def testem(self):
        # complex DataSet with HMM sequences and scalar data
        dat = self.gen.sampleSet(100)

        # sampling hmm data
        seq1 = self.h1.hmm.sample(40, 10)
        seq2 = self.h2.hmm.sample(60, 10)

        seq1.merge(seq2)

        data = mixtureHMM.SequenceDataSet()
        data.fromGHMM(dat, [seq1])
        data.internalInit(self.m)

        tA = [[0.5, 0.2, 0.3], [0.2, 0.3, 0.5], [0.1, 0.5, 0.4]]
        tB = [[0.2, 0.4, 0.1, 0.3], [0.5, 0.1, 0.2, 0.2],
              [0.4, 0.3, 0.15, 0.15]]
        tpi = [0.3, 0.3, 0.4]
        th1 = mixtureHMM.getHMM(
            mixtureHMM.ghmm.IntegerRange(0, 4),
            mixtureHMM.ghmm.DiscreteDistribution(
                mixtureHMM.ghmm.IntegerRange(0, 4)), tA, tB, tpi)

        tA2 = [[0.5, 0.4, 0.1], [0.3, 0.2, 0.5], [0.3, 0.2, 0.5]]
        tB2 = [[0.1, 0.1, 0.4, 0.4], [0.1, 0.1, 0.4, 0.4],
               [0.2, 0.1, 0.6, 0.1]]
        tpi2 = [0.3, 0.4, 0.3]
        th2 = mixtureHMM.getHMM(
            mixtureHMM.ghmm.IntegerRange(0, 4),
            mixtureHMM.ghmm.DiscreteDistribution(
                mixtureHMM.ghmm.IntegerRange(0, 4)), tA2, tB2, tpi2)

        tn1 = mixture.NormalDistribution(-1.5, 1.5)
        tn2 = mixture.NormalDistribution(9.0, 1.2)

        tmult1 = mixture.MultinomialDistribution(3,
                                                 4, [0.1, 0.1, 0.55, 0.25],
                                                 alphabet=self.DIAG)
        tmult2 = mixture.MultinomialDistribution(3,
                                                 4, [0.4, 0.3, 0.1, 0.2],
                                                 alphabet=self.DIAG)

        tc1 = mixture.ProductDistribution([tn1, tmult1, th1])
        tc2 = mixture.ProductDistribution([tn2, tmult2, th2])

        tmpi = [0.7, 0.3]
        tm = mixture.MixtureModel(2, tmpi, [tc1, tc2])

        tm.EM(data, 80, 0.1, silent=1)
    def setUp(self):
        # building generating models
        self.DIAG = mixture.Alphabet(['.', '0', '8', '1'])

        A = [[0.3, 0.6, 0.1], [0.0, 0.5, 0.5], [0.4, 0.2, 0.4]]
        B = [[0.5, 0.2, 0.1, 0.2], [0.5, 0.4, 0.05, 0.05],
             [0.8, 0.1, 0.05, 0.05]]
        pi = [1.0, 0.0, 0.0]
        self.h1 = mixtureHMM.getHMM(
            mixtureHMM.ghmm.IntegerRange(0, 4),
            mixtureHMM.ghmm.DiscreteDistribution(
                mixtureHMM.ghmm.IntegerRange(0, 4)), A, B, pi)

        A2 = [[0.5, 0.4, 0.1], [0.3, 0.2, 0.5], [0.3, 0.2, 0.5]]
        B2 = [[0.1, 0.1, 0.4, 0.4], [0.1, 0.1, 0.4, 0.5], [0.2, 0.2, 0.3, 0.3]]
        pi2 = [0.6, 0.4, 0.0]
        self.h2 = mixtureHMM.getHMM(
            mixtureHMM.ghmm.IntegerRange(0, 4),
            mixtureHMM.ghmm.DiscreteDistribution(
                mixtureHMM.ghmm.IntegerRange(0, 4)), A2, B2, pi2)

        n1 = mixture.NormalDistribution(2.5, 0.5)
        n2 = mixture.NormalDistribution(6.0, 0.8)

        mult1 = mixture.MultinomialDistribution(3,
                                                4, [0.23, 0.26, 0.26, 0.25],
                                                alphabet=self.DIAG)
        mult2 = mixture.MultinomialDistribution(3,
                                                4, [0.7, 0.1, 0.1, 0.1],
                                                alphabet=self.DIAG)

        c1 = mixture.ProductDistribution([n1, mult1, self.h1])
        c2 = mixture.ProductDistribution([n2, mult2, self.h2])

        mpi = [0.4, 0.6]
        self.m = mixture.MixtureModel(2, mpi, [c1, c2])

        # mixture for sampling
        gc1 = mixture.ProductDistribution([n1, mult1])
        gc2 = mixture.ProductDistribution([n2, mult2])
        self.gen = mixture.MixtureModel(2, mpi, [gc1, gc2])
Ejemplo n.º 3
0
    def sample(self, returnType='tuple'):

        assert returnType in ['tuple', 'object']

        grand = random.gammavariate(self.shape, self.scale)

        #return grand

        sigma = 1.0 / grand

        #print sigma
        mu = random.normalvariate(self.mu, math.sqrt(self.tau * sigma))
        #mu = random.normalvariate(self.mu, self.tau*sigma )

        if returnType == 'tuple':
            return (mu, sigma)
        elif returnType == 'object':
            return mixture.NormalDistribution(mu, math.sqrt(sigma))
Ejemplo n.º 4
0
def createDistribution(data, distribution):
    # creating a component
    p = data.p
    # type of distribution
    dist = None
    if distribution == 'normal':
        p = []
        for i in range(data.p):
            p.append(mixture.NormalDistribution(0, 1))
        dist = mixture.ProductDistribution(p)
    else:
        sigma = [1]
        beta = []
        for i in range(data.p):
            beta.append(random.normalvariate(0, 1))
        dist = mixture.ProductDistribution(
            [mixtureLinearGaussian.LinearGaussianDistribution(p, beta, sigma)])

    return dist
Ejemplo n.º 5
0
def getRandomMixture(G,
                     p,
                     KL_lower,
                     KL_upper,
                     dtypes='discgauss',
                     M=4,
                     seed=None):

    #    if seed:
    #        random.seed(seed)
    #        mixture._C_mixextend.set_gsl_rng_seed(seed)
    #        #print '*** seed=',seed
    #
    #    else: # XXX debug
    #        seed = random.randint(1,9000000)
    #        mixture._C_mixextend.set_gsl_rng_seed(seed)
    #        random.seed(seed)
    #        #print '*** seed=',seed

    #M = 4  # Alphabet size for discrete distributions

    min_sigma = 0.1  # minimal std for Normal
    max_sigma = 1.0  # maximal std for Normal
    min_mu = -5.0  # minimal mean
    max_mu = 8.0  # maximal mean

    if dtypes == 'disc':
        featureTypes = [0] * p
    elif dtypes == 'gauss':
        featureTypes = [1] * p
    elif dtypes == 'discgauss':
        # discrete or Normal features for now, chosen uniformly
        # 0 discrete, 1 Normal
        featureTypes = [random.choice((0, 1)) for i in range(p)]
    else:
        raise TypeError

    #print featureTypes

    C = []
    for j in range(p):
        c_j = []
        for i in range(G):
            #print i,j
            if featureTypes[j] == 0:
                acc = 0
                while acc == 0:
                    cand = mixture.DiscreteDistribution(
                        M, mixture.random_vector(M))

                    #print 'cand:',cand

                    acc = 1

                    for d in c_j:
                        KL_dist = mixture.sym_kl_dist(d, cand)
                        if KL_dist > KL_upper or KL_dist < KL_lower:
                            #print '  *', cand, 'rejected:', d , KL_dist
                            acc = 0
                            break

                c_j.append(cand)
            elif featureTypes[j] == 1:
                acc = 0
                while acc == 0:
                    mu = random.uniform(min_mu, max_mu)
                    sigma = random.uniform(min_sigma, max_sigma)

                    cand = mixture.NormalDistribution(mu, sigma)

                    #print 'cand:',cand

                    acc = 1

                    for d in c_j:
                        KL_dist = mixture.sym_kl_dist(d, cand)
                        if KL_dist > KL_upper or KL_dist < KL_lower:
                            #print '  *', cand, 'rejected:', d , KL_dist
                            acc = 0

                c_j.append(cand)

            else:
                RuntimeError

        C.append(c_j)


#    print '\n'
#    for cc in C:
#        print cc

    comps = []
    for i in range(G):
        comps.append(mixture.ProductDistribution([C[j][i] for j in range(p)]))

    pi = get_random_pi(G, 0.1)

    m = mixture.MixtureModel(G, pi, comps, struct=1)
    m.updateFreeParams()

    return m
Ejemplo n.º 6
0
def getRandomCSIMixture_conditionalDists(G,
                                         p,
                                         KL_lower,
                                         KL_upper,
                                         M=8,
                                         dtypes='discgauss',
                                         seed=None,
                                         fullstruct=False,
                                         disc_sampling_dist=None):

    #    if seed:
    #        random.seed(seed)
    #        mixture._C_mixextend.set_gsl_rng_seed(seed)
    #        #print '*** seed=',seed
    #
    #    else: # XXX debug
    #        seed = random.randint(1,9999999)
    #        mixture._C_mixextend.set_gsl_rng_seed(seed)
    #        random.seed(seed)
    #        #print '*** seed=',seed

    if disc_sampling_dist == None:
        discSamp = mixture.DirichletPrior(M, [1.0] * M)  # uniform sampling
    else:
        discSamp = disc_sampling_dist

    min_sigma = 0.3  # minimal std for Normal
    max_sigma = 5.0  # maximal std for Normal
    min_mu = -25.0  # minimal mean
    max_mu = 25.0  # maximal mean

    assert dtypes in ['disc', 'gauss', 'discgauss']

    if dtypes == 'disc':
        featureTypes = [0] * p
    elif dtypes == 'gauss':
        featureTypes = [1] * p
    elif dtypes == 'discgauss':
        # discrete or Normal features for now, chosen uniformly
        # 0 discrete, 1 Normal
        featureTypes = [random.choice((0, 1)) for i in range(p)]
    else:
        raise TypeError

    #print featureTypes

    # generate random CSI structures

    if G < 15:
        P = setPartitions.generate_all_partitions(
            G)  # XXX too slow for large G
    #print P

    C = []

    leaders = []
    groups = []
    for j in range(p):
        c_j = {}

        leaders_j = []
        groups_j = {}

        if fullstruct == True:
            struct_j = [(i, ) for i in range(G)]

        elif G < 15:
            struct_j = random.choice(P)
        else:
            print 'WARNING: improper structure sampling !'
            struct_j = setPartitions.get_random_partition(G)

        #print '\nstruct',j,struct_j

        for i, grp in enumerate(struct_j):

            lg = list(grp)

            #print lg

            lgj = lg.pop(0)

            #print lgj

            leaders_j.append(lgj)
            groups_j[lgj] = lg

            max_tries = 100000
            tries = 0

            if featureTypes[j] == 0:
                acc = 0

                while acc == 0:
                    cand = discSamp.sample()

                    #print 'Cand:', cand

                    acc = 1
                    for d in c_j:
                        KL_dist = mixture.sym_kl_dist(c_j[d], cand)

                        #print c_j[d],cand, KL_dist

                        if KL_dist > KL_upper or KL_dist < KL_lower:
                            acc = 0
                            tries += 1
                            break

                    if tries >= max_tries:
                        raise RuntimeError, 'Failed to find separated parameters !'

                for cind in grp:
                    c_j[cind] = cand

            elif featureTypes[j] == 1:
                acc = 0
                while acc == 0:
                    mu = random.uniform(min_mu, max_mu)
                    sigma = random.uniform(min_sigma, max_sigma)
                    cand = mixture.NormalDistribution(mu, sigma)
                    acc = 1

                    for d in c_j:
                        KL_dist = mixture.sym_kl_dist(c_j[d], cand)
                        if KL_dist > KL_upper or KL_dist < KL_lower:
                            acc = 0
                            tries += 1
                            break

                    if tries >= max_tries:
                        raise RuntimeError

                #    print '.',
                #print

                for cind in grp:
                    c_j[cind] = cand

            else:
                RuntimeError

        leaders.append(leaders_j)
        groups.append(groups_j)

        C.append(c_j)

    comps = []
    for i in range(G):
        comps.append(mixture.ProductDistribution([C[j][i] for j in range(p)]))

    pi = get_random_pi(G, 0.3 / G)
    #print '** pi =',pi

    # create prior
    piprior = mixture.DirichletPrior(G, [2.0] * G)

    cprior = []
    for j in range(p):
        if featureTypes[j] == 0:
            cprior.append(mixture.DirichletPrior(M, [1.02] * M))

        elif featureTypes[j] == 1:
            cprior.append(mixture.NormalGammaPrior(
                0, 0, 0, 0))  # dummy parameters, to be set later

        else:
            RuntimeError

    mprior = mixture.MixtureModelPrior(0.1, 0.1, piprior, cprior)

    m = mixture.BayesMixtureModel(G, pi, comps, mprior, struct=1)
    m.leaders = leaders
    m.groups = groups

    m.identifiable()
    m.updateFreeParams()
    #print m

    return m
Ejemplo n.º 7
0
import labeledBayesMixture
import mixture
import copy

# Setting up a three component Bayesian mixture over four features.
# Two features are Normal distributions, two discrete.

# initializing atomar distributions for first component
n11 = mixture.NormalDistribution(1.0, 1.5)
n12 = mixture.NormalDistribution(2.0, 0.5)
d13 = mixture.DiscreteDistribution(4, [0.1, 0.4, 0.4, 0.1])
d14 = mixture.DiscreteDistribution(4, [0.25, 0.25, 0.25, 0.25])

# initializing atomar distributions for second component
n21 = mixture.NormalDistribution(4.0, 0.5)
n22 = mixture.NormalDistribution(-6.0, 0.5)
d23 = mixture.DiscreteDistribution(4, [0.7, 0.1, 0.1, 0.1])
d24 = mixture.DiscreteDistribution(4, [0.1, 0.1, 0.2, 0.6])

# initializing atomar distributions for second component
n31 = mixture.NormalDistribution(2.0, 0.5)
n32 = mixture.NormalDistribution(-3.0, 0.5)
d33 = mixture.DiscreteDistribution(4, [0.1, 0.1, 0.1, 0.7])
d34 = mixture.DiscreteDistribution(4, [0.6, 0.1, 0.2, 0.1])

# creating component distributions
c1 = mixture.ProductDistribution([n11, n12, d13, d14])
c2 = mixture.ProductDistribution([n21, n22, d23, d24])
c3 = mixture.ProductDistribution([n31, n32, d33, d34])

# setting up the mixture prior
            stdev = numpy.std(data[label][call])
            histmaxes = getHistMaxes(hist)
            print(patient, sample, label, call)
            ###THIS IS WHERE YOU FIND THE HISTOGRAM PEAKS###
            ##Data:  data[label][call]
            ##Peaks:  histmaxes
            ##Peak heights:  hist[histmaxes[n]]
            ##Stdev:  stdev

            emdata = mixture.DataSet()
            emdata.fromList(data[label][call])
            numpeaks = len(histmaxes)
            gaussian_objects = []
            weights = []
            for i in xrange(numpeaks):
                n = mixture.NormalDistribution(histmaxes[i], stdev)
                gaussian_objects.append(n)
                weights.append(hist[histmaxes[i]])
            totweight = float(sum(weights))
            weights = [x / totweight for x in weights]
            mymix = mixture.MixtureModel(numpeaks, weights, gaussian_objects)
            # print "Before",mymix
            mymix.EM(emdata, 40, 0.1)
            # print "After",mymix
            print("Number of peaks=", mymix.G)
            for i in range(mymix.G):
                print(mymix.pi[i], mymix.components[i])

            summary.write(patient)
            summary.write("\t" + sample)
            summary.write("\t" + str(len(data[label][call])))
Ejemplo n.º 9
0
    mixtureHMM.ghmm.IntegerRange(0, 4),
    mixtureHMM.ghmm.DiscreteDistribution(mixtureHMM.ghmm.IntegerRange(0, 4)),
    A, B, pi)

#seq = h1.hmm.sample(10,50)
#print seq

A2 = [[0.5, 0.4, 0.1], [0.3, 0.2, 0.5], [0.3, 0.2, 0.5]]
B2 = [[0.1, 0.1, 0.4, 0.4], [0.1, 0.1, 0.4, 0.5], [0.2, 0.2, 0.3, 0.3]]
pi2 = [0.6, 0.4, 0.0]
h2 = mixtureHMM.getHMM(
    mixtureHMM.ghmm.IntegerRange(0, 4),
    mixtureHMM.ghmm.DiscreteDistribution(mixtureHMM.ghmm.IntegerRange(0, 4)),
    A2, B2, pi2)

n1 = mixture.NormalDistribution(2.5, 0.5)
n2 = mixture.NormalDistribution(6.0, 0.8)

mult1 = mixture.MultinomialDistribution(3,
                                        4, [0.23, 0.26, 0.26, 0.25],
                                        alphabet=DIAG)
mult2 = mixture.MultinomialDistribution(3,
                                        4, [0.7, 0.1, 0.1, 0.1],
                                        alphabet=DIAG)

c1 = mixture.ProductDistribution([n1, mult1, h1])
c2 = mixture.ProductDistribution([n2, mult2, h2])

mpi = [0.4, 0.6]
m = mixture.MixtureModel(2, mpi, [c1, c2])
Ejemplo n.º 10
0
data = mixture.DataSet()

# iq.txt = iq and achievement test fields from pheno.txt
# drd4_len.txt = drd4 vntr types, only number of repeats
data.fromFiles(["iq.txt", "phys.txt", "drd4_len.txt"])

COMOR = 11
G = 8
components = []
for i in range(G):

    # intelligence and achivement tests as univariate normal distributions. (TEST)
    bd_mu = float(random.randint(3, 16))
    bd_sigma = random.uniform(1.0, 8.0)
    missing_bd = mixture.NormalDistribution(-9999.9, 0.00001)
    dist_bd = mixture.NormalDistribution(bd_mu, bd_sigma)
    mix_bd = mixture.MixtureModel(2, [0.999, 0.001], [dist_bd, missing_bd],
                                  compFix=[0, 2])

    voc_mu = float(random.randint(3, 16))
    voc_sigma = random.uniform(1.0, 8.0)
    missing_voc = mixture.NormalDistribution(-9999.9, 0.00001)
    dist_voc = mixture.NormalDistribution(voc_mu, voc_sigma)
    mix_voc = mixture.MixtureModel(2, [0.999, 0.001], [dist_voc, missing_voc],
                                   compFix=[0, 2])

    read_mu = float(random.randint(80, 120))
    read_sigma = random.uniform(1.0, 28.0)
    missing_read = mixture.NormalDistribution(-9999.9, 0.00001)
    dist_read = mixture.NormalDistribution(read_mu, read_sigma)
Ejemplo n.º 11
0
    def find_threshold(self, user_params):
        """Finds the thresholds for errors given the data using Gaussian Mixture Model

        Args:
            data: The data to fit

        Kwargs:
            method: Whether to us [min,median,mean] of data in each bin
            thresh: Threshold for find_alpha
            bins: Number of pieces of the data we look at
            plot: Whether to plot the cdf and the two alpha cutoffs

        Returns:
            A soft threshold (alpha0) and A strong threshold (alpha1)

        Raises:
            
        """

        max_gauss_mixtures = user_params.get("max_gauss_mixtures")
        data = self.prob_smoothed

        #print data

        # http://www.pymix.org/pymix/index.php?n=PyMix.Tutorial

        # make two gaussains
        gaussian_one = mixture.NormalDistribution(numpy.mean(data),
                                                  numpy.std(data))
        gaussian_two = mixture.NormalDistribution(10.0 * numpy.mean(data),
                                                  numpy.std(data))

        mixture_model = mixture.MixtureModel(2, [0.99, 0.01],
                                             [gaussian_one, gaussian_two])

        # print mixture_model

        EM_tuned = False
        while not EM_tuned:
            # make mix_data from a random 10% of the original data
            index_array = numpy.arange(data.size)
            numpy.random.shuffle(index_array)
            mix_data = mixture.DataSet()
            data_size = numpy.min((int(numpy.floor(data.size / 10.0)), 50000))
            mix_data.fromArray(data[index_array[:data_size]])

            try:
                mixture_model.randMaxEM(mix_data,
                                        max_gauss_mixtures,
                                        40,
                                        0.001,
                                        silent=True)
                EM_tuned = True
            except AssertionError:
                # pymix likes to throw assertion errors when it has small machine precision errors...
                print "Caught an assertion error in pymix, randomizing input and trying again"
            except:
                print "pymix failed to find mixture model, using single gaussian"
                gaussian_two = mixture.NormalDistribution(
                    numpy.mean(data), numpy.std(data))
                EM_tuned = True

        #print mixture_model

        # hacky, no good api access to the model components
        gauss_one_mean = float(
            str(mixture_model.components[0][0]).split('[')[1].split(',')[0])
        gauss_one_std = float(
            str(mixture_model.components[0][0]).split(', ')[1].split(']')[0])

        gauss_two_mean = float(
            str(mixture_model.components[1][0]).split('[')[1].split(',')[0])
        gauss_two_std = float(
            str(mixture_model.components[1][0]).split(', ')[1].split(']')[0])

        print "Gauss1: mu: %f, std: %f" % (gauss_one_mean, gauss_one_std)
        print "Gauss2: mu: %f, std: %f" % (gauss_two_mean, gauss_two_std)

        #print "Using threshold %f" % threshold

        # inv normal cdf
        if gauss_one_mean > gauss_two_mean or mixture_model.pi[1] < 0.60:
            self.thresh_main_mean = gauss_one_mean
            self.thresh_main_std = gauss_one_std
        else:
            self.thresh_main_mean = gauss_two_mean
            self.thresh_main_std = gauss_two_std
Ejemplo n.º 12
0
for i in range(2):
    compPrior.append( mixture.NormalGammaDistribution( 1.0,2.0,3.0,4.0 ) )

mixPrior = mixture.MixturePrior(0.7,0.7,piPrior, compPrior)

DNA = mixture.Alphabet(['A','C','G','T'])
comps = []
for i in range(G):
    dlist = []
    for j in range(2):
       phi = mixture.random_vector(4)
       dlist.append( mixture.DiscreteDistribution(4,phi,DNA))
    for j in range(2):
       mu = j+1.0
       sigma = j+0.5
       dlist.append( mixture.NormalDistribution(mu,sigma))


    comps.append(mixture.ProductDistribution(dlist))
pi = mixture.random_vector(G)

m = mixture.BayesMixtureModel(G,pi, comps, mixPrior, struct = 1)

mixture.writeMixture(m, 'test.bmix')


m2 = mixture.readMixture('test.bmix')


print m2
print m2.prior
Ejemplo n.º 13
0
import mixture

# Example for context-specific independence (CSI) structure learning.
# First we generate a data set from a three component mixture with a CSI like structure
# in the distribution parameters. Then a  five component CSI mixture is trained.
# The training should recover the true number of components (three),
# the CSI structure of the generating model as well as the distribution parameters.

# Setting up the generating model. This is a benign case in the
# sense that the components are reasonably well separated and we
# allow ourselves plenty of training data.

# Component distributions
n11 = mixture.NormalDistribution(1.0, 0.5)
n12 = mixture.NormalDistribution(2.0, 1.5)
n13 = mixture.NormalDistribution(3.0, 0.7)
d14 = mixture.DiscreteDistribution(4, [0.4, 0.3, 0.1, 0.2])

c1 = mixture.ProductDistribution([n11, n12, n13, d14])

n21 = mixture.NormalDistribution(1.0, 0.5)
n22 = mixture.NormalDistribution(-6.0, 0.5)
n23 = mixture.NormalDistribution(3.0, 0.7)
d24 = mixture.DiscreteDistribution(4, [0.1, 0.1, 0.4, 0.4])

c2 = mixture.ProductDistribution([n21, n22, n23, d24])

n31 = mixture.NormalDistribution(2.0, 0.5)
n32 = mixture.NormalDistribution(-3.0, 0.5)
n33 = mixture.NormalDistribution(3.0, 0.7)
d34 = mixture.DiscreteDistribution(4, [0.4, 0.3, 0.1, 0.2])
Ejemplo n.º 14
0
def clustering(k, feature_cols, feature_domains, header, table, seeds,
               result_file):
    best_loglike = None
    best_model = None
    # Giant random seeding loop,

    data = mx.DataSet()
    data.fromArray(table)
    for r in range(1):
        #  weights = np.random.random_sample(k)
        #  weights_norm = weights / sum(weights)
        weights_norm = [1.0 / k] * k
        components = []
        for i in range(k):
            products = []
            for j in range(table.shape[1]):
                col_type = prep.get_col_type(feature_cols[j], header)
                col_id = feature_cols[j]

                if col_type == 'cat':
                    vals = feature_domains[col_id].keys()
                    cnt_vals = len(vals)
                    rand_dist = np.random.random_sample(cnt_vals)

                    dist = mx.DiscreteDistribution(cnt_vals,
                                                   rand_dist / sum(rand_dist),
                                                   mx.Alphabet(vals))

                elif col_type == 'num':
                    min_val = feature_domains[col_id]['min']
                    max_val = feature_domains[col_id]['max']
                    #  mean = random.uniform(min_val, max_val)
                    mean = seeds[header[col_id][0]][i]
                    stdev = (max_val - min_val) / 2.0 / k

                    dist = mx.NormalDistribution(mean, stdev)

                else:
                    sys.exit(1)
                products.append(dist)

            comp = mx.ProductDistribution(products)
            components.append(comp)

        mix_table = mx.MixtureModel(k, weights_norm, components)
        print mix_table

        #loglike = mix_table.randMaxEM(data,1,50,50)
        #print loglike
        #print mix_table
        if not best_loglike or loglike > best_loglike:
            #  best_loglike = loglike
            best_model = copy.copy(mix_table)


#data.internalInit(mix)
# mix_table.modelInitialization(data)
#  print best_loglike
#  print best_model

    labels = best_model.classify(data, None, None, 1)

    ## output clustering results

    # count cluster sizes on sampled data
    f = open(result_file + '.stats', 'w')
    cnt = {}
    for l in labels:
        cnt[l] = 1 if l not in cnt else cnt[l] + 1

    for l in cnt:
        f.write('%s %d %f%%\n' %
                (l, cnt[l], cnt[l] * 100.0 / sum(cnt.values())))
    f.close()

    mx.writeMixture(best_model, result_file + '.model')
    return best_model