Ejemplo n.º 1
0
def plot_error_dist_many_heights(error_matrix, heights_m_agl,
                                 min_error_to_plot, max_error_to_plot,
                                 axes_object):
    """Plots error distribution at each height on the same axes.

    E = number of examples
    H = number of heights

    :param error_matrix: E-by-H numpy array of signed errors.
    :param heights_m_agl: length-H numpy array of heights (metres above ground
        level).
    :param min_error_to_plot: Lower limit for x-axis.
    :param max_error_to_plot: Upper limit for x-axis.
    :param axes_object: Will plot on these axes (instance of
        `matplotlib.axes._subplots.AxesSubplot`).
    """

    error_checking.assert_is_numpy_array_without_nan(error_matrix)
    error_checking.assert_is_numpy_array(error_matrix, num_dimensions=2)

    num_heights = error_matrix.shape[1]

    error_checking.assert_is_geq_numpy_array(heights_m_agl, 0.)
    error_checking.assert_is_numpy_array(heights_m_agl,
                                         exact_dimensions=numpy.array(
                                             [num_heights], dtype=int))

    error_checking.assert_is_greater(max_error_to_plot, min_error_to_plot)

    boxplot_style_dict = {'color': 'k', 'linewidth': 2}

    y_values = numpy.linspace(0, num_heights - 1, num=num_heights, dtype=float)

    for j in range(num_heights):
        axes_object.boxplot(error_matrix[:, j],
                            widths=0.9,
                            vert=False,
                            notch=False,
                            sym='o',
                            whis=(5, 95),
                            medianprops=boxplot_style_dict,
                            boxprops=boxplot_style_dict,
                            whiskerprops=boxplot_style_dict,
                            capprops=boxplot_style_dict,
                            positions=y_values[[j]])

    axes_object.set_xlim(min_error_to_plot, max_error_to_plot)

    y_tick_strings = profile_plotting.create_height_labels(
        tick_values_km_agl=METRES_TO_KM * heights_m_agl, use_log_scale=False)

    for j in range(len(y_tick_strings)):
        if numpy.mod(j, 5) == 0:
            continue

        y_tick_strings[j] = ' '

    axes_object.set_yticklabels(y_tick_strings)
    axes_object.set_ylabel('Height (km AGL)')
Ejemplo n.º 2
0
    def test_create_height_labels_linear(self):
        """Ensures correct output from create_height_labels.

        In this case, assuming that height axis is linear.
        """

        these_tick_strings = profile_plotting.create_height_labels(
            tick_values_km_agl=TICK_VALUES_KM_AGL, use_log_scale=False)
        self.assertTrue(these_tick_strings == TICK_STRINGS_LINEAR_SCALE)
Ejemplo n.º 3
0
def _plot_one_example(
        gradcam_dict, example_index, model_metadata_dict, use_log_scale,
        title_string, output_dir_name):
    """Plots class-activation map for one example.

    :param gradcam_dict: Dictionary read by `gradcam.read_file`.
    :param example_index: Will plot class-activation map for example with this
        array index.
    :param model_metadata_dict: Dictionary read by `neural_net.read_metafile`.
    :param use_log_scale: See documentation at top of file.
    :param title_string: Figure title.
    :param output_dir_name: Name of output directory.  Figure will be saved
        here.
    """

    figure_object, axes_object = pyplot.subplots(
        1, 1, figsize=(FIGURE_WIDTH_INCHES, FIGURE_HEIGHT_INCHES)
    )
    if use_log_scale:
        axes_object.set_yscale('log')

    class_activations = (
        gradcam_dict[gradcam.CLASS_ACTIVATIONS_KEY][example_index, ...]
    )
    example_id_string = gradcam_dict[gradcam.EXAMPLE_IDS_KEY][example_index]

    generator_option_dict = model_metadata_dict[neural_net.TRAINING_OPTIONS_KEY]
    heights_km_agl = METRES_TO_KM * (
        generator_option_dict[neural_net.HEIGHTS_KEY]
    )

    axes_object.plot(
        class_activations, heights_km_agl, color=LINE_COLOUR,
        linewidth=LINE_WIDTH
    )

    y_tick_strings = profile_plotting.create_height_labels(
        tick_values_km_agl=axes_object.get_yticks(), use_log_scale=use_log_scale
    )
    axes_object.set_yticklabels(y_tick_strings)

    axes_object.set_xlabel('Class activation')
    axes_object.set_ylabel('Height (km AGL)')

    axes_object.set_title(title_string, fontsize=TITLE_FONT_SIZE)

    output_file_name = '{0:s}/{1:s}.jpg'.format(
        output_dir_name, example_id_string.replace('_', '-')
    )
    print('Saving figure to: "{0:s}"...'.format(output_file_name))

    figure_object.savefig(
        output_file_name, dpi=FIGURE_RESOLUTION_DPI, pad_inches=0,
        bbox_inches='tight'
    )
    pyplot.close(figure_object)
Ejemplo n.º 4
0
def _plot_saliency_one_example(saliency_dict, example_index,
                               model_metadata_dict, colour_map_object,
                               max_colour_percentile, output_dir_name):
    """Plots saliency maps for one example.

    :param saliency_dict: Dictionary read by `saliency.read_all_targets_file`.
    :param example_index: Will plot saliency maps for example with this array
        index.
    :param model_metadata_dict: Dictionary read by `neural_net.read_metafile`.
    :param colour_map_object: See documentation at top of file.
    :param max_colour_percentile: Same.
    :param output_dir_name: Same.
    """

    generator_option_dict = model_metadata_dict[
        neural_net.TRAINING_OPTIONS_KEY]

    scalar_predictor_names = (
        generator_option_dict[neural_net.SCALAR_PREDICTOR_NAMES_KEY])
    scalar_target_names = (
        generator_option_dict[neural_net.SCALAR_TARGET_NAMES_KEY])
    vector_predictor_names = (
        generator_option_dict[neural_net.VECTOR_PREDICTOR_NAMES_KEY])
    vector_target_names = (
        generator_option_dict[neural_net.VECTOR_TARGET_NAMES_KEY])

    heights_km_agl = (METRES_TO_KM *
                      generator_option_dict[neural_net.HEIGHTS_KEY])
    height_labels = profile_plotting.create_height_labels(
        tick_values_km_agl=heights_km_agl, use_log_scale=False)
    height_labels = [
        height_labels[k] if numpy.mod(k, 4) == 0 else ' '
        for k in range(len(height_labels))
    ]

    example_id_string = saliency_dict[saliency.EXAMPLE_IDS_KEY][example_index]
    this_matrix = (
        saliency_dict[saliency.SALIENCY_SCALAR_P_SCALAR_T_KEY][example_index,
                                                               ...])

    is_dense_net = len(this_matrix.shape) == 2

    if this_matrix.size > 0:
        if is_dense_net:
            _plot_saliency_scalar_p_scalar_t(
                saliency_matrix=this_matrix,
                predictor_names=scalar_predictor_names,
                target_names=scalar_target_names,
                example_id_string=example_id_string,
                colour_map_object=colour_map_object,
                max_colour_percentile=max_colour_percentile,
                output_dir_name=output_dir_name)
        else:
            _plot_saliency_vector_p_scalar_t(
                saliency_matrix=this_matrix,
                predictor_names=scalar_predictor_names,
                target_names=scalar_target_names,
                height_labels=height_labels,
                example_id_string=example_id_string,
                colour_map_object=colour_map_object,
                max_colour_percentile=max_colour_percentile,
                output_dir_name=output_dir_name)

    this_matrix = (
        saliency_dict[saliency.SALIENCY_VECTOR_P_SCALAR_T_KEY][example_index,
                                                               ...])

    if this_matrix.size > 0:
        _plot_saliency_vector_p_scalar_t(
            saliency_matrix=this_matrix,
            predictor_names=vector_predictor_names,
            target_names=scalar_target_names,
            height_labels=height_labels,
            example_id_string=example_id_string,
            colour_map_object=colour_map_object,
            max_colour_percentile=max_colour_percentile,
            output_dir_name=output_dir_name)

    this_matrix = (
        saliency_dict[saliency.SALIENCY_SCALAR_P_VECTOR_T_KEY][example_index,
                                                               ...])

    if this_matrix.size > 0:
        if is_dense_net:
            _plot_saliency_scalar_p_vector_t(
                saliency_matrix=this_matrix,
                predictor_names=scalar_predictor_names,
                target_names=vector_target_names,
                height_labels=height_labels,
                example_id_string=example_id_string,
                colour_map_object=colour_map_object,
                max_colour_percentile=max_colour_percentile,
                output_dir_name=output_dir_name)
        else:
            _plot_saliency_vector_p_vector_t(
                saliency_matrix=this_matrix,
                predictor_names=scalar_predictor_names,
                target_names=vector_target_names,
                height_labels=height_labels,
                example_id_string=example_id_string,
                colour_map_object=colour_map_object,
                max_colour_percentile=max_colour_percentile,
                output_dir_name=output_dir_name)

    this_matrix = (
        saliency_dict[saliency.SALIENCY_VECTOR_P_VECTOR_T_KEY][example_index,
                                                               ...])

    if this_matrix.size > 0:
        _plot_saliency_vector_p_vector_t(
            saliency_matrix=this_matrix,
            predictor_names=vector_predictor_names,
            target_names=vector_target_names,
            height_labels=height_labels,
            example_id_string=example_id_string,
            colour_map_object=colour_map_object,
            max_colour_percentile=max_colour_percentile,
            output_dir_name=output_dir_name)
Ejemplo n.º 5
0
def plot_taylor_diagram_many_heights(
        target_stdevs,
        prediction_stdevs,
        correlations,
        heights_m_agl,
        figure_object,
        colour_map_object=DEFAULT_HEIGHT_CMAP_OBJECT):
    """Plots Taylor diagram for many heights on the same axes.

    Each point should be for the same variable, just at different
    heights.

    H = number of heights

    :param target_stdevs: length-H numpy array with standard deviations of
        target (actual) values.
    :param prediction_stdevs: length-H numpy array with standard deviations of
        predicted values.
    :param correlations: length-H numpy array of correlations.
    :param heights_m_agl: length-H numpy array of heights (metres above ground
        level).
    :param figure_object: Will plot on this figure (instance of
        `matplotlib.figure.Figure`).
    :param colour_map_object: Colour map (instance of `matplotlib.pyplot.cm` or
        similar).  Will be used to colour points in Taylor diagram by height.
    :return: taylor_diagram_object: Handle for Taylor diagram (instance of
        `taylor_diagram.TaylorDiagram`).
    """

    error_checking.assert_is_geq_numpy_array(target_stdevs, 0.)
    error_checking.assert_is_numpy_array(target_stdevs, num_dimensions=1)

    num_heights = len(target_stdevs)
    expected_dim = numpy.array([num_heights], dtype=int)

    error_checking.assert_is_geq_numpy_array(prediction_stdevs, 0.)
    error_checking.assert_is_numpy_array(prediction_stdevs,
                                         exact_dimensions=expected_dim)

    error_checking.assert_is_geq_numpy_array(correlations, -1., allow_nan=True)
    error_checking.assert_is_leq_numpy_array(correlations, 1., allow_nan=True)
    error_checking.assert_is_numpy_array(correlations,
                                         exact_dimensions=expected_dim)

    error_checking.assert_is_geq_numpy_array(heights_m_agl, 0.)
    error_checking.assert_is_numpy_array(heights_m_agl,
                                         exact_dimensions=expected_dim)

    heights_km_agl = heights_m_agl * METRES_TO_KM
    colour_norm_object = matplotlib.colors.LogNorm(
        vmin=numpy.min(heights_km_agl), vmax=numpy.max(heights_km_agl))

    mean_target_stdev = numpy.mean(target_stdevs)
    this_ratio = numpy.maximum(
        numpy.max(target_stdevs),
        numpy.max(prediction_stdevs)) / mean_target_stdev

    taylor_diagram_object = taylor_diagram.TaylorDiagram(
        refstd=mean_target_stdev,
        fig=figure_object,
        srange=(0, this_ratio),
        extend=False,
        plot_reference_line=False)

    this_marker_object = taylor_diagram_object.samplePoints[0]
    this_marker_object.set_visible(False)

    for j in range(num_heights):
        if numpy.isnan(correlations[j]):
            continue

        this_colour = colour_map_object(colour_norm_object(heights_km_agl[j]))

        taylor_diagram_object.add_sample(stddev=target_stdevs[j], corrcoef=1.)

        this_marker_object = taylor_diagram_object.samplePoints[-1]
        this_marker_object.set_marker(TAYLOR_TARGET_MARKER_TYPE)
        this_marker_object.set_markersize(TAYLOR_TARGET_MARKER_SIZE)
        this_marker_object.set_markerfacecolor(this_colour)
        this_marker_object.set_markeredgewidth(0)

        taylor_diagram_object.add_sample(stddev=prediction_stdevs[j],
                                         corrcoef=correlations[j])

        this_marker_object = taylor_diagram_object.samplePoints[-1]
        this_marker_object.set_marker(TAYLOR_PREDICTION_MARKER_TYPE)
        this_marker_object.set_markersize(TAYLOR_PREDICTION_MARKER_SIZE)
        this_marker_object.set_markerfacecolor(this_colour)
        this_marker_object.set_markeredgewidth(0)

    crmse_contour_object = taylor_diagram_object.add_contours(levels=5,
                                                              colors='0.5')
    pyplot.clabel(crmse_contour_object, inline=1, fmt='%.0f')

    taylor_diagram_object.add_grid()
    taylor_diagram_object._ax.axis[:].major_ticks.set_tick_out(True)

    colour_bar_object = plotting_utils.plot_colour_bar(
        axes_object_or_matrix=figure_object.axes[0],
        data_matrix=heights_km_agl,
        colour_map_object=colour_map_object,
        colour_norm_object=colour_norm_object,
        orientation_string='vertical',
        extend_min=False,
        extend_max=False,
        fraction_of_axis_length=0.85,
        font_size=FONT_SIZE)

    tick_values = colour_bar_object.get_ticks()
    tick_strings = profile_plotting.create_height_labels(
        tick_values_km_agl=tick_values, use_log_scale=True)
    colour_bar_object.set_ticks(tick_values)
    colour_bar_object.set_ticklabels(tick_strings)

    colour_bar_object.set_label('Height (km AGL)', fontsize=FONT_SIZE)

    return taylor_diagram_object
Ejemplo n.º 6
0
def plot_rel_curve_many_heights(mean_target_matrix,
                                mean_prediction_matrix,
                                heights_m_agl,
                                min_value_to_plot,
                                max_value_to_plot,
                                axes_object,
                                colour_map_object=DEFAULT_HEIGHT_CMAP_OBJECT):
    """Plots reliability curves for many heights on the same axes.

    Reliability curves should be for the same variable, just at different
    heights.

    B = number of forecast bins
    H = number of heights

    :param mean_target_matrix: H-by-B numpy array of mean target (actual)
        values.
    :param mean_prediction_matrix: H-by-B numpy array of mean predicted values.
    :param heights_m_agl: length-H numpy array of heights (metres above ground
        level).
    :param min_value_to_plot: Minimum value to plot (for both x- and y-axes).
    :param max_value_to_plot: Max value to plot (for both x- and y-axes).
    :param axes_object: Will plot on these axes (instance of
        `matplotlib.axes._subplots.AxesSubplot`).
    :param colour_map_object: Colour map (instance of `matplotlib.pyplot.cm` or
        similar).  Will be used to colour reliability curves by height.
    """

    error_checking.assert_is_numpy_array(mean_target_matrix, num_dimensions=2)
    error_checking.assert_is_numpy_array(mean_prediction_matrix,
                                         exact_dimensions=numpy.array(
                                             mean_target_matrix.shape,
                                             dtype=int))

    num_heights = mean_target_matrix.shape[0]

    error_checking.assert_is_geq_numpy_array(heights_m_agl, 0.)
    error_checking.assert_is_numpy_array(heights_m_agl,
                                         exact_dimensions=numpy.array(
                                             [num_heights], dtype=int))

    error_checking.assert_is_greater(max_value_to_plot, min_value_to_plot)

    heights_km_agl = heights_m_agl * METRES_TO_KM
    colour_norm_object = matplotlib.colors.LogNorm(
        vmin=numpy.min(heights_km_agl), vmax=numpy.max(heights_km_agl))

    for j in range(num_heights):
        this_colour = colour_map_object(colour_norm_object(heights_km_agl[j]))

        _plot_reliability_curve(axes_object=axes_object,
                                mean_predictions=mean_prediction_matrix[j, :],
                                mean_observations=mean_target_matrix[j, :],
                                line_colour=this_colour,
                                min_value_to_plot=min_value_to_plot,
                                max_value_to_plot=max_value_to_plot)

    axes_object.set_xlim(min_value_to_plot, max_value_to_plot)
    axes_object.set_ylim(min_value_to_plot, max_value_to_plot)

    colour_bar_object = plotting_utils.plot_colour_bar(
        axes_object_or_matrix=axes_object,
        data_matrix=heights_km_agl,
        colour_map_object=colour_map_object,
        colour_norm_object=colour_norm_object,
        orientation_string='vertical',
        extend_min=False,
        extend_max=False,
        font_size=FONT_SIZE)

    tick_values = colour_bar_object.get_ticks()
    tick_strings = profile_plotting.create_height_labels(
        tick_values_km_agl=tick_values, use_log_scale=True)
    colour_bar_object.set_ticks(tick_values)
    colour_bar_object.set_ticklabels(tick_strings)

    colour_bar_object.set_label('Height (km AGL)', fontsize=FONT_SIZE)
Ejemplo n.º 7
0
def plot_score_profile(heights_m_agl,
                       score_values,
                       score_name,
                       line_colour,
                       line_width,
                       use_log_scale,
                       axes_object,
                       are_axes_new,
                       line_style='solid'):
    """Plots vertical profile of one score.

    H = number of heights

    :param heights_m_agl: length-H numpy array of heights (metres above ground
        level).
    :param score_values: length-H numpy array with values of score.
    :param score_name: Name of score (must be accepted by `_check_score_name`).
    :param line_colour: Line colour (in any format accepted by matplotlib).
    :param line_width: Line width (in any format accepted by matplotlib).
    :param use_log_scale: Boolean flag.  If True, will plot height (y-axis) in
        logarithmic scale.  If False, will plot height in linear scale.
    :param axes_object: Will plot on these axes (instance of
        `matplotlib.axes._subplots.AxesSubplot`).
    :param are_axes_new: Boolean flag.  If True, axes are new (do not already
        contain plot).
    :param line_style: Line style (in any format accepted by matplotlib).
    :return: main_line_handle: Handle for main line (score profile).
    """

    error_checking.assert_is_numpy_array(heights_m_agl, num_dimensions=1)
    error_checking.assert_is_geq_numpy_array(heights_m_agl, 0.)

    num_heights = len(heights_m_agl)
    error_checking.assert_is_numpy_array(score_values,
                                         exact_dimensions=numpy.array(
                                             [num_heights], dtype=int))

    _check_score_name(score_name)
    error_checking.assert_is_boolean(use_log_scale)
    error_checking.assert_is_boolean(are_axes_new)

    if are_axes_new:
        orig_x_limits = []
        orig_y_limits = []
    else:
        orig_x_limits = axes_object.get_xlim()
        orig_y_limits = axes_object.get_ylim()

    if use_log_scale:
        axes_object.set_yscale('log')

    heights_km_agl = heights_m_agl * METRES_TO_KM
    min_height_km_agl = numpy.min(heights_km_agl)
    max_height_km_agl = numpy.max(heights_km_agl)

    if not are_axes_new:
        min_height_km_agl = numpy.minimum(min_height_km_agl, orig_y_limits[0])
        max_height_km_agl = numpy.maximum(max_height_km_agl, orig_y_limits[1])

    skill_score_names = [MAE_SKILL_SCORE_NAME, MSE_SKILL_SCORE_NAME]
    possibly_negative_score_names = (skill_score_names +
                                     [BIAS_NAME, CORRELATION_NAME, KGE_NAME])

    if score_name in possibly_negative_score_names:
        reference_x_coords = numpy.full(2, 0.)
        reference_y_coords = numpy.array([0, max_height_km_agl], dtype=float)

        axes_object.plot(reference_x_coords,
                         reference_y_coords,
                         color=REFERENCE_LINE_COLOUR,
                         linestyle='dashed',
                         linewidth=REFERENCE_LINE_WIDTH)

    finite_indices = numpy.where(numpy.isfinite(score_values))[0]

    main_line_handle = axes_object.plot(score_values[finite_indices],
                                        heights_km_agl[finite_indices],
                                        color=line_colour,
                                        linestyle=line_style,
                                        linewidth=line_width)[0]

    x_max = numpy.maximum(numpy.max(score_values[finite_indices]), 0.)

    if not are_axes_new:
        x_max = numpy.maximum(x_max, orig_x_limits[1])

    if score_name in possibly_negative_score_names:
        x_min = numpy.minimum(numpy.min(score_values[finite_indices]), 0.)

        if not are_axes_new:
            x_min = numpy.minimum(x_min, orig_x_limits[0])

        if score_name in skill_score_names:
            x_min = numpy.maximum(x_min, -1.)
    else:
        x_min = 0.

    axes_object.set_xlim(x_min, x_max)

    if use_log_scale:
        axes_object.set_ylim(min_height_km_agl, max_height_km_agl)
    else:
        axes_object.set_ylim(0, max_height_km_agl)

    y_tick_strings = profile_plotting.create_height_labels(
        tick_values_km_agl=axes_object.get_yticks(),
        use_log_scale=use_log_scale)
    axes_object.set_yticklabels(y_tick_strings)
    axes_object.set_ylabel('Height (km AGL)')

    return main_line_handle
Ejemplo n.º 8
0
def _plot_gradcam_one_example(
        gradcam_dict, example_index, model_metadata_dict, colour_map_object,
        max_colour_percentile, output_dir_name):
    """Plots class-activation map for one example, all target variables.

    :param gradcam_dict: Dictionary read by `gradcam.read_all_targets_file`.
    :param example_index: Will plot class-activation maps for example with this
        array index.
    :param model_metadata_dict: Dictionary read by `neural_net.read_metafile`.
    :param colour_map_object: See documentation at top of file.
    :param max_colour_percentile: Same.
    :param output_dir_name: Same.
    """

    generator_option_dict = model_metadata_dict[neural_net.TRAINING_OPTIONS_KEY]
    target_names = generator_option_dict[neural_net.VECTOR_TARGET_NAMES_KEY]
    target_names_verbose = [
        TARGET_NAME_TO_VERBOSE[n] for n in target_names
    ]

    heights_km_agl = (
        METRES_TO_KM * generator_option_dict[neural_net.HEIGHTS_KEY]
    )
    height_labels = profile_plotting.create_height_labels(
        tick_values_km_agl=heights_km_agl, use_log_scale=False
    )
    height_labels = [
        height_labels[k] if numpy.mod(k, 4) == 0 else ' '
        for k in range(len(height_labels))
    ]

    example_id_string = gradcam_dict[gradcam.EXAMPLE_IDS_KEY][example_index]
    class_activation_matrix_3d = (
        gradcam_dict[gradcam.CLASS_ACTIVATIONS_KEY][example_index, ...]
    )

    num_targets = len(target_names)
    num_heights = len(height_labels)

    for k in range(num_targets):
        class_activation_matrix_2d = class_activation_matrix_3d[..., k]

        max_colour_value = numpy.percentile(
            class_activation_matrix_2d, max_colour_percentile
        )
        max_colour_value = numpy.maximum(max_colour_value, 0.001)

        figure_object, axes_object = pyplot.subplots(
            1, 1, figsize=(FIGURE_WIDTH_INCHES, FIGURE_HEIGHT_INCHES)
        )

        axes_object.imshow(
            numpy.transpose(class_activation_matrix_2d),
            cmap=colour_map_object, vmin=0., vmax=max_colour_value,
            origin='lower'
        )

        tick_values = numpy.linspace(
            0, num_heights - 1, num=num_heights, dtype=float
        )
        axes_object.set_xticks(tick_values)
        axes_object.set_yticks(tick_values)

        axes_object.set_xticklabels(
            height_labels, fontsize=TICK_LABEL_FONT_SIZE, rotation=90.
        )
        axes_object.set_yticklabels(
            height_labels, fontsize=TICK_LABEL_FONT_SIZE
        )

        axes_object.set_xlabel('Predictor height (km AGL)')
        axes_object.set_ylabel('Target height (km AGL)')

        axes_object.plot(
            axes_object.get_xlim(), axes_object.get_ylim(),
            color=REFERENCE_LINE_COLOUR, linestyle='dashed',
            linewidth=REFERENCE_LINE_WIDTH
        )

        colour_bar_object = plotting_utils.plot_linear_colour_bar(
            axes_object_or_matrix=axes_object,
            data_matrix=class_activation_matrix_2d,
            colour_map_object=colour_map_object,
            min_value=0., max_value=max_colour_value,
            orientation_string='horizontal', padding=0.1,
            extend_min=False, extend_max=True,
            fraction_of_axis_length=0.8, font_size=DEFAULT_FONT_SIZE
        )

        tick_values = colour_bar_object.get_ticks()
        tick_strings = ['{0:.1f}'.format(v) for v in tick_values]
        colour_bar_object.set_ticks(tick_values)
        colour_bar_object.set_ticklabels(tick_strings)

        title_string = 'Class-activation map for {0:s}'.format(
            target_names_verbose[k]
        )
        axes_object.set_title(title_string, fontsize=DEFAULT_FONT_SIZE)

        output_file_name = '{0:s}/{1:s}_{2:s}.jpg'.format(
            output_dir_name, example_id_string.replace('_', '-'),
            target_names[k].replace('_', '-')
        )
        print('Saving figure to: "{0:s}"...'.format(output_file_name))

        figure_object.savefig(
            output_file_name, dpi=FIGURE_RESOLUTION_DPI, pad_inches=0,
            bbox_inches='tight'
        )
        pyplot.close(figure_object)