Ejemplo n.º 1
0
    def test_preprocessing_network(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        for name, values in feature_value_map.items():
            normalization_parameters[name] = normalization.identify_parameter(
                name, values, feature_type=self._feature_type_override(name))
        test_features = NumpyFeatureProcessor.preprocess(
            feature_value_map, normalization_parameters)

        net = core.Net("PreprocessingTestNet")
        C2.set_net(net)
        preprocessor = PreprocessorNet()
        name_preprocessed_blob_map = {}
        for feature_name in feature_value_map:
            workspace.FeedBlob(str(feature_name), np.array([0],
                                                           dtype=np.int32))
            preprocessed_blob, _ = preprocessor.preprocess_blob(
                str(feature_name), [normalization_parameters[feature_name]])
            name_preprocessed_blob_map[feature_name] = preprocessed_blob

        workspace.CreateNet(net)

        for feature_name, feature_value in six.iteritems(feature_value_map):
            feature_value = np.expand_dims(feature_value, -1)
            workspace.FeedBlob(str(feature_name), feature_value)
        workspace.RunNetOnce(net)

        for feature_name in feature_value_map:
            normalized_features = workspace.FetchBlob(
                name_preprocessed_blob_map[feature_name])
            if feature_name != ENUM_FEATURE_ID:
                normalized_features = np.squeeze(normalized_features, -1)

            tolerance = 0.01
            if feature_name == BOXCOX_FEATURE_ID:
                # At the limit, boxcox has some numerical instability
                tolerance = 0.5
            non_matching = np.where(
                np.logical_not(
                    np.isclose(
                        normalized_features,
                        test_features[feature_name],
                        rtol=tolerance,
                        atol=tolerance,
                    )))
            self.assertTrue(
                np.all(
                    np.isclose(
                        normalized_features,
                        test_features[feature_name],
                        rtol=tolerance,
                        atol=tolerance,
                    )),
                "{} does not match: {} {}".format(
                    feature_name,
                    normalized_features[non_matching].tolist(),
                    test_features[feature_name][non_matching].tolist(),
                ),
            )
Ejemplo n.º 2
0
    def test_preprocessing_network(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        name_preprocessed_blob_map = {}

        for feature_name, feature_values in feature_value_map.items():
            normalization_parameters[
                feature_name] = normalization.identify_parameter(
                    feature_values,
                    feature_type=self._feature_type_override(feature_name))
            feature_values[
                0] = MISSING_VALUE  # Set one entry to MISSING_VALUE to test that

            preprocessor = Preprocessor(
                {feature_name: normalization_parameters[feature_name]}, False)
            feature_values_matrix = np.expand_dims(feature_values, -1)
            normalized_feature_values = preprocessor.forward(
                feature_values_matrix)
            name_preprocessed_blob_map[
                feature_name] = normalized_feature_values.numpy()

        test_features = NumpyFeatureProcessor.preprocess(
            feature_value_map, normalization_parameters)

        for feature_name in feature_value_map:
            normalized_features = name_preprocessed_blob_map[feature_name]
            if feature_name != ENUM_FEATURE_ID:
                normalized_features = np.squeeze(normalized_features, -1)

            tolerance = 0.01
            if feature_name == BOXCOX_FEATURE_ID:
                # At the limit, boxcox has some numerical instability
                tolerance = 0.5
            non_matching = np.where(
                np.logical_not(
                    np.isclose(
                        normalized_features.flatten(),
                        test_features[feature_name].flatten(),
                        rtol=tolerance,
                        atol=tolerance,
                    )))
            self.assertTrue(
                np.all(
                    np.isclose(
                        normalized_features.flatten(),
                        test_features[feature_name].flatten(),
                        rtol=tolerance,
                        atol=tolerance,
                    )),
                "{} does not match: {} \n!=\n {}".format(
                    feature_name,
                    normalized_features.flatten()[non_matching],
                    test_features[feature_name].flatten()[non_matching],
                ),
            )
Ejemplo n.º 3
0
 def expected_action_features(self, normalize):
     # Feature order: 12, 11, 13
     dense = np.array(
         [[21, 20, MISSING_VALUE], [24, 23, 25], [27, MISSING_VALUE, 26]],
         dtype=np.float32,
     )
     if normalize:
         dense = NumpyFeatureProcessor.preprocess_array(
             dense, [12, 11, 13], self.get_action_normalization_parameters()
         )
     return dense
Ejemplo n.º 4
0
 def expected_next_action_features(self, normalize):
     # Feature order: 12, 11, 13
     dense = np.array(
         [[31, 30, 33], [34, MISSING_VALUE, 35], [MISSING_VALUE, 36, 37]],
         dtype=np.float32,
     )
     if normalize:
         dense = NumpyFeatureProcessor.preprocess_array(
             dense, [12, 11, 13], self.get_action_normalization_parameters()
         )
     return dense
Ejemplo n.º 5
0
 def expected_action_features(self, normalize):
     # Feature order: 12, 11, 13
     dense = np.array(
         [[21, 20, MISSING_VALUE], [24, 23, 25], [27, MISSING_VALUE, 26]],
         dtype=np.float32,
     )
     if normalize:
         dense = NumpyFeatureProcessor.preprocess_array(
             dense, [12, 11, 13],
             self.get_action_normalization_parameters())
     return dense
Ejemplo n.º 6
0
 def expected_next_action_features(self, normalize):
     # Feature order: 12, 11, 13
     dense = np.array(
         [[31, 30, 33], [34, MISSING_VALUE, 35], [MISSING_VALUE, 36, 37]],
         dtype=np.float32,
     )
     if normalize:
         dense = NumpyFeatureProcessor.preprocess_array(
             dense, [12, 11, 13],
             self.get_action_normalization_parameters())
     return dense
Ejemplo n.º 7
0
 def expected_next_state_features(self, normalize):
     # Feature order: 1, 3, 2, 4
     dense = np.array(
         [
             [11, MISSING_VALUE, 10, MISSING_VALUE],
             [13, MISSING_VALUE, MISSING_VALUE, MISSING_VALUE],
             [MISSING_VALUE, 15, 14, 16],
         ],
         dtype=np.float32,
     )
     if normalize:
         dense = NumpyFeatureProcessor.preprocess_array(
             dense, [1, 3, 2, 4], self.get_state_normalization_parameters())
     return dense
Ejemplo n.º 8
0
 def expected_next_state_features(self, normalize):
     # Feature order: 1, 3, 2, 4
     dense = np.array(
         [
             [11, MISSING_VALUE, 10, MISSING_VALUE],
             [13, MISSING_VALUE, MISSING_VALUE, MISSING_VALUE],
             [MISSING_VALUE, 15, 14, 16],
         ],
         dtype=np.float32,
     )
     if normalize:
         dense = NumpyFeatureProcessor.preprocess_array(
             dense, [1, 3, 2, 4], self.get_state_normalization_parameters()
         )
     return dense
Ejemplo n.º 9
0
 def expected_possible_next_actions_features(self, normalize):
     # Feature order: 12, 11, 13
     dense = np.array(
         [
             [MISSING_VALUE, 40, MISSING_VALUE],
             [MISSING_VALUE, MISSING_VALUE, MISSING_VALUE],
             [41, MISSING_VALUE, MISSING_VALUE],
             [45, 43, 44],
             [MISSING_VALUE, MISSING_VALUE, MISSING_VALUE],
             [MISSING_VALUE, MISSING_VALUE, MISSING_VALUE],
         ],
         dtype=np.float32,
     )
     if normalize:
         dense = NumpyFeatureProcessor.preprocess_array(
             dense, [12, 11, 13], self.get_action_normalization_parameters()
         )
     return dense
Ejemplo n.º 10
0
 def expected_possible_next_actions_features(self, normalize):
     # Feature order: 12, 11, 13
     dense = np.array(
         [
             [MISSING_VALUE, 40, MISSING_VALUE],
             [MISSING_VALUE, MISSING_VALUE, MISSING_VALUE],
             [41, MISSING_VALUE, MISSING_VALUE],
             [45, 43, 44],
             [MISSING_VALUE, MISSING_VALUE, MISSING_VALUE],
             [MISSING_VALUE, MISSING_VALUE, MISSING_VALUE],
         ],
         dtype=np.float32,
     )
     if normalize:
         dense = NumpyFeatureProcessor.preprocess_array(
             dense, [12, 11, 13],
             self.get_action_normalization_parameters())
     return dense
Ejemplo n.º 11
0
    def test_prepare_normalization_and_normalize(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        for name, values in feature_value_map.items():
            normalization_parameters[name] = normalization.identify_parameter(
                name,
                values,
                10,
                feature_type=self._feature_type_override(name))
        for k, v in normalization_parameters.items():
            if id_to_type(k) == CONTINUOUS:
                self.assertEqual(v.feature_type, CONTINUOUS)
                self.assertIs(v.boxcox_lambda, None)
                self.assertIs(v.boxcox_shift, None)
            elif id_to_type(k) == BOXCOX:
                self.assertEqual(v.feature_type, BOXCOX)
                self.assertIsNot(v.boxcox_lambda, None)
                self.assertIsNot(v.boxcox_shift, None)
            else:
                assert v.feature_type == id_to_type(k)
        sorted_features, _ = sort_features_by_normalization(
            normalization_parameters)

        norm_net = core.Net("net")
        C2.set_net(norm_net)
        preprocessor = PreprocessorNet()
        input_matrix = np.zeros([10000, len(sorted_features)],
                                dtype=np.float32)
        for i, feature in enumerate(sorted_features):
            input_matrix[:, i] = feature_value_map[feature]
        input_matrix_blob = "input_matrix_blob"
        workspace.FeedBlob(input_matrix_blob, np.array([], dtype=np.float32))
        output_blob, _ = preprocessor.normalize_dense_matrix(
            input_matrix_blob, sorted_features, normalization_parameters, "",
            False)
        workspace.FeedBlob(input_matrix_blob, input_matrix)
        workspace.RunNetOnce(norm_net)
        normalized_feature_matrix = workspace.FetchBlob(output_blob)

        normalized_features = {}
        on_column = 0
        for feature in sorted_features:
            norm = normalization_parameters[feature]
            if norm.feature_type == ENUM:
                column_size = len(norm.possible_values)
            else:
                column_size = 1
            normalized_features[
                feature] = normalized_feature_matrix[:,
                                                     on_column:(on_column +
                                                                column_size)]
            on_column += column_size

        self.assertTrue(
            all([
                np.isfinite(parameter.stddev) and np.isfinite(parameter.mean)
                for parameter in normalization_parameters.values()
            ]))
        for k, v in six.iteritems(normalized_features):
            self.assertTrue(np.all(np.isfinite(v)))
            feature_type = normalization_parameters[k].feature_type
            if feature_type == identify_types.PROBABILITY:
                sigmoidv = special.expit(v)
                self.assertTrue(
                    np.all(
                        np.logical_and(np.greater(sigmoidv, 0),
                                       np.less(sigmoidv, 1))))
            elif feature_type == identify_types.ENUM:
                possible_values = normalization_parameters[k].possible_values
                self.assertEqual(v.shape[0], len(feature_value_map[k]))
                self.assertEqual(v.shape[1], len(possible_values))

                possible_value_map = {}
                for i, possible_value in enumerate(possible_values):
                    possible_value_map[possible_value] = i

                for i, row in enumerate(v):
                    original_feature = feature_value_map[k][i]
                    self.assertEqual(possible_value_map[original_feature],
                                     np.where(row == 1)[0][0])
            elif feature_type == identify_types.QUANTILE:
                for i, feature in enumerate(v[0]):
                    original_feature = feature_value_map[k][i]
                    expected = NumpyFeatureProcessor.value_to_quantile(
                        original_feature,
                        normalization_parameters[k].quantiles)
                    self.assertAlmostEqual(feature, expected, 2)
            elif feature_type == identify_types.BINARY:
                pass
            elif (feature_type == identify_types.CONTINUOUS
                  or feature_type == identify_types.BOXCOX):
                one_stddev = np.isclose(np.std(v, ddof=1), 1, atol=0.01)
                zero_stddev = np.isclose(np.std(v, ddof=1), 0, atol=0.01)
                zero_mean = np.isclose(np.mean(v), 0, atol=0.01)
                self.assertTrue(
                    np.all(zero_mean),
                    "mean of feature {} is {}, not 0".format(k, np.mean(v)),
                )
                self.assertTrue(np.all(np.logical_or(one_stddev, zero_stddev)))
            elif feature_type == identify_types.CONTINUOUS_ACTION:
                less_than_max = v < 1
                more_than_min = v > -1
                self.assertTrue(
                    np.all(less_than_max),
                    "values are not less than 1: {}".format(
                        v[less_than_max == False]),
                )
                self.assertTrue(
                    np.all(more_than_min),
                    "values are not more than -1: {}".format(
                        v[more_than_min == False]),
                )
            else:
                raise NotImplementedError()
Ejemplo n.º 12
0
    def test_prepare_normalization_and_normalize(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        for name, values in feature_value_map.items():
            normalization_parameters[name] = normalization.identify_parameter(
                name, values, 10, feature_type=self._feature_type_override(name)
            )
        for k, v in normalization_parameters.items():
            if id_to_type(k) == CONTINUOUS:
                self.assertEqual(v.feature_type, CONTINUOUS)
                self.assertIs(v.boxcox_lambda, None)
                self.assertIs(v.boxcox_shift, None)
            elif id_to_type(k) == BOXCOX:
                self.assertEqual(v.feature_type, BOXCOX)
                self.assertIsNot(v.boxcox_lambda, None)
                self.assertIsNot(v.boxcox_shift, None)
            else:
                assert v.feature_type == id_to_type(k)
        sorted_features, _ = sort_features_by_normalization(normalization_parameters)

        norm_net = core.Net("net")
        C2.set_net(norm_net)
        preprocessor = PreprocessorNet()
        input_matrix = np.zeros([10000, len(sorted_features)], dtype=np.float32)
        for i, feature in enumerate(sorted_features):
            input_matrix[:, i] = feature_value_map[feature]
        input_matrix_blob = "input_matrix_blob"
        workspace.FeedBlob(input_matrix_blob, np.array([], dtype=np.float32))
        output_blob, _ = preprocessor.normalize_dense_matrix(
            input_matrix_blob, sorted_features, normalization_parameters, "", False
        )
        workspace.FeedBlob(input_matrix_blob, input_matrix)
        workspace.RunNetOnce(norm_net)
        normalized_feature_matrix = workspace.FetchBlob(output_blob)

        normalized_features = {}
        on_column = 0
        for feature in sorted_features:
            norm = normalization_parameters[feature]
            if norm.feature_type == ENUM:
                column_size = len(norm.possible_values)
            else:
                column_size = 1
            normalized_features[feature] = normalized_feature_matrix[
                :, on_column : (on_column + column_size)
            ]
            on_column += column_size

        self.assertTrue(
            all(
                [
                    np.isfinite(parameter.stddev) and np.isfinite(parameter.mean)
                    for parameter in normalization_parameters.values()
                ]
            )
        )
        for k, v in six.iteritems(normalized_features):
            self.assertTrue(np.all(np.isfinite(v)))
            feature_type = normalization_parameters[k].feature_type
            if feature_type == identify_types.PROBABILITY:
                sigmoidv = special.expit(v)
                self.assertTrue(
                    np.all(
                        np.logical_and(np.greater(sigmoidv, 0), np.less(sigmoidv, 1))
                    )
                )
            elif feature_type == identify_types.ENUM:
                possible_values = normalization_parameters[k].possible_values
                self.assertEqual(v.shape[0], len(feature_value_map[k]))
                self.assertEqual(v.shape[1], len(possible_values))

                possible_value_map = {}
                for i, possible_value in enumerate(possible_values):
                    possible_value_map[possible_value] = i

                for i, row in enumerate(v):
                    original_feature = feature_value_map[k][i]
                    self.assertEqual(
                        possible_value_map[original_feature], np.where(row == 1)[0][0]
                    )
            elif feature_type == identify_types.QUANTILE:
                for i, feature in enumerate(v[0]):
                    original_feature = feature_value_map[k][i]
                    expected = NumpyFeatureProcessor.value_to_quantile(
                        original_feature, normalization_parameters[k].quantiles
                    )
                    self.assertAlmostEqual(feature, expected, 2)
            elif feature_type == identify_types.BINARY:
                pass
            elif (
                feature_type == identify_types.CONTINUOUS
                or feature_type == identify_types.BOXCOX
            ):
                one_stddev = np.isclose(np.std(v, ddof=1), 1, atol=0.01)
                zero_stddev = np.isclose(np.std(v, ddof=1), 0, atol=0.01)
                zero_mean = np.isclose(np.mean(v), 0, atol=0.01)
                self.assertTrue(
                    np.all(zero_mean),
                    "mean of feature {} is {}, not 0".format(k, np.mean(v)),
                )
                self.assertTrue(np.all(np.logical_or(one_stddev, zero_stddev)))
            elif feature_type == identify_types.CONTINUOUS_ACTION:
                less_than_max = v < 1
                more_than_min = v > -1
                self.assertTrue(
                    np.all(less_than_max),
                    "values are not less than 1: {}".format(v[less_than_max == False]),
                )
                self.assertTrue(
                    np.all(more_than_min),
                    "values are not more than -1: {}".format(v[more_than_min == False]),
                )
            else:
                raise NotImplementedError()
Ejemplo n.º 13
0
    def test_preprocessing_network(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        for name, values in feature_value_map.items():
            normalization_parameters[name] = normalization.identify_parameter(
                name, values, feature_type=self._feature_type_override(name)
            )
        test_features = NumpyFeatureProcessor.preprocess(
            feature_value_map, normalization_parameters
        )

        net = core.Net("PreprocessingTestNet")
        C2.set_net(net)
        preprocessor = PreprocessorNet()
        name_preprocessed_blob_map = {}
        for feature_name in feature_value_map:
            workspace.FeedBlob(str(feature_name), np.array([0], dtype=np.int32))
            preprocessed_blob, _ = preprocessor.preprocess_blob(
                str(feature_name), [normalization_parameters[feature_name]]
            )
            name_preprocessed_blob_map[feature_name] = preprocessed_blob

        workspace.CreateNet(net)

        for feature_name, feature_value in six.iteritems(feature_value_map):
            feature_value = np.expand_dims(feature_value, -1)
            workspace.FeedBlob(str(feature_name), feature_value)
        workspace.RunNetOnce(net)

        for feature_name in feature_value_map:
            normalized_features = workspace.FetchBlob(
                name_preprocessed_blob_map[feature_name]
            )
            if feature_name != ENUM_FEATURE_ID:
                normalized_features = np.squeeze(normalized_features, -1)

            tolerance = 0.01
            if feature_name == BOXCOX_FEATURE_ID:
                # At the limit, boxcox has some numerical instability
                tolerance = 0.5
            non_matching = np.where(
                np.logical_not(
                    np.isclose(
                        normalized_features,
                        test_features[feature_name],
                        rtol=tolerance,
                        atol=tolerance,
                    )
                )
            )
            self.assertTrue(
                np.all(
                    np.isclose(
                        normalized_features,
                        test_features[feature_name],
                        rtol=tolerance,
                        atol=tolerance,
                    )
                ),
                "{} does not match: {} {}".format(
                    feature_name,
                    normalized_features[non_matching].tolist(),
                    test_features[feature_name][non_matching].tolist(),
                ),
            )
Ejemplo n.º 14
0
    def test_preprocessing_network(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        name_preprocessed_blob_map = {}

        for feature_name, feature_values in feature_value_map.items():
            normalization_parameters[feature_name] = normalization.identify_parameter(
                feature_name,
                feature_values,
                feature_type=self._feature_type_override(feature_name),
            )
            feature_values[
                0
            ] = MISSING_VALUE  # Set one entry to MISSING_VALUE to test that

            preprocessor = Preprocessor(
                {feature_name: normalization_parameters[feature_name]}, False
            )
            feature_values_matrix = np.expand_dims(feature_values, -1)
            normalized_feature_values = preprocessor.forward(feature_values_matrix)
            name_preprocessed_blob_map[feature_name] = normalized_feature_values.numpy()

        test_features = NumpyFeatureProcessor.preprocess(
            feature_value_map, normalization_parameters
        )

        for feature_name in feature_value_map:
            normalized_features = name_preprocessed_blob_map[feature_name]
            if feature_name != ENUM_FEATURE_ID:
                normalized_features = np.squeeze(normalized_features, -1)

            tolerance = 0.01
            if feature_name == BOXCOX_FEATURE_ID:
                # At the limit, boxcox has some numerical instability
                tolerance = 0.5
            non_matching = np.where(
                np.logical_not(
                    np.isclose(
                        normalized_features.flatten(),
                        test_features[feature_name].flatten(),
                        rtol=tolerance,
                        atol=tolerance,
                    )
                )
            )
            self.assertTrue(
                np.all(
                    np.isclose(
                        normalized_features.flatten(),
                        test_features[feature_name].flatten(),
                        rtol=tolerance,
                        atol=tolerance,
                    )
                ),
                "{} does not match: {} \n!=\n {}".format(
                    feature_name,
                    normalized_features.flatten()[non_matching],
                    test_features[feature_name].flatten()[non_matching],
                ),
            )