Ejemplo n.º 1
0
 def predict_sample_generate_proba(self, X):
     # 返回样本的生成概率
     W = np.asarray([
         utils.gaussian_nd(X, u, sigma) * alpha
         for alpha, u, sigma in self.params
     ]).T
     return np.sum(W, axis=1)
Ejemplo n.º 2
0
 def predict_proba(self, X):
     # 预测样本在几个高斯模型上的概率分布
     W = np.asarray([
         utils.gaussian_nd(X, u, sigma) * alpha
         for alpha, u, sigma in self.params
     ]).T
     W = W / np.sum(W, axis=1, keepdims=True)
     return W
Ejemplo n.º 3
0
 def fit(self, X):
     n_sample, _ = X.shape
     # 初始化参数
     u = np.mean(X, axis=0)
     sigma = np.cov(X.T)
     alpha = 1.0 / self.n_components
     max_value = X.max()
     min_value = X.min()
     for _ in range(0, self.n_components):
         # 每个高斯模型的权重初始化一样
         # 每个高斯模型的均值在整体均值的基础上添加一个随机的bias
         # 方差初始化一样,使用整体的方差
         self.params.append([alpha, u + np.random.random() * (max_value + min_value) / 2, sigma])
     # 计算当前的隐变量
     W = np.asarray([utils.gaussian_nd(X, u, sigma) * alpha for alpha, u, sigma in self.params]).T
     # 记录当前的log like hold
     current_log_loss = np.log(W.sum(axis=1)).sum() / n_sample
     W = W / np.sum(W, axis=1, keepdims=True)
     # 迭代训练
     for _ in range(0, self.n_iter):
         if self.verbose is True:
             utils.plot_contourf(X, lambda x: self.predict_sample_generate_proba(x), lines=5)
             utils.plt.pause(0.1)
             utils.plt.clf()
         # 更新高斯模型参数
         for k in range(0, self.n_components):
             self.params[k][0] = W[:, k].sum() / n_sample  # 更新alpha
             self.params[k][1] = np.sum(W[:, [k]] * X, axis=0) / W[:, k].sum()  # 更新均值
             self.params[k][2] = np.sum(
                 [W[i, k] * (X[[i]] - self.params[k][1]).T.dot(X[[i]] - self.params[k][1]) for i in
                  range(0, n_sample)], axis=0) / W[:, k].sum()  # 更新方差
         # 更新当前的隐变量
         W = np.asarray([utils.gaussian_nd(X, u, sigma) * alpha for alpha, u, sigma in self.params]).T
         # 计算log like hold
         new_log_loss = np.log(W.sum(axis=1)).sum() / n_sample
         W = W / np.sum(W, axis=1, keepdims=True)
         if new_log_loss - current_log_loss > self.tol:
             current_log_loss = new_log_loss
         else:
             break
     if self.verbose:
         utils.plot_contourf(X, lambda x: self.predict_sample_generate_proba(x), lines=5)
         utils.plt.show()