Ejemplo n.º 1
0
    def test_preprocessing_network_onnx(self):
        feature_value_map = read_data()

        for feature_name, feature_values in feature_value_map.items():
            normalization_parameters = normalization.identify_parameter(
                feature_name,
                feature_values,
                feature_type=self._feature_type_override(feature_name),
            )
            feature_values[
                0
            ] = MISSING_VALUE  # Set one entry to MISSING_VALUE to test that
            feature_values_matrix = np.expand_dims(feature_values, -1)

            preprocessor = Preprocessor({feature_name: normalization_parameters}, False)
            normalized_feature_values = preprocessor.forward(feature_values_matrix)

            input_blob, output_blob, netdef = PytorchCaffe2Converter.pytorch_net_to_caffe2_netdef(
                preprocessor, 1, False, float_input=True
            )

            preproc_workspace = netdef.workspace

            preproc_workspace.FeedBlob(input_blob, feature_values_matrix)

            preproc_workspace.RunNetOnce(core.Net(netdef.init_net))
            preproc_workspace.RunNetOnce(core.Net(netdef.predict_net))

            normalized_feature_values_onnx = netdef.workspace.FetchBlob(output_blob)
            tolerance = 0.0001
            non_matching = np.where(
                np.logical_not(
                    np.isclose(
                        normalized_feature_values,
                        normalized_feature_values_onnx,
                        rtol=tolerance,
                        atol=tolerance,
                    )
                )
            )
            self.assertTrue(
                np.all(
                    np.isclose(
                        normalized_feature_values,
                        normalized_feature_values_onnx,
                        rtol=tolerance,
                        atol=tolerance,
                    )
                ),
                "{} does not match: {} \n!=\n {}".format(
                    feature_name,
                    normalized_feature_values[non_matching].tolist()[0:10],
                    normalized_feature_values_onnx[non_matching].tolist()[0:10],
                ),
            )
    def export(
        cls,
        trainer,
        state_normalization_parameters,
        action_normalization_parameters,
        int_features=False,
        model_on_gpu=False,
    ):
        """Export caffe2 preprocessor net and pytorch DQN forward pass as one
        caffe2 net.

        :param trainer ParametricDQNTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param action_normalization_parameters action NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        :param model_on_gpu boolean indicating if the model is a GPU model or CPU model
        """

        input_dim = trainer.num_features
        if isinstance(trainer.q_network, DataParallel):
            trainer.q_network = trainer.q_network.module

        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            trainer.q_network, input_dim, model_on_gpu
        )
        qnet_input_blob, qnet_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
            buffer
        )
        torch_workspace = caffe2_netdef.workspace

        parameters = torch_workspace.Blobs()
        for blob_str in parameters:
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)
        # While converting to metanetdef, the external_input of predict_net
        # will be recomputed. Add the real output of init_net to parameters
        # to make sure they will be counted.
        parameters.extend(
            set(caffe2_netdef.init_net.external_output)
            - set(caffe2_netdef.init_net.external_input)
        )

        # ensure state and action IDs have no intersection
        assert (
            len(
                set(state_normalization_parameters.keys())
                & set(action_normalization_parameters.keys())
            )
            == 0
        )

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob("input/float_features.lengths", np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys", np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values", np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob(
                "input/int_features.lengths", np.zeros(1, dtype=np.int32)
            )
            workspace.FeedBlob("input/int_features.keys", np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values", np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [input_feature_lengths, input_feature_keys, input_feature_values],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"], [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"], [input_feature_values])

        preprocessor = PreprocessorNet(True)
        sorted_state_features, _ = sort_features_by_normalization(
            state_normalization_parameters
        )
        state_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            sorted_state_features,
        )
        parameters.extend(new_parameters)
        state_normalized_dense_matrix, new_parameters = preprocessor.normalize_dense_matrix(
            state_dense_matrix,
            sorted_state_features,
            state_normalization_parameters,
            "state_norm",
            False,
        )
        parameters.extend(new_parameters)

        sorted_action_features, _ = sort_features_by_normalization(
            action_normalization_parameters
        )
        action_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            sorted_action_features,
        )
        parameters.extend(new_parameters)
        action_normalized_dense_matrix, new_parameters = preprocessor.normalize_dense_matrix(
            action_dense_matrix,
            sorted_action_features,
            action_normalization_parameters,
            "action_norm",
            False,
        )
        parameters.extend(new_parameters)

        state_action_normalized = "state_action_normalized"
        state_action_normalized_dim = "state_action_normalized_dim"
        net.Concat(
            [state_normalized_dense_matrix, action_normalized_dense_matrix],
            [state_action_normalized, state_action_normalized_dim],
            axis=1,
        )

        net.Copy([state_action_normalized], [qnet_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_predict_net)

        new_parameters, q_values = RLPredictor._forward_pass(
            model, trainer, state_action_normalized, ["Q"], qnet_output_blob
        )
        parameters.extend(new_parameters)

        flat_q_values_key = (
            "output/string_weighted_multi_categorical_features.values.values"
        )
        num_examples, _ = C2.Reshape(C2.Size(flat_q_values_key), shape=[1])
        q_value_blob, _ = C2.Reshape(flat_q_values_key, shape=[1, -1])

        # Get 1 x n (number of examples) action index tensor under the max_q policy
        max_q_act_idxs = "max_q_policy_actions"
        C2.net().FlattenToVec([C2.ArgMax(q_value_blob)], [max_q_act_idxs])
        max_q_act_blob = C2.Tile(max_q_act_idxs, num_examples, axis=0)

        # Get 1 x n (number of examples) action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32)
        )
        tempered_q_values = C2.Div(q_value_blob, temperature, broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = "softmax_act_idxs_nested"
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_blob = C2.Tile(
            C2.FlattenToVec(softmax_act_idxs_nested), num_examples, axis=0
        )

        # Concat action idx vecs to get 2 x n tensor [[a_maxq, ..], [a_softmax, ..]]
        # transpose & flatten to get [a_maxq, a_softmax, a_maxq, a_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_blob, to=caffe2_pb2.TensorProto.INT64)
        softmax_act_blob = C2.Cast(softmax_act_blob, to=caffe2_pb2.TensorProto.INT64)
        max_q_act_blob_nested, _ = C2.Reshape(max_q_act_blob, shape=[1, -1])
        softmax_act_blob_nested, _ = C2.Reshape(softmax_act_blob, shape=[1, -1])
        C2.net().Append(
            [max_q_act_blob_nested, softmax_act_blob_nested], [max_q_act_blob_nested]
        )
        transposed_action_idxs = C2.Transpose(max_q_act_blob_nested)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        output_values = "output/int_single_categorical_features.values"
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64))
        C2.net().Copy([flat_transposed_action_idxs], [output_values])

        output_lengths = "output/int_single_categorical_features.lengths"
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [flat_q_values_key],
            [output_lengths],
            value=2,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        output_keys = "output/int_single_categorical_features.keys"
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1], value=0, dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1], value=1, dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_examples, axis=0)
        C2.net().FlattenToVec([output_key_tile], [output_keys])

        workspace.CreateNet(net)
        return ParametricDQNPredictor(net, torch_init_net, parameters, int_features)
Ejemplo n.º 3
0
def benchmark(num_forward_passes):
    """
    Benchmark preprocessor speeds:
        1 - PyTorch
        2 - PyTorch -> ONNX -> C2
        3 - C2
    """

    feature_value_map = gen_data(
        num_binary_features=10,
        num_boxcox_features=10,
        num_continuous_features=10,
        num_enum_features=10,
        num_prob_features=10,
        num_quantile_features=10,
    )

    normalization_parameters = {}
    for name, values in feature_value_map.items():
        normalization_parameters[name] = normalization.identify_parameter(
            name, values, 10
        )

    sorted_features, _ = sort_features_by_normalization(normalization_parameters)

    # Dummy input
    input_matrix = np.zeros([10000, len(sorted_features)], dtype=np.float32)

    # PyTorch Preprocessor
    pytorch_preprocessor = Preprocessor(normalization_parameters, False)
    for i, feature in enumerate(sorted_features):
        input_matrix[:, i] = feature_value_map[feature]

    #################### time pytorch ############################
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        _ = pytorch_preprocessor.forward(input_matrix)
    end = time.time()
    logger.info(
        "PyTorch: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )

    ################ time pytorch -> ONNX -> caffe2 ####################
    buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
        pytorch_preprocessor, len(sorted_features), False
    )
    input_blob, output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
        buffer
    )
    torch_workspace = caffe2_netdef.workspace
    parameters = torch_workspace.Blobs()
    for blob_str in parameters:
        workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))
    torch_init_net = core.Net(caffe2_netdef.init_net)
    torch_predict_net = core.Net(caffe2_netdef.predict_net)
    input_matrix_blob = "input_matrix_blob"
    workspace.FeedBlob(input_blob, input_matrix)
    workspace.RunNetOnce(torch_init_net)
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        workspace.RunNetOnce(torch_predict_net)
        _ = workspace.FetchBlob(output_blob)
    end = time.time()
    logger.info(
        "PyTorch -> ONNX -> Caffe2: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )

    #################### time caffe2 ############################
    norm_net = core.Net("net")
    C2.set_net(norm_net)
    preprocessor = PreprocessorNet()
    input_matrix_blob = "input_matrix_blob"
    workspace.FeedBlob(input_matrix_blob, np.array([], dtype=np.float32))
    output_blob, _ = preprocessor.normalize_dense_matrix(
        input_matrix_blob, sorted_features, normalization_parameters, "", False
    )
    workspace.FeedBlob(input_matrix_blob, input_matrix)
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        workspace.RunNetOnce(norm_net)
        workspace.FetchBlob(output_blob)
    end = time.time()
    logger.info(
        "Caffe2: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )
Ejemplo n.º 4
0
    def export(
        cls,
        trainer,
        actions,
        state_normalization_parameters,
        int_features=False,
        model_on_gpu=False,
        set_missing_value_to_zero=False,
    ):
        """Export caffe2 preprocessor net and pytorch DQN forward pass as one
        caffe2 net.

        :param trainer DQNTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        :param model_on_gpu boolean indicating if the model is a GPU model or CPU model
        """

        input_dim = trainer.num_features

        q_network = (trainer.q_network.module if isinstance(
            trainer.q_network, DataParallel) else trainer.q_network)

        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            q_network, input_dim, model_on_gpu)
        qnet_input_blob, qnet_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
            buffer)
        torch_workspace = caffe2_netdef.workspace

        parameters = torch_workspace.Blobs()
        for blob_str in parameters:
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)
        logger.info("Generated ONNX predict net:")
        logger.info(str(torch_predict_net.Proto()))
        # While converting to metanetdef, the external_input of predict_net
        # will be recomputed. Add the real output of init_net to parameters
        # to make sure they will be counted.
        parameters.extend(
            set(caffe2_netdef.init_net.external_output) -
            set(caffe2_netdef.init_net.external_input))

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob("input/image", np.zeros([1, 1, 1, 1],
                                                   dtype=np.int32))
        workspace.FeedBlob("input/float_features.lengths",
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys",
                           np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values",
                           np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob("input/int_features.lengths",
                               np.zeros(1, dtype=np.int32))
            workspace.FeedBlob("input/int_features.keys",
                               np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values",
                               np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [
                    input_feature_lengths, input_feature_keys,
                    input_feature_values
                ],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"],
                          [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"],
                          [input_feature_values])

        if state_normalization_parameters is not None:
            sorted_feature_ids = sort_features_by_normalization(
                state_normalization_parameters)[0]
            dense_matrix, new_parameters = sparse_to_dense(
                input_feature_lengths,
                input_feature_keys,
                input_feature_values,
                sorted_feature_ids,
                set_missing_value_to_zero=set_missing_value_to_zero,
            )
            parameters.extend(new_parameters)
            preprocessor_net = PreprocessorNet()
            state_normalized_dense_matrix, new_parameters = preprocessor_net.normalize_dense_matrix(
                dense_matrix,
                sorted_feature_ids,
                state_normalization_parameters,
                "state_norm_",
                True,
            )
            parameters.extend(new_parameters)
        else:
            # Image input.  Note: Currently this does the wrong thing if
            #   more than one image is passed at a time.
            state_normalized_dense_matrix = "input/image"

        net.Copy([state_normalized_dense_matrix], [qnet_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_predict_net)

        new_parameters, q_values = RLPredictor._forward_pass(
            model, trainer, state_normalized_dense_matrix, actions,
            qnet_output_blob)
        parameters.extend(new_parameters)

        # Get 1 x n action index tensor under the max_q policy
        max_q_act_idxs = "max_q_policy_actions"
        C2.net().Flatten([C2.ArgMax(q_values)], [max_q_act_idxs], axis=0)
        shape_of_num_of_states = "num_states_shape"
        C2.net().FlattenToVec([max_q_act_idxs], [shape_of_num_of_states])
        num_states, _ = C2.Reshape(C2.Size(shape_of_num_of_states), shape=[1])

        # Get 1 x n action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32))
        tempered_q_values = C2.Div(q_values, temperature, broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = "softmax_act_idxs_nested"
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_idxs = "softmax_policy_actions"
        C2.net().Flatten([softmax_act_idxs_nested], [softmax_act_idxs], axis=0)

        action_names = C2.NextBlob("action_names")
        parameters.append(action_names)
        workspace.FeedBlob(action_names, np.array(actions))

        # Concat action index tensors to get 2 x n tensor - [[max_q], [softmax]]
        # transpose & flatten to get [a1_maxq, a1_softmax, a2_maxq, a2_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_idxs,
                                 to=caffe2_pb2.TensorProto.INT32)
        softmax_act_blob = C2.Cast(softmax_act_idxs,
                                   to=caffe2_pb2.TensorProto.INT32)
        C2.net().Append([max_q_act_blob, softmax_act_blob], [max_q_act_blob])
        transposed_action_idxs = C2.Transpose(max_q_act_blob)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        workspace.FeedBlob(OUTPUT_SINGLE_CAT_VALS_NAME,
                           np.zeros(1, dtype=np.int64))
        C2.net().Gather([action_names, flat_transposed_action_idxs],
                        [OUTPUT_SINGLE_CAT_VALS_NAME])

        workspace.FeedBlob(OUTPUT_SINGLE_CAT_LENGTHS_NAME,
                           np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [shape_of_num_of_states],
            [OUTPUT_SINGLE_CAT_LENGTHS_NAME],
            value=2,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        workspace.FeedBlob(OUTPUT_SINGLE_CAT_KEYS_NAME,
                           np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1],
                            value=0,
                            dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1],
                            value=1,
                            dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_states, axis=0)
        C2.net().FlattenToVec([output_key_tile], [OUTPUT_SINGLE_CAT_KEYS_NAME])

        workspace.CreateNet(net)
        return DQNPredictor(net, torch_init_net, parameters, int_features)
Ejemplo n.º 5
0
    def generate_train_net(
        cls,
        trainer,
        model,
        min_action_range_tensor_serving,
        max_action_range_tensor_serving,
        model_on_gpu,
    ):
        input_dim = trainer.state_dim
        if isinstance(trainer.actor, DataParallel):
            trainer.actor = trainer.actor.module

        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            trainer.actor, input_dim, model_on_gpu
        )
        actor_input_blob, actor_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
            buffer
        )
        torch_workspace = caffe2_netdef.workspace
        torch_parameters = torch_workspace.Blobs()

        parameters = []
        for blob_str in torch_parameters:
            if str(blob_str) == str(actor_input_blob):
                continue
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))
            parameters.append(str(blob_str))

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)
        # While converting to metanetdef, the external_input of predict_net
        # will be recomputed. Add the real output of init_net to parameters
        # to make sure they will be counted.
        parameters.extend(
            set(caffe2_netdef.init_net.external_output)
            - set(caffe2_netdef.init_net.external_input)
        )

        # Feed action scaling tensors for serving
        min_action_serving_blob = C2.NextBlob("min_action_range_tensor_serving")
        workspace.FeedBlob(
            min_action_serving_blob, min_action_range_tensor_serving.cpu().data.numpy()
        )
        parameters.append(str(min_action_serving_blob))

        max_action_serving_blob = C2.NextBlob("max_action_range_tensor_serving")
        workspace.FeedBlob(
            max_action_serving_blob, max_action_range_tensor_serving.cpu().data.numpy()
        )
        parameters.append(str(max_action_serving_blob))

        # Feed action scaling tensors for training [-1, 1] due to tanh actor
        min_vals_training = trainer.min_action_range_tensor_training.cpu().data.numpy()
        min_action_training_blob = C2.NextBlob("min_action_range_tensor_training")
        workspace.FeedBlob(min_action_training_blob, min_vals_training)
        parameters.append(str(min_action_training_blob))

        max_vals_training = trainer.max_action_range_tensor_training.cpu().data.numpy()
        max_action_training_blob = C2.NextBlob("max_action_range_tensor_training")
        workspace.FeedBlob(max_action_training_blob, max_vals_training)
        parameters.append(str(max_action_training_blob))

        return (
            torch_init_net,
            torch_predict_net,
            parameters,
            actor_input_blob,
            actor_output_blob,
            min_action_training_blob,
            max_action_training_blob,
            min_action_serving_blob,
            max_action_serving_blob,
        )
Ejemplo n.º 6
0
    def export_critic(
        cls,
        trainer,
        state_normalization_parameters,
        action_normalization_parameters,
        int_features=False,
        model_on_gpu=False,
    ):
        """Export caffe2 preprocessor net and pytorch critic forward pass as one
        caffe2 net.

        :param trainer DDPGTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param action_normalization_parameters action NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        """
        input_dim = trainer.state_dim + trainer.action_dim
        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            trainer.critic, input_dim, model_on_gpu
        )
        critic_input_blob, critic_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
            buffer
        )
        torch_workspace = caffe2_netdef.workspace

        parameters = []
        for blob_str in torch_workspace.Blobs():
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))
            parameters.append(blob_str)

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob("input/float_features.lengths", np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys", np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values", np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob(
                "input/int_features.lengths", np.zeros(1, dtype=np.int32)
            )
            workspace.FeedBlob("input/int_features.keys", np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values", np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [input_feature_lengths, input_feature_keys, input_feature_values],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"], [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"], [input_feature_values])

        preprocessor = PreprocessorNet(True)
        state_normalized_dense_matrix, new_parameters = preprocessor.normalize_sparse_matrix(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            state_normalization_parameters,
            "state_norm",
            False,
            False,
        )
        parameters.extend(new_parameters)

        # Don't normalize actions, just go from sparse -> dense
        action_dense_matrix, new_parameters = preprocessor.normalize_sparse_matrix(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            action_normalization_parameters,
            "action_norm",
            False,
            False,
            normalize=False,
        )
        parameters.extend(new_parameters)
        state_action_normalized = "state_action_normalized"
        state_action_normalized_dim = "state_action_normalized_dim"
        net.Concat(
            [state_normalized_dense_matrix, action_dense_matrix],
            [state_action_normalized, state_action_normalized_dim],
            axis=1,
        )
        net.Copy([state_action_normalized], [critic_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_init_net)
        net.AppendNet(torch_predict_net)

        C2.FlattenToVec(C2.ArgMax(critic_output_blob))
        output_lengths = "output/float_features.lengths"
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [C2.FlattenToVec(C2.ArgMax(critic_output_blob))],
            [output_lengths],
            value=trainer.critic.layers[-1].out_features,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        output_keys = "output/float_features.keys"
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int32))
        C2.net().LengthsRangeFill([output_lengths], [output_keys])

        output_values = "output/float_features.values"
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.float32))
        C2.net().FlattenToVec([critic_output_blob], [output_values])

        workspace.CreateNet(net)
        return DDPGPredictor(net, parameters, int_features)
Ejemplo n.º 7
0
    def export_actor(
        cls,
        trainer,
        state_normalization_parameters,
        min_action_range_tensor_serving,
        max_action_range_tensor_serving,
        int_features=False,
        model_on_gpu=False,
    ):
        """Export caffe2 preprocessor net and pytorch actor forward pass as one
        caffe2 net.

        :param trainer DDPGTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param min_action_range_tensor_serving pytorch tensor that specifies
            min action value for each dimension
        :param max_action_range_tensor_serving pytorch tensor that specifies
            min action value for each dimension
        :param state_normalization_parameters state NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        :param model_on_gpu boolean indicating if the model is a GPU model or CPU model
        """
        input_dim = trainer.state_dim
        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            trainer.actor, input_dim, model_on_gpu
        )
        actor_input_blob, actor_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
            buffer
        )
        torch_workspace = caffe2_netdef.workspace

        parameters = torch_workspace.Blobs()
        for blob_str in parameters:
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        # Feed action scaling tensors for serving
        min_action_serving_blob = C2.NextBlob("min_action_range_tensor_serving")
        workspace.FeedBlob(
            min_action_serving_blob, min_action_range_tensor_serving.cpu().data.numpy()
        )
        parameters.append(str(min_action_serving_blob))

        max_action_serving_blob = C2.NextBlob("max_action_range_tensor_serving")
        workspace.FeedBlob(
            max_action_serving_blob, max_action_range_tensor_serving.cpu().data.numpy()
        )
        parameters.append(str(max_action_serving_blob))

        # Feed action scaling tensors for training [-1, 1] due to tanh actor
        min_vals_training = trainer.min_action_range_tensor_training.cpu().data.numpy()
        min_action_training_blob = C2.NextBlob("min_action_range_tensor_training")
        workspace.FeedBlob(min_action_training_blob, min_vals_training)
        parameters.append(str(min_action_training_blob))

        max_vals_training = trainer.max_action_range_tensor_training.cpu().data.numpy()
        max_action_training_blob = C2.NextBlob("max_action_range_tensor_training")
        workspace.FeedBlob(max_action_training_blob, max_vals_training)
        parameters.append(str(max_action_training_blob))

        workspace.FeedBlob("input/float_features.lengths", np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys", np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values", np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob(
                "input/int_features.lengths", np.zeros(1, dtype=np.int32)
            )
            workspace.FeedBlob("input/int_features.keys", np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values", np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [input_feature_lengths, input_feature_keys, input_feature_values],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"], [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"], [input_feature_values])

        preprocessor = PreprocessorNet(True)
        state_normalized_dense_matrix, new_parameters = preprocessor.normalize_sparse_matrix(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            state_normalization_parameters,
            "state_norm",
            False,
            False,
        )
        parameters.extend(new_parameters)
        net.Copy([state_normalized_dense_matrix], [actor_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_predict_net)

        C2.FlattenToVec(C2.ArgMax(actor_output_blob))
        output_lengths = "output/float_features.lengths"
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [C2.FlattenToVec(C2.ArgMax(actor_output_blob))],
            [output_lengths],
            value=trainer.actor.layers[-1].out_features,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        output_keys = "output/float_features.keys"
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int32))
        C2.net().LengthsRangeFill([output_lengths], [output_keys])

        output_values = "output/float_features.values"
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.float32))
        # Scale actors actions from [-1, 1] to serving range
        prev_range = C2.Sub(max_action_training_blob, min_action_training_blob)
        new_range = C2.Sub(max_action_serving_blob, min_action_serving_blob)
        subtract_prev_min = C2.Sub(actor_output_blob, min_action_training_blob)
        div_by_prev_range = C2.Div(subtract_prev_min, prev_range)
        scaled_for_serving_actions = C2.Add(
            C2.Mul(div_by_prev_range, new_range), min_action_serving_blob
        )
        C2.net().FlattenToVec([scaled_for_serving_actions], [output_values])

        workspace.CreateNet(net)
        return DDPGPredictor(net, parameters, int_features)
Ejemplo n.º 8
0
def benchmark(num_forward_passes):
    """
    Benchmark preprocessor speeds:
        1 - PyTorch
        2 - PyTorch -> ONNX -> C2
        3 - C2
    """

    feature_value_map = gen_data(
        num_binary_features=10,
        num_boxcox_features=10,
        num_continuous_features=10,
        num_enum_features=10,
        num_prob_features=10,
        num_quantile_features=10,
    )

    normalization_parameters = {}
    for name, values in feature_value_map.items():
        normalization_parameters[name] = normalization.identify_parameter(
            name, values, 10
        )

    sorted_features, _ = sort_features_by_normalization(normalization_parameters)

    # Dummy input
    input_matrix = np.zeros([10000, len(sorted_features)], dtype=np.float32)

    # PyTorch Preprocessor
    pytorch_preprocessor = Preprocessor(normalization_parameters, False)
    for i, feature in enumerate(sorted_features):
        input_matrix[:, i] = feature_value_map[feature]

    #################### time pytorch ############################
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        _ = pytorch_preprocessor.forward(input_matrix)
    end = time.time()
    logger.info(
        "PyTorch: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )

    ################ time pytorch -> ONNX -> caffe2 ####################
    buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
        pytorch_preprocessor, len(sorted_features), False
    )
    input_blob, output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
        buffer
    )
    torch_workspace = caffe2_netdef.workspace
    parameters = torch_workspace.Blobs()
    for blob_str in parameters:
        workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))
    torch_init_net = core.Net(caffe2_netdef.init_net)
    torch_predict_net = core.Net(caffe2_netdef.predict_net)
    input_matrix_blob = "input_matrix_blob"
    workspace.FeedBlob(input_blob, input_matrix)
    workspace.RunNetOnce(torch_init_net)
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        workspace.RunNetOnce(torch_predict_net)
        _ = workspace.FetchBlob(output_blob)
    end = time.time()
    logger.info(
        "PyTorch -> ONNX -> Caffe2: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )

    #################### time caffe2 ############################
    norm_net = core.Net("net")
    C2.set_net(norm_net)
    preprocessor = PreprocessorNet()
    input_matrix_blob = "input_matrix_blob"
    workspace.FeedBlob(input_matrix_blob, np.array([], dtype=np.float32))
    output_blob, _ = preprocessor.normalize_dense_matrix(
        input_matrix_blob, sorted_features, normalization_parameters, "", False
    )
    workspace.FeedBlob(input_matrix_blob, input_matrix)
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        workspace.RunNetOnce(norm_net)
        _ = workspace.FetchBlob(output_blob)
    end = time.time()
    logger.info(
        "Caffe2: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )
Ejemplo n.º 9
0
    def export_actor(cls,
                     trainer,
                     state_normalization_parameters,
                     int_features=False):
        """Export caffe2 preprocessor net and pytorch actor forward pass as one
        caffe2 net.

        :param trainer DDPGTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        """
        input_dim = len(state_normalization_parameters)
        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            trainer.actor, input_dim)
        actor_input_blob, actor_output_blob, caffe2_netdef =\
            PytorchCaffe2Converter.buffer_to_caffe2_netdef(buffer)
        torch_workspace = caffe2_netdef.workspace

        parameters = []
        for blob_str in torch_workspace.Blobs():
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))
            parameters.append(blob_str)

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob('input/float_features.lengths',
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob('input/float_features.keys',
                           np.zeros(1, dtype=np.int64))
        workspace.FeedBlob('input/float_features.values',
                           np.zeros(1, dtype=np.float32))

        input_feature_lengths = 'input_feature_lengths'
        input_feature_keys = 'input_feature_keys'
        input_feature_values = 'input_feature_values'

        if int_features:
            workspace.FeedBlob('input/int_features.lengths',
                               np.zeros(1, dtype=np.int32))
            workspace.FeedBlob('input/int_features.keys',
                               np.zeros(1, dtype=np.int64))
            workspace.FeedBlob('input/int_features.values',
                               np.zeros(1, dtype=np.int32))
            C2.net().Cast(['input/int_features.values'],
                          ['input/int_features.values_float'],
                          dtype=caffe2_pb2.TensorProto.FLOAT)
            C2.net().MergeMultiScalarFeatureTensors([
                'input/float_features.lengths', 'input/float_features.keys',
                'input/float_features.values', 'input/int_features.lengths',
                'input/int_features.keys', 'input/int_features.values_float'
            ], [
                input_feature_lengths, input_feature_keys, input_feature_values
            ])
        else:
            C2.net().Copy(['input/float_features.lengths'],
                          [input_feature_lengths])
            C2.net().Copy(['input/float_features.keys'], [input_feature_keys])
            C2.net().Copy(['input/float_features.values'],
                          [input_feature_values])

        preprocessor = PreprocessorNet(net, True)
        parameters.extend(preprocessor.parameters)
        state_normalized_dense_matrix, new_parameters = \
            preprocessor.normalize_sparse_matrix(
                input_feature_lengths,
                input_feature_keys,
                input_feature_values,
                state_normalization_parameters,
                'state_norm',
            )
        parameters.extend(new_parameters)
        net.Copy([state_normalized_dense_matrix], [actor_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_init_net)
        net.AppendNet(torch_predict_net)

        C2.FlattenToVec(C2.ArgMax(actor_output_blob))
        output_lengths = 'output/float_features.lengths'
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill([C2.FlattenToVec(C2.ArgMax(actor_output_blob))],
                              [output_lengths],
                              value=trainer.actor.layers[-1].out_features,
                              dtype=caffe2_pb2.TensorProto.INT32)

        output_keys = 'output/float_features.keys'
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int32))
        C2.net().LengthsRangeFill([output_lengths], [output_keys])

        output_values = 'output/float_features.values'
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.float32))
        C2.net().FlattenToVec([actor_output_blob], [output_values])

        workspace.CreateNet(net)
        return DDPGPredictor(net, parameters, int_features)
Ejemplo n.º 10
0
    def export(
        cls,
        trainer,
        actions,
        state_normalization_parameters,
        int_features=False,
        model_on_gpu=False,
        set_missing_value_to_zero=False,
    ):
        """Export caffe2 preprocessor net and pytorch DQN forward pass as one
        caffe2 net.

        :param trainer DQNTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        :param model_on_gpu boolean indicating if the model is a GPU model or CPU model
        """

        input_dim = trainer.num_features

        q_network = (
            trainer.q_network.module
            if isinstance(trainer.q_network, DataParallel)
            else trainer.q_network
        )

        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            q_network, input_dim, model_on_gpu
        )
        qnet_input_blob, qnet_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
            buffer
        )
        torch_workspace = caffe2_netdef.workspace

        parameters = torch_workspace.Blobs()
        for blob_str in parameters:
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)
        logger.info("Generated ONNX predict net:")
        logger.info(str(torch_predict_net.Proto()))
        # While converting to metanetdef, the external_input of predict_net
        # will be recomputed. Add the real output of init_net to parameters
        # to make sure they will be counted.
        parameters.extend(
            set(caffe2_netdef.init_net.external_output)
            - set(caffe2_netdef.init_net.external_input)
        )

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob("input/image", np.zeros([1, 1, 1, 1], dtype=np.int32))
        workspace.FeedBlob("input/float_features.lengths", np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys", np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values", np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob(
                "input/int_features.lengths", np.zeros(1, dtype=np.int32)
            )
            workspace.FeedBlob("input/int_features.keys", np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values", np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [input_feature_lengths, input_feature_keys, input_feature_values],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"], [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"], [input_feature_values])

        if state_normalization_parameters is not None:
            sorted_feature_ids = sort_features_by_normalization(
                state_normalization_parameters
            )[0]
            dense_matrix, new_parameters = sparse_to_dense(
                input_feature_lengths,
                input_feature_keys,
                input_feature_values,
                sorted_feature_ids,
                set_missing_value_to_zero=set_missing_value_to_zero,
            )
            parameters.extend(new_parameters)
            preprocessor_net = PreprocessorNet()
            state_normalized_dense_matrix, new_parameters = preprocessor_net.normalize_dense_matrix(
                dense_matrix,
                sorted_feature_ids,
                state_normalization_parameters,
                "state_norm_",
                True,
            )
            parameters.extend(new_parameters)
        else:
            # Image input.  Note: Currently this does the wrong thing if
            #   more than one image is passed at a time.
            state_normalized_dense_matrix = "input/image"

        net.Copy([state_normalized_dense_matrix], [qnet_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_predict_net)

        new_parameters, q_values = RLPredictor._forward_pass(
            model, trainer, state_normalized_dense_matrix, actions, qnet_output_blob
        )
        parameters.extend(new_parameters)

        # Get 1 x n action index tensor under the max_q policy
        max_q_act_idxs = "max_q_policy_actions"
        C2.net().Flatten([C2.ArgMax(q_values)], [max_q_act_idxs], axis=0)
        shape_of_num_of_states = "num_states_shape"
        C2.net().FlattenToVec([max_q_act_idxs], [shape_of_num_of_states])
        num_states, _ = C2.Reshape(C2.Size(shape_of_num_of_states), shape=[1])

        # Get 1 x n action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32)
        )
        tempered_q_values = C2.Div(q_values, temperature, broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = "softmax_act_idxs_nested"
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_idxs = "softmax_policy_actions"
        C2.net().Flatten([softmax_act_idxs_nested], [softmax_act_idxs], axis=0)

        action_names = C2.NextBlob("action_names")
        parameters.append(action_names)
        workspace.FeedBlob(action_names, np.array(actions))

        # Concat action index tensors to get 2 x n tensor - [[max_q], [softmax]]
        # transpose & flatten to get [a1_maxq, a1_softmax, a2_maxq, a2_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_idxs, to=caffe2_pb2.TensorProto.INT32)
        softmax_act_blob = C2.Cast(softmax_act_idxs, to=caffe2_pb2.TensorProto.INT32)
        C2.net().Append([max_q_act_blob, softmax_act_blob], [max_q_act_blob])
        transposed_action_idxs = C2.Transpose(max_q_act_blob)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        workspace.FeedBlob(OUTPUT_SINGLE_CAT_VALS_NAME, np.zeros(1, dtype=np.int64))
        C2.net().Gather(
            [action_names, flat_transposed_action_idxs], [OUTPUT_SINGLE_CAT_VALS_NAME]
        )

        workspace.FeedBlob(OUTPUT_SINGLE_CAT_LENGTHS_NAME, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [shape_of_num_of_states],
            [OUTPUT_SINGLE_CAT_LENGTHS_NAME],
            value=2,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        workspace.FeedBlob(OUTPUT_SINGLE_CAT_KEYS_NAME, np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1], value=0, dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1], value=1, dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_states, axis=0)
        C2.net().FlattenToVec([output_key_tile], [OUTPUT_SINGLE_CAT_KEYS_NAME])

        workspace.CreateNet(net)
        return DQNPredictor(net, torch_init_net, parameters, int_features)