def user_pull():
    """
    
    Pull app creators Mixpanel information.
    
    
    Parameters
    ----------
    
        
        
    Global Variables
    ----------
    
    api_creator_secret: Mixpanel Creator Project API key.
        Use to make API calls to Mixpanel Creator Project.
        
    
    Returns
    ----------
    
    dataframe
        Dataframe containing app creator information from Mixpanel.
    
    """

    #generate JQL query
    query_user = JQL(api_creator_secret,
                     people=People({'user_selectors': [{}]
                                    })).group_by(keys=[
                                        "e.properties.$email",
                                        "e.properties.$username",
                                        "e.properties.$distinct_id",
                                        "e.properties.hs_mrr"
                                    ],
                                                 accumulator=Reducer.count())

    #initialize list to track emails, user IDs, distinct IDs, and mrr
    email_list = []
    user_id_list = []
    distinct_id_list = []
    hs_mrr_list = []

    #process query results
    for row in query_user.send():
        email_list.append(row['key'][0])
        user_id_list.append(row['key'][1])
        distinct_id_list.append(row['key'][2])
        hs_mrr_list.append(row['key'][3])

    #create dataframe
    data = {
        'email': email_list,
        'user_id': user_id_list,
        'distinct_id': distinct_id_list,
        'hs_mrr': hs_mrr_list
    }
    df_users = pd.DataFrame(data=data)

    return df_users
def AppStart_pull(from_date, to_date):
    """
    
    Pull app user AppStart events in Mixpanel.
    
    
    Parameters
    ----------
    
    from_date: date
        Start date of query.
        
    to_date: date
        End date of query.
        
        
    Global Variables
    ----------
    
    api_user_secret: str
        Client secret used to make calls to Mixpanel User Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe contains user IDs and AppStart event count for app users in Mixpanel.
           
    """

    #generate JQL query
    query = JQL(api_user_secret,
                events=Events({
                    'event_selectors': [{
                        'event': "AppStart"
                    }],
                    'from_date': from_date,
                    'to_date': to_date
                })).group_by(keys=["e.properties.zUserId"],
                             accumulator=Reducer.count())

    #initalize lists to record user ID and AppStarts
    user_id_list = []
    AppStart_list = []

    #process query results
    for row in query.send():
        if row['key'][0] is not None:
            user_id_list.append(int(row['key'][0]))
            AppStart_list.append(row['value'])

    #generate dataframe
    data = {'user_id': user_id_list, 'AppStart': AppStart_list}
    df_AppStart = pd.DataFrame(data)
    df_AppStart = df_AppStart.dropna()
    df_AppStart.user_id = df_AppStart.user_id.astype(int)

    return df_AppStart
def New_Signup_Web_pull(from_date, to_date):
    """
    Pull app creator sign up events in Mixpanel.
    
    
    Parameters
    ----------
    
    from_date: date
        Start date of query.
        
    to_date: date
        End date of query.
        
        
    Global Variables
    ----------
    
    api_creator_secret: str
        Client secret used to make calls to Mixpanel Creator Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe contains user IDs and new sign up event count for app creators in Mixpanel.
           
    """

    #generate JQL query
    query = JQL(api_creator_secret,
                events=Events({
                    'event_selectors': [{
                        'event': "New Signup Web"
                    }],
                    'from_date': from_date,
                    'to_date': to_date
                })).group_by(
                    keys=[
                        "e.properties.userId",  #use userId
                    ],
                    accumulator=Reducer.count())

    #initialize lists to record user IDs and New Signup Web
    user_id_list = []
    new_sign_up_list = []
    for row in query.send():
        if row['key'][0] is not None:
            user_id_list.append(int(row['key'][0]))
            new_sign_up_list.append(row['value'])

    #generate dataframe
    data = {'user_id': user_id_list, 'new_sign_up': new_sign_up_list}
    df_New_Signup_Web = pd.DataFrame(data)

    return df_New_Signup_Web
Ejemplo n.º 4
0
def app_creator_pull():
    """
    Pull app creators' info from Mixpanel.
    
    Parameters
    ----------
    
        
    Global Variables
    ----------
    
    api_creator_secret: str
        Client secret used to make calls to Mixpanel Creator Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe app creators info in Mixpanel.
           
    """

    #generate JQL query
    query_user = JQL(api_creator_secret,
                     people=People({'user_selectors': [{}]
                                    })).group_by(keys=[
                                        "e.properties.$email",
                                        "e.properties.$username",
                                        "e.properties.$distinct_id",
                                        "e.properties.active_milestone"
                                    ],
                                                 accumulator=Reducer.count())

    #store emails, user IDs, distinct_id, active_milestone in lists
    email_list = []
    user_id_list = []
    distinct_id_list = []
    active_milestone_list = []
    for row in query_user.send():
        if row['key'][1] is not None:
            email_list.append(row['key'][0])
            user_id_list.append(int(row['key'][1]))
            distinct_id_list.append(row['key'][2])
            active_milestone_list.append(row['key'][3])

    #create dataframe
    data = {
        'email': email_list,
        'app_owner_id': user_id_list,
        'distinct_id': distinct_id_list,
        'active_milestone': active_milestone_list
    }
    df_creators = pd.DataFrame(data=data)
    return df_creators
Ejemplo n.º 5
0
def creator_pull():
    """
    Pull app creators' info in Mixpanel.
    
    Parameters
    ----------
    
        
    Global Variables
    ----------
    
    api_creator_secret: str
        Client secret used to make calls to Mixpanel Creator Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe app creators info in Mixpanel.
           
    """

    #generate JQL query
    query = JQL(api_creator_secret,
                people=People({'user_selectors':
                               [{}]})).group_by(keys=[
                                   "e.properties.$email",
                                   "e.properties.$username",
                                   "e.properties.hs_owner"
                               ],
                                                accumulator=Reducer.count())

    #store emails, user IDs, and user journey stages in lists
    email_list = []
    user_id_list = []
    hs_owner_list = []
    for row in query.send():
        if row['key'][0] is not None:
            email_list.append(row['key'][0])
            user_id_list.append(int(row['key'][1]))
            hs_owner_list.append(row['key'][2])

    #create dataframe
    data = {
        'email': email_list,
        'user_id': user_id_list,
        'hs_owner': hs_owner_list
    }
    df_creators = pd.DataFrame(data=data)

    #only keep users with HubSpot owner field. Indicating that it exists in hubspot
    df_creators = df_creators[~df_creators.hs_owner.isnull()]

    return df_creators
Ejemplo n.º 6
0
def user_pull():
    """
    Pull app creators' info in Mixpanel.
    
    
    Parameters
    ----------
    
        
    Global Variables
    ----------
    
    api_creator_secret: str
        Client secret used to make calls to Mixpanel Creator Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe contains app creators info in Mixpanel.
           
    """

    #generate JQL query
    query = JQL(api_creator_secret,
                people=People({'user_selectors':
                               [{}]})).group_by(keys=[
                                   "e.properties.$email",
                                   "e.properties.company_domain",
                                   "e.properties.$distinct_id"
                               ],
                                                accumulator=Reducer.count())

    #initiate list to store emails, user IDs, and company domains
    email_list = []
    company_domain_list = []
    distinct_id_list = []

    #process query results
    for row in query.send():
        email_list.append(row['key'][0])
        company_domain_list.append(row['key'][1])
        distinct_id_list.append(row['key'][2])

    #create dataframe
    data = {
        'email': email_list,
        'company_domain': company_domain_list,
        'distinct_id': distinct_id_list
    }
    df_users = pd.DataFrame(data=data)

    return df_users
Ejemplo n.º 7
0
def creator_pull():
    """
    Pull app creators' info in Mixpanel.
    
    Parameters
    ----------
    
        
    Global Variables
    ----------
    
    api_creator_secret: str
        Client secret used to make calls to Mixpanel Creator Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe contains app creators info in Mixpanel.
           
    """

    #generate JQL query
    query = JQL(api_creator_secret,
                people=People({'user_selectors':
                               [{}]})).group_by(keys=[
                                   "e.properties.$email",
                                   "e.properties.$username",
                                   "e.properties.user_journey_stage"
                               ],
                                                accumulator=Reducer.count())

    #initialize lists to store user IDs, email, and journey stage
    email_list = []
    user_id_list = []
    user_journey_stage_list = []

    #process query results
    for row in query.send():
        email_list.append(row['key'][0])
        user_id_list.append(row['key'][1])
        user_journey_stage_list.append(row['key'][2])

    #create dataframe
    data = {
        'email': email_list,
        'creator_user_id': user_id_list,
        'user_journey_stage': user_journey_stage_list
    }
    df_creators = pd.DataFrame(data=data)

    return df_creators
Ejemplo n.º 8
0
def creator_pull():

    """
    Pull app creators' info in Mixpanel.
    
    Parameters
    ----------
    
        
    Global Variables
    ----------
    
    api_creator_secret: str
        Client secret used to make calls to Mixpanel Creator Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe app creators info in Mixpanel.
           
    """
    
    #generate JQL query
    query_user = JQL(
                api_creator_secret,
                people=People({
                    'user_selectors': [{
                    }

                ]

                })
            ).group_by(
                keys=[
                    "e.properties.$distinct_id",
                    "e.properties.$username"],
                accumulator=Reducer.count()
            )


    #store emails, user IDs, and user journey stages in lists
    distinct_id_list = []
    user_id_list = []
    for row in query_user.send():
        distinct_id_list.append(row['key'][0])
        user_id_list.append(row['key'][1])

    #create dataframe 
    data = {'distinct_id': distinct_id_list, 'user_id': user_id_list}
    df_creators = pd.DataFrame(data=data)
    return df_creators
Ejemplo n.º 9
0
def pull_creators():
    """
    
    Pull app creators Mixpanel information.
    
    
    Parameters
    ----------
    
        
        
    Global Variables
    ----------
    
    api_creator_secret: Mixpanel Creator Project API key
        Use to make API calls to Mixpanel Creator Project.
        
    
    Returns
    ----------
    
    dataframe
        Dataframe containing app creator information from Mixpanel.
    
    """

    #generate JQL query
    query_category = JQL(
        api_creator_secret, people=People({'user_selectors': [{}]})).group_by(
            keys=["e.properties.$email", "e.properties.$distinct_id"],
            accumulator=Reducer.count())

    #initialize lists to store emails and distinct IDs
    email_list = []
    distinct_id_list = []

    #process query response
    for row in query_category.send():
        email_list.append(row['key'][0])
        distinct_id_list.append(row['key'][1])

    #create dataframe
    data = {'email': email_list, 'mixpanel_distinct_id': distinct_id_list}
    df_creators_mixpanel = pd.DataFrame(data=data)

    #remove creators with missing information
    df_creators_mixpanel = df_creators_mixpanel.dropna()

    return df_creators_mixpanel
Ejemplo n.º 10
0
def user_pull():
    """
    
    Pull app creators Mixpanel information.
    
    
    Parameters
    ----------
    
        
        
    Global Variables
    ----------
    
    api_creator_secret: Mixpanel Creator Project API key.
        Use to make API calls to Mixpanel Creator Project.
        
    
    Returns
    ----------
    
    dataframe
        Dataframe containing app creator information from Mixpanel.
    
    """

    #generate JQL query
    query_user = JQL(api_creator_secret,
                     people=People({'user_selectors': [{}]
                                    })).group_by(keys=[
                                        "e.properties.$email",
                                        "e.properties.$username"
                                    ],
                                                 accumulator=Reducer.count())

    #initialize lists to record app creator information
    email_list = []
    user_id_list = []
    for row in query_user.send():
        email_list.append(row['key'][0])
        user_id_list.append(row['key'][1])

    #create dataframe
    data = {'email': email_list, 'user_id': user_id_list}
    df_users = pd.DataFrame(data=data)

    return df_users
def creator_pull():
    """
    Pull app creators' info in Mixpanel.
    
    Parameters
    ----------
    
        
    Global Variables
    ----------
    
    api_creator_secret: str
        Client secret used to make calls to Mixpanel Creator Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe app creators info in Mixpanel.
           
    """

    #generate JQL query
    query_user = JQL(api_creator_secret,
                     people=People({'user_selectors': [{}]
                                    })).group_by(keys=[
                                        "e.properties.$email",
                                        "e.properties.$unsubscribed"
                                    ],
                                                 accumulator=Reducer.count())

    #store emails, user IDs, and user journey stages in lists
    email_list = []
    unsubscribed_list = []
    for row in query_user.send():
        if ((row['key'][0] is not None) & (row['key'][1] is not None)
            ):  #only keep accounts with both email and unsubscribe status
            email_list.append(row['key'][0])
            unsubscribed_list.append(row['key'][1])

    #create dataframe
    data = {'email': email_list, 'unsubscribed': unsubscribed_list}
    df_creators = pd.DataFrame(data=data)

    return df_creators
def app_user_pull():
    """
    
    Pull app users' information in Mixpanel.
    
    
    Parameters
    ----------
    
        
    Global Variables
    ----------
    
    api_user_secret: str
        Client secret used to make calls to Mixpanel User Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe contains app users' information in Mixpanel.
           
    """

    #generate JQL query
    query_user = JQL(api_user_secret, people=People({
        'user_selectors': [{}]
    })).group_by(keys=["e.properties.$email", "e.properties.$username"],
                 accumulator=Reducer.count())

    #initialize lists to record email and user ID
    email_list = []
    user_id_list = []

    #process query results
    for row in query_user.send():
        email_list.append(row['key'][0])
        user_id_list.append(row['key'][1])

    #create dataframe
    data = {'user_email': email_list, 'app_user_id': user_id_list}
    df_app_users = pd.DataFrame(data=data)

    return df_app_users
Ejemplo n.º 13
0
def creator_pull():

    #generate JQL query
    query = JQL(api_creator_secret,
                people=People({'user_selectors': [{}]})).group_by(
                    keys=["e.properties.$email", "e.properties.$distinct_id"],
                    accumulator=Reducer.count())

    #store emails, user IDs, and user journey stages in lists
    email_list = []
    distinct_id_list = []

    for row in query.send():
        if row['key'][0] is not None:
            email_list.append(row['key'][0])
            distinct_id_list.append(row['key'][1])

    #create dataframe
    data = {'email': email_list, 'distinct_id': distinct_id_list}
    df_creators = pd.DataFrame(data=data)

    return df_creators
Ejemplo n.º 14
0
def Editor_pull(from_date, to_date):
    """
    Pull app creator Editor events in Mixpanel.
    
    
    Parameters
    ----------
    
    from_date: date
        Start date of query.
        
    to_date: date
        End date of query.
        
        
    Global Variables
    ----------
    
    api_creator_secret: str
        Client secret used to make calls to Mixpanel Creator Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe contains user IDs, Editor event datetime, and Editor event count for app creators in Mixpanel.
           
    """

    #generate JQL query
    query = JQL(api_creator_secret,
                events=Events({
                    'event_selectors': [{
                        'event': "Editor"
                    }],
                    'from_date': from_date,
                    'to_date': to_date
                })).group_by(keys=[
                    "e.properties.zUserId", "new Date(e.time).toISOString()"
                ],
                             accumulator=Reducer.count())

    #store user IDs, Editor count, and Editor datetime
    user_id_list = []
    datetime_list = []
    Editor_list = []
    for row in query.send():
        if row['key'][0] is not None:
            user_id_list.append(int(row['key'][0]))
            datetime_list.append(
                datetime.strptime(row['key'][1][:10], '%Y-%m-%d'))
            Editor_list.append(row['value'])

    #generate dataframe
    data = {
        'user_id': user_id_list,
        'Editor_datetime': datetime_list,
        'Editor': Editor_list
    }
    df_Editor = pd.DataFrame(data)

    return df_Editor
def app_user_pull():
    """
    Pull app users' info in Mixpanel.
    
    
    Parameters
    ----------
    
        
    Global Variables
    ----------
    
    api_user_secret: str
        Client secret used to make calls to Mixpanel User Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe contains app users info in Mixpanel.
           
    """

    #generate JQL query
    query = JQL(api_user_secret, people=People(
        {'user_selectors': [{}]})).group_by(
            keys=[
                "e.properties.$email",
                "e.properties.$username",
                "e.properties.$distinct_id",
                "e.properties.creator",  #pulling current creator status
                "e.properties.active_user"
            ],  #pulling current active user status
            accumulator=Reducer.count())

    #initialize lists to record email, user ID, creator status, active user status, and distinct ID
    email_list = []
    user_id_list = []
    creator_list = []
    active_user_list = []
    distinct_id_list = []

    #process query results
    for row in query.send():
        email_list.append(row['key'][0])
        user_id_list.append(row['key'][1])
        distinct_id_list.append(row['key'][2])
        creator_list.append(row['key'][3])
        active_user_list.append(row['key'][4])

    #create dataframe
    data = {
        'email': email_list,
        'app_user_id': user_id_list,
        'distinct_id': distinct_id_list,
        'creator_current': creator_list,
        'active_user_current': active_user_list
    }
    df_app_users = pd.DataFrame(data=data)
    df_app_users = df_app_users.dropna()
    df_app_users.app_user_id = df_app_users.app_user_id.astype(int)

    return df_app_users
Ejemplo n.º 16
0
def user_appstart_pull(from_date, to_date):
    """

    Pull app user AppStart events in Mixpanel.



    Parameters
    ----------

    from_date: date
        Start date of query.

    to_date: date
        End date of query.


    Global Variables
    ----------

    api_user_secret: str
        Client secret used to make calls to Mixpanel User Project.


    Returns
    ----------

    df_user_AppStart: dataframe
        Dataframe contains app creator user ID and number of app users.



    """

    #generate JQL query
    query = JQL(api_user_secret,
                events=Events({
                    'event_selectors': [{
                        'event': "AppStart"
                    }],
                    'from_date': from_date,
                    'to_date': to_date
                })).group_by(
                    keys=["e.properties.zUserId", "e.properties.zAppOwnerId"],
                    accumulator=Reducer.count())

    #initialize lists to record app user IDs, app creator IDs, app name, and number of AppStarts
    app_user_id_list = []
    owner_id_list = []
    AppStart_list = []

    #process query results
    for row in query.send():
        if (row['key'][0] is not None) & (row['key'][1] is not None):
            app_user_id_list.append(int(row['key'][0]))
            owner_id_list.append(int(row['key'][1]))
            AppStart_list.append(row['value'])

    #generate email
    data = {
        'app_user_id': app_user_id_list,
        'creator_id': owner_id_list,
        'AppStart': AppStart_list
    }
    df_AppStart = pd.DataFrame(data)

    #make sure IDs are valid
    df_user_AppStart = df_AppStart[(df_AppStart.app_user_id > 1)
                                   & (df_AppStart.creator_id > 1)]

    return df_user_AppStart
Ejemplo n.º 17
0
def New_Signup_App_pull(yesterday):
    """
    
    Pull app user sign up events in Mixpanel.
    
    
    Parameters
    ----------
    
    yesterday: date
        Yesterday's date.
        
        
    Global Variables
    ----------
    
    api_user_secret: str
        Client secret used to make calls to Mixpanel User Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe contains user IDs, sign up datetime, and new sign up event count for app users in Mixpanel.
           
    """

    #generate JQL query
    query = JQL(api_user_secret,
                events=Events({
                    'event_selectors': [{
                        'event': "New Signup App"
                    }],
                    'from_date': yesterday,
                    'to_date': yesterday
                })).group_by(keys=[
                    "e.properties.zUserId", "new Date(e.time).toISOString()"
                ],
                             accumulator=Reducer.count())

    #initialize lists to store emails, user IDs, and sign up datetime
    user_id_list = []
    datetime_list = []
    new_sign_up_list = []

    #process query results
    for row in query.send():
        if row['key'][0] is not None:
            user_id_list.append(int(row['key'][0]))
            datetime_list.append(
                datetime.strptime(row['key'][1][:10], '%Y-%m-%d'))
            new_sign_up_list.append(row['value'])

    #generate dataframe
    data = {
        'app_user_id': user_id_list,
        'sign_up_datetime': datetime_list,
        'new_signup_app': new_sign_up_list
    }
    df_New_Signup_App = pd.DataFrame(data)

    return df_New_Signup_App
def EditorAction_pull(from_date, to_date):
    """
    Pull app creator EditorAction-Save events in Mixpanel.
    
    
    Parameters
    ----------
    
    from_date: date
        Start date of query.
        
    to_date: date
        End date of query.
        
        
    Global Variables
    ----------
    
    api_creator_secret: str
        Client secret used to make calls to Mixpanel Creator Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe contains app creator emails, number of EditorAction events, and zEvent = Save filter.
           
    """

    #generate JQL query
    query = JQL(api_creator_secret,
                events=Events({
                    'event_selectors': [{
                        'event': "EditorAction"
                    }],
                    'from_date': from_date,
                    'to_date': to_date
                })).group_by(
                    keys=["e.properties.zUserEmail", "e.properties.zEvent"],
                    accumulator=Reducer.count())

    #initialize lists to record emails, EditorAction events, and zEvent
    user_email_list = []
    EditorAction_list = []
    zevent_list = []

    #process query results
    for row in query.send():
        if row['key'][0] is not None:
            user_email_list.append(row['key'][0])
            zevent_list.append(row['key'][1])
            EditorAction_list.append(row['value'])

    #create dataframe
    data = {
        'email': user_email_list,
        'zevent': zevent_list,
        'EditorAction': EditorAction_list
    }
    df_editor_action = pd.DataFrame(data)

    #filter to only include "Save" editor events
    df_editor_action = df_editor_action[df_editor_action.zevent == 'Save']

    return df_editor_action
Ejemplo n.º 19
0
def user_appstart_pull(from_date, to_date):
    """

    Pull app user AppStart events in Mixpanel.



    Parameters
    ----------

    from_date: date
        Start date of query.

    to_date: date
        End date of query.


    Global Variables
    ----------

    api_user_secret: str
        Client secret used to make calls to Mixpanel User Project.


    Returns
    ----------

    df_user_AppStart: dataframe
        Dataframe contains app creator user ID and number of app users.



    """

    #generate JQL query
    query = JQL(api_user_secret,
                events=Events({
                    'event_selectors': [{
                        'event': "AppStart"
                    }],
                    'from_date': from_date,
                    'to_date': to_date
                })).group_by(keys=[
                    "e.properties.zUserId", "e.properties.zAppOwnerId",
                    "new Date(e.time).toISOString()"
                ],
                             accumulator=Reducer.count())

    #initialize lists to record app user IDs, app creator IDs, app name, and number of AppStarts
    app_user_id_list = []
    owner_id_list = []
    AppStart_list = []
    date_list = []

    #process query results
    for row in query.send():
        if (row['key'][0] is not None) & (row['key'][1] is not None):
            app_user_id_list.append(int(row['key'][0]))
            owner_id_list.append(int(row['key'][1]))
            date_list.append(datetime.strptime(row['key'][2][:10], '%Y-%m-%d'))
            AppStart_list.append(row['value'])

    #generate email
    data = {
        'date': date_list,
        'app_user_id': app_user_id_list,
        'user_id': owner_id_list,
        'AppStart': AppStart_list
    }
    df_AppStart = pd.DataFrame(data)

    #make sure IDs are valid
    df_AppStart = df_AppStart[(df_AppStart.app_user_id > 1)
                              & (df_AppStart.user_id > 1)]

    #remove duplicate users on the same day. Since it was pulled based on timestamp, AppStarts in one day can be on multiple roads
    df_AppStart = df_AppStart.drop_duplicates(
        ['user_id', 'date', 'app_user_id'])

    #get total users and list of user emails for each app creator
    df_user_AppStart = df_AppStart.groupby(
        ['user_id', 'date']).app_user_id.count().reset_index()
    df_user_AppStart = df_user_AppStart.rename(
        columns={'app_user_id': 'num_app_users'})

    return df_user_AppStart
Ejemplo n.º 20
0
def get_users_stats_from_mixpanel(user_data_dict,
                                  is_single_user=False,
                                  include_stats=False):
    """
    This method will fetch user stats from MixPanel using JQL and Candidate Table using SQL
    :param user_data_dict: Dict containing data for all users in system
    :param is_single_user: Are we getting stats for a single user
    :param include_stats: Include statistics of user in response
    :return: Dict containing data for all users in system
    :rtype: dict
    """

    if not include_stats:
        return user_data_dict

    if is_single_user:
        user_data_dict['candidates_count'] = 0
        user_data_dict['logins_per_month'] = 0
        user_data_dict['searches_per_month'] = 0
        user_data_dict['campaigns_count'] = 0
        user_data_dict['pipelines_count'] = 0
        user_data_dict['emails_count'] = 0
    else:
        for user_id, user_data in user_data_dict.iteritems():
            user_data['candidates_count'] = 0
            user_data['logins_per_month'] = 0
            user_data['searches_per_month'] = 0
            user_data['campaigns_count'] = 0
            user_data['pipelines_count'] = 0
            user_data['emails_count'] = 0

    request_origin = request.environ.get('HTTP_ORIGIN', '')
    logger.info('Request Origin for users GET request is: %s', request_origin)

    if not request_origin:
        url_prefix = 'staging.gettalent' if app.config[
            TalentConfigKeys.ENV_KEY] in (
                TalentEnvs.QA, TalentEnvs.DEV,
                TalentEnvs.JENKINS) else 'app.gettalent'
    else:
        parsed_url = urlparse(request_origin)
        url_prefix = parsed_url.netloc

    to_date = datetime.utcnow()
    from_date = to_date - timedelta(days=30)

    if is_single_user:
        selector = '"{}" in properties["$current_url"] and properties["id"] == {}'.format(
            url_prefix, user_data_dict['id'])
    else:
        selector = '"{}" in properties["$current_url"]'.format(url_prefix)

    params = {
        'event_selectors': [{
            'event': 'Login',
            'selector': selector
        }, {
            'event': 'Search',
            'selector': selector
        }],
        'from_date':
        str(from_date.date()),
        'to_date':
        str(to_date.date())
    }
    try:
        query = JQL(app.config[TalentConfigKeys.MIXPANEL_API_KEY],
                    params).group_by(keys=["e.properties.id", "e.name"],
                                     accumulator=Reducer.count())
        iterator = query.send()
    except Exception as e:
        logger.error(
            "Error while fetching user stats from MixPanel because: %s" %
            e.message)
        raise InvalidUsage("Error while fetching user stats")

    for row in iterator:
        user_dict_key = 'logins_per_month' if row['key'][
            1] == 'Login' else 'searches_per_month'
        if is_single_user and row['key'][0] == user_data_dict['id']:
            user_data_dict[user_dict_key] = row['value']
        elif (not is_single_user) and (row['key'][0] in user_data_dict):
            user_data_dict[row['key'][0]][user_dict_key] = row['value']

    # Get Candidate, Pipeline and Campaigns Stats of a User
    if is_single_user:
        user_data_dict['pipelines_count'] = TalentPipeline.query.filter_by(
            user_id=user_data_dict['id']).count()
        user_data_dict['campaigns_count'] = EmailCampaign.query.filter_by(
            user_id=user_data_dict['id']).count()
        user_data_dict['candidates_count'] = Candidate.query.filter_by(
            user_id=user_data_dict['id']).count()
        user_data_dict['emails_count'] = EmailCampaignSend.query.join(
            EmailCampaign).filter(
                EmailCampaign.user_id == user_data_dict['id']).count()

    else:
        users_candidate_count = db.session.query(
            Candidate.user_id,
            func.count(Candidate.user_id)).group_by(Candidate.user_id).all()
        users_pipelines_count = db.session.query(
            TalentPipeline.user_id,
            func.count(TalentPipeline.user_id)).group_by(
                TalentPipeline.user_id).all()
        users_campaigns_count = db.session.query(
            EmailCampaign.user_id, func.count(EmailCampaign.user_id)).group_by(
                EmailCampaign.user_id).all()
        users_emails_count = EmailCampaignSend.query.join(
            EmailCampaign).with_entities(EmailCampaign.user_id,
                                         func.count(
                                             EmailCampaignSend.id)).group_by(
                                                 EmailCampaign.user_id).all()

        for user_id, count in users_candidate_count:
            if user_id in user_data_dict:
                user_data_dict[user_id]['candidates_count'] = count

        for user_id, count in users_pipelines_count:
            if user_id in user_data_dict:
                user_data_dict[user_id]['pipelines_count'] = count

        for user_id, count in users_campaigns_count:
            if user_id in user_data_dict:
                user_data_dict[user_id]['campaigns_count'] = count

        for user_id, count in users_emails_count:
            if user_id in user_data_dict:
                user_data_dict[user_id]['emails_count'] = count

    return user_data_dict
Ejemplo n.º 21
0
def New_Signup_Web_pull(from_date, to_date):
    """
    Pull app creator sign up events in Mixpanel.
    
    
    Parameters
    ----------
    
    from_date: date
        Start date of query.
        
    to_date: date
        End date of query.
        
        
    Global Variables
    ----------
    
    api_creator_secret: str
        Client secret used to make calls to Mixpanel Creator Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe contains user IDs, sign up datetime, new sign up event count, and country for app creators in Mixpanel.
           
    """

    #generate JQL query
    query = JQL(api_creator_secret,
                events=Events({
                    'event_selectors': [{
                        'event': "New Signup Web"
                    }],
                    'from_date': from_date,
                    'to_date': to_date
                })).group_by(keys=[
                    "e.properties.userId", "new Date(e.time).toISOString()"
                ],
                             accumulator=Reducer.count())

    #store emails, user IDs, sign up datetime, and country
    user_id_list = []
    datetime_list = []
    new_sign_up_list = []
    for row in query.send():
        if row['key'][0] is not None:
            user_id_list.append(int(row['key'][0]))
            datetime_list.append(
                datetime.strptime(row['key'][1][:10], '%Y-%m-%d'))
            new_sign_up_list.append(row['value'])

    #generate dataframe
    data = {
        'app_owner_id': user_id_list,
        'date': datetime_list,
        'new_sign_up': new_sign_up_list
    }
    df_New_Signup_Web = pd.DataFrame(data)

    #only keeping ones with actual IDs
    df_New_Signup_Web = df_New_Signup_Web[df_New_Signup_Web.app_owner_id > 1]

    return df_New_Signup_Web
Ejemplo n.º 22
0
def pull_usage(from_date, to_date):
    """
    Pull usage events in Mixpanel.
    
    
    Parameters
    ----------
    
    from_date: date
        Start date of query.
        
    to_date: date
        End date of query.
        
        
    Global Variables
    ----------
    
    api_creator_secret: str
        Client secret used to make calls to Mixpanel Creator Project.
        
        
    Returns
    ----------
    
    dataframe
        Dataframe contains app ID, user IDs, owner ID, and usage event count in Mixpanel.
           
    """

    #generate JQL query
    query = JQL(api_creator_secret,
                events=Events({
                    'event_selectors': [{
                        'event': "Usage"
                    }],
                    'from_date': from_date,
                    'to_date': to_date
                })).group_by(
                    keys=["e.properties.OwnerId", "e.properties.UserId"],
                    accumulator=Reducer.count())

    #store app owner, app, and app user IDs
    app_owner_id_list = []
    app_user_id_list = []
    usage_list = []
    for row in query.send():
        if row['key'][0] is not None:
            app_owner_id_list.append(int(row['key'][0]))
            app_user_id_list.append(int(row['key'][1]))
            usage_list.append(row['value'])

    #generate dataframe
    data = {
        'app_owner_id': app_owner_id_list,
        'app_user_id': app_user_id_list,
        'usage': usage_list
    }
    df_usage = pd.DataFrame(data)

    #only keep app owners and users with proper IDs
    df_usage = df_usage[(df_usage.app_owner_id > 1)
                        & (df_usage.app_user_id > 1)]
    df_usage = df_usage[~df_usage.app_owner_id.isin(
        [10305, 71626])]  #remove for demo accounts

    return df_usage
def user_appstart_pull(from_date, to_date, df_app_users):
    """
    
    Pull app user AppStart events in Mixpanel.
    
    
    
    Parameters
    ----------
    
    from_date: date
        Start date of query.
        
    to_date: date
        End date of query.
        
        
    Global Variables
    ----------
    
    api_user_secret: str
        Client secret used to make calls to Mixpanel User Project.
        
        
    Returns
    ----------
    
    df_user_AppStart: dataframe
        Dataframe contains app creator user ID, list of app user email domains, and number of app users
        
    df_top_appstarts: dataframe
        Dataframe contains app creator user ID and number of AppStarts from top apps
    
           
    """

    #generate JQL query
    query = JQL(api_user_secret,
                events=Events({
                    'event_selectors': [{
                        'event': "AppStart"
                    }],
                    'from_date': from_date,
                    'to_date': to_date
                })).group_by(keys=[
                    "e.properties.zUserId", "e.properties.zAppOwnerId",
                    "e.properties.zAppName"
                ],
                             accumulator=Reducer.count())

    #initialize lists to record app user IDs, app creator IDs, app name, and number of AppStarts
    app_user_id_list = []
    owner_id_list = []
    app_name_list = []
    AppStart_list = []

    #process query results
    for row in query.send():
        if row['key'][0] is not None:
            app_user_id_list.append(row['key'][0])
            owner_id_list.append(row['key'][1])
            app_name_list.append(row['key'][2])
            AppStart_list.append(row['value'])

    #generate email
    data = {
        'app_user_id': app_user_id_list,
        'user_id': owner_id_list,
        'app_name': app_name_list,
        'AppStart': AppStart_list
    }
    df_AppStart = pd.DataFrame(data)

    #merge AppStart and app user dataframes to associate app user emails to number of AppStarts
    df_AppStart = pd.merge(df_AppStart,
                           df_app_users,
                           on='app_user_id',
                           how='left')

    #get total users and list of user emails for each app creator
    df_user_AppStart = df_AppStart.groupby(
        ['user_id', 'app_user_id'])['app_name'].count().reset_index()
    df_user_AppStart = df_user_AppStart.groupby(
        'user_id')['app_user_id'].count().reset_index()
    df_user_AppStart = df_user_AppStart.rename(
        columns={'app_user_id': 'num_app_users'})

    #get app user domain list for each app creator
    df_AppStart_temp = df_AppStart.groupby(
        ['user_id', 'app_user_id',
         'user_email'])['app_name'].count().reset_index()
    df_AppStart_temp['user_email_domains'] = df_AppStart_temp[
        'user_email'].str.split('@').str[1].fillna('')
    df_AppStart_temp = df_AppStart_temp[
        df_AppStart_temp['user_email_domains'] != '']
    df_user_domains_by_creators = df_AppStart_temp.groupby(
        'user_id')['user_email_domains'].apply(list).reset_index()
    df_user_AppStart = pd.merge(df_user_AppStart,
                                df_user_domains_by_creators,
                                on='user_id',
                                how='left')
    df_user_AppStart.loc[df_user_AppStart['user_email_domains'].isnull(),
                         ['user_email_domains']] = df_user_AppStart.loc[
                             df_user_AppStart['user_email_domains'].isnull(),
                             'user_email_domains'].apply(lambda x: [])

    #only keep the app with the highest number of AppStarts for each app creator
    df_top_appstarts = df_AppStart.groupby(
        ['user_id', 'app_name']).AppStart.sum().reset_index().sort_values(
            'AppStart', ascending=False).drop_duplicates('user_id',
                                                         keep='first')
    df_top_appstarts = df_top_appstarts.rename(
        columns={'AppStart': 'appstart_by_top_app'})

    return df_user_AppStart, df_top_appstarts