timer(),
            'train time': Timer(),
            'val time': Timer()
        }
        self.writer, self.log_txt = logger(self.exp_path, self.exp_name,
                                           self.pwd, 'exp')

        self.i_tb = 0
        self.epoch = -1

        if cfg.PRE_GCC:
            net.load_state_dict(torch.load(cfg.PRE_GCC_MODEL))

        self.train_loader, self.val_loader, self.restore_transform = dataloader(
        )
Ejemplo n.º 4
0
        help="Colormap to use. Commons are 2 for Jet or 11 for Hot.",
        choices=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
    parser.add_argument("--mode",
                        default='Add',
                        type=str,
                        help="Blend mode to use.",
                        choices=['Add', 'Lighten', 'Mix', 'Multiply'])
    args = parser.parse_args()
    print("Crowd Counter Demo running. Press Q to quit.")

    # setup the model
    device = torch.device("cuda")
    torch.cuda.set_device(0)
    torch.backends.cudnn.enabled = True  # use cudnn?
    net = CrowdCounter(cfg.GPU_ID, cfg.NET, torch.nn.MSELoss(),
                       pytorch_ssim.SSIM(window_size=11))
    net.load_state_dict(torch.load(args.model))
    net.cuda()
    net.eval()
    mean, std = cfg.MEAN_STD

    # open the video stream / file
    cap = cv2.VideoCapture(args.video)
    while (cap.isOpened()):
        _, frame = cap.read()
        if frame is None:
            break
        # convert to pytorch tensor and normalize
        tensor = torchvision.transforms.ToTensor()(cv2.cvtColor(
            frame, cv2.COLOR_BGR2RGB))
        tensor = torchvision.transforms.functional.normalize(tensor,
Ejemplo n.º 5
0
def test(file_list, model_path):
    loss_1_fn = torch.nn.MSELoss()
    loss_2_fn = pytorch_ssim.SSIM(window_size=11)
    net = CrowdCounter(cfg.GPU_ID, cfg.NET, loss_1_fn, loss_2_fn)
    net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()

    f1 = plt.figure(1)

    gts = []
    preds = []

    for filename in file_list:
        print(filename, end=', ')
        imgname = dataRoot + '/img/' + filename
        filename_no_ext = filename.split('.')[0]

        denname = dataRoot + '/den/' + filename_no_ext + '.csv'

        den = pd.read_csv(denname, sep=',', header=None).values
        den = den.astype(np.float32, copy=False)

        img = Image.open(imgname)

        if img.mode == 'L':
            img = img.convert('RGB')

        img = img_transform(img)

        if slicing:
            xr = (8 - img.shape[2] % 8) % 8
            yr = (8 - img.shape[1] % 8) % 8
            img = torch.nn.functional.pad(img, (xr, xr, yr, yr), 'constant', 0)
            pred_maps = []
            x4 = img.shape[2]  # full image
            x1 = x4 // 2  # half image
            x2 = x1 // 2  # quarter image
            x3 = x1 + x2
            y4 = img.shape[1]
            y1 = y4 // 2
            y2 = y1 // 2
            y3 = y1 + y2
            img_list = [
                img[:, 0:y1, 0:x1], img[:, 0:y1, x2:x3], img[:, 0:y1, x1:x4],
                img[:, y2:y3, 0:x1], img[:, y2:y3, x2:x3], img[:, y2:y3,
                                                               x1:x4],
                img[:, y1:y4, 0:x1], img[:, y1:y4, x2:x3], img[:, y1:y4, x1:x4]
            ]

            for inputs in img_list:
                with torch.no_grad():
                    img = torch.autograd.Variable(inputs[None, :, :, :]).cuda()
                    pred_maps.append(net.test_forward(img))

            x3, x5 = int(x4 * 3 / 8), int(x4 * 5 / 8)
            y3, y5 = int(y4 * 3 / 8), int(y4 * 5 / 8)
            x32, x52, x51, x41 = x3 - x2, x5 - x2, x5 - x1, x4 - x1
            y32, y52, y51, y41 = y3 - y2, y5 - y2, y5 - y1, y4 - y1

            slice0 = pred_maps[0].cpu().data.numpy()[0, 0, 0:y3, 0:x3]
            slice1 = pred_maps[1].cpu().data.numpy()[0, 0, 0:y3, x32:x52]
            slice2 = pred_maps[2].cpu().data.numpy()[0, 0, 0:y3, x51:x41]
            slice3 = pred_maps[3].cpu().data.numpy()[0, 0, y32:y52, 0:x3]
            slice4 = pred_maps[4].cpu().data.numpy()[0, 0, y32:y52, x32:x52]
            slice5 = pred_maps[5].cpu().data.numpy()[0, 0, y32:y52, x51:x41]
            slice6 = pred_maps[6].cpu().data.numpy()[0, 0, y51:y41, 0:x3]
            slice7 = pred_maps[7].cpu().data.numpy()[0, 0, y51:y41, x32:x52]
            slice8 = pred_maps[8].cpu().data.numpy()[0, 0, y51:y41, x51:x41]

            pred_map = np.vstack((np.hstack(
                (slice0, slice1, slice2)), np.hstack((slice3, slice4, slice5)),
                                  np.hstack((slice6, slice7, slice8))))
            sio.savemat(exp_name + '/pred/' + filename_no_ext + '.mat',
                        {'data': pred_map / 100.})

        else:
            with torch.no_grad():
                img = torch.autograd.Variable(img[None, :, :, :]).cuda()
                pred_map = net.test_forward(img)
            sio.savemat(exp_name + '/pred/' + filename_no_ext + '.mat',
                        {'data': pred_map.squeeze().cpu().numpy() / 100.})
            pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]

        pred = np.sum(pred_map) / 100.0
        preds.append(pred)

        gt = np.sum(den)
        gts.append(gt)
        sio.savemat(exp_name + '/gt/' + filename_no_ext + '.mat',
                    {'data': den})
        pred_map = pred_map / np.max(pred_map + 1e-20)
        den = den / np.max(den + 1e-20)

        if save_graphs:
            den_frame = plt.gca()
            plt.imshow(den, 'jet')
            den_frame.axes.get_yaxis().set_visible(False)
            den_frame.axes.get_xaxis().set_visible(False)
            den_frame.spines['top'].set_visible(False)
            den_frame.spines['bottom'].set_visible(False)
            den_frame.spines['left'].set_visible(False)
            den_frame.spines['right'].set_visible(False)
            plt.savefig(exp_name + '/' + filename_no_ext + '_gt_' +
                        str(int(gt)) + '.png',
                        bbox_inches='tight',
                        pad_inches=0,
                        dpi=150)
            plt.close()
            # sio.savemat(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.mat',{'data':den})

            pred_frame = plt.gca()
            plt.imshow(pred_map, 'jet')
            pred_frame.axes.get_yaxis().set_visible(False)
            pred_frame.axes.get_xaxis().set_visible(False)
            pred_frame.spines['top'].set_visible(False)
            pred_frame.spines['bottom'].set_visible(False)
            pred_frame.spines['left'].set_visible(False)
            pred_frame.spines['right'].set_visible(False)
            plt.savefig(exp_name + '/' + filename_no_ext + '_pred_' +
                        str(float(pred)) + '.png',
                        bbox_inches='tight',
                        pad_inches=0,
                        dpi=150)
            plt.close()
            # sio.savemat(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.mat',{'data':pred_map})

            diff = den - pred_map
            diff_frame = plt.gca()
            plt.imshow(diff, 'jet')
            plt.colorbar()
            diff_frame.axes.get_yaxis().set_visible(False)
            diff_frame.axes.get_xaxis().set_visible(False)
            diff_frame.spines['top'].set_visible(False)
            diff_frame.spines['bottom'].set_visible(False)
            diff_frame.spines['left'].set_visible(False)
            diff_frame.spines['right'].set_visible(False)
            plt.savefig(exp_name + '/' + filename_no_ext + '_diff.png',
                        bbox_inches='tight',
                        pad_inches=0,
                        dpi=150)
            plt.close()
            # sio.savemat(exp_name+'/diff/'+filename_no_ext+'_diff.mat',{'data':diff})
    preds = np.asarray(preds)
    gts = np.asarray(gts)
    print('\nMAE= ' + str(np.mean(np.abs(gts - preds))))
    print('MSE= ' + str(np.sqrt(np.mean((gts - preds)**2))))
Ejemplo n.º 6
0
    def __init__(self, dataloader, cfg_data, pwd):

        self.cfg_data = cfg_data

        self.data_mode = cfg.DATASET
        self.exp_name = cfg.EXP_NAME
        self.exp_path = cfg.EXP_PATH

        self.pwd = pwd

        self.net_name = cfg.NET

        if self.net_name in ['SANet']:
            loss_1_fn = nn.MSELoss()
            from misc import pytorch_ssim
            loss_2_fn = pytorch_ssim.SSIM(window_size=11)

        if 'OAI' in self.net_name:
            loss_1_fn = nn.SmoothL1Loss()
            from misc import pytorch_ssim
            loss_2_fn = pytorch_ssim.SSIM(window_size=11)

        self.net = CrowdCounter(cfg.GPU_ID, self.net_name, loss_1_fn,
                                loss_2_fn, cfg.PRE).cuda()
        if not cfg.FINETUNE:
            self.optimizer = optim.Adam(self.net.CCN.parameters(),
                                        lr=cfg.LR,
                                        weight_decay=1e-4)
            print('using ADAM')
        else:
            self.optimizer = optim.SGD(self.net.parameters(),
                                       cfg.LR,
                                       momentum=0.95,
                                       weight_decay=5e-4)
            print('using SGD')

        if cfg.LR_CHANGER == 'step':
            self.scheduler = StepLR(self.optimizer,
                                    step_size=cfg.NUM_EPOCH_LR_DECAY,
                                    gamma=cfg.LR_DECAY)
        elif cfg.LR_CHANGER == 'cosann':
            self.scheduler = CosineAnnealingLR(self.optimizer,
                                               2 * cfg.EPOCH_DIS,
                                               eta_min=5e-9,
                                               last_epoch=-1)
        elif cfg.LR_CHANGER == 'expotential':
            self.scheduler = ExponentialLR(self.optimizer, 0.95, last_epoch=-1)
        elif cfg.LR_CHANGER == 'rop':
            self.scheduler = ReduceLROnPlateau(self.optimizer,
                                               mode='min',
                                               verbose=True,
                                               eps=1e-10)

        self.train_record = {
            'best_mae': 1e20,
            'best_mse': 1e20,
            'best_model_name': ''
        }
        self.timer = {
            'iter time': Timer(),
            'train time': Timer(),
            'val time': Timer()
        }

        self.epoch = 0
        self.i_tb = 0

        if cfg.PRE_GCC:
            self.net.load_state_dict(torch.load(cfg.PRE_GCC_MODEL))

        self.train_loader, self.val_loader, self.restore_transform = dataloader(
        )
        cfg.PRINT_FREQ = min(len(self.train_loader), cfg.ITER_DIS)
        if cfg.RESUME:
            latest_state = torch.load(cfg.RESUME_PATH)
            self.net.load_state_dict(latest_state['net'])
            if not cfg.FINETUNE:
                self.optimizer.load_state_dict(latest_state['optimizer'])
                self.scheduler.load_state_dict(latest_state['scheduler'])
                self.epoch = latest_state['epoch'] + 1
                self.i_tb = latest_state['i_tb']
                self.train_record = latest_state['train_record']
                self.exp_path = latest_state['exp_path']
                self.exp_name = latest_state['exp_name']

        self.writer, self.log_txt = logger(self.exp_path,
                                           self.exp_name,
                                           self.pwd,
                                           'exp',
                                           resume=cfg.RESUME)