def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(name=e.workspace_name,
                                  subscription_id=e.subscription_id,
                                  resource_group=e.resource_group)
    print("get_workspace:")
    print(aml_workspace)

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print("aml_compute:")
        print(aml_compute)

    # Create a reusable Azure ML environment
    environment = get_environment(aml_workspace,
                                  e.aml_env_name,
                                  create_new=False)  # NOQA: E501

    run_config = RunConfiguration()
    run_config.environment = environment

    if (e.datastore_name):
        datastore_name = e.datastore_name
    else:
        datastore_name = aml_workspace.get_default_datastore().name
    run_config.environment.environment_variables[
        "DATASTORE_NAME"] = datastore_name  # NOQA: E501
def build_batchscore_pipeline():
    """
    Main method that builds and publishes a scoring pipeline.
    """

    try:
        env = Env()

        args = parse_args()

        # Get Azure machine learning workspace
        aml_workspace = Workspace.get(
            name=env.workspace_name,
            subscription_id=env.subscription_id,
            resource_group=env.resource_group,
        )

        # Get Azure machine learning cluster
        aml_compute_score = get_compute(
            aml_workspace,
            env.compute_name_scoring,
            env.vm_size_scoring,
            for_batch_scoring=True,
        )

        input_dataset, output_location = get_inputds_outputloc(
            aml_workspace, env)  # NOQA: E501

        scoring_runconfig, score_copy_runconfig = get_run_configs(
            aml_workspace, aml_compute_score, env)

        trained_model = get_model(aml_workspace, env, args.model_tag_name,
                                  args.model_tag_value)

        scoring_pipeline = get_scoring_pipeline(
            trained_model,
            input_dataset,
            output_location,
            scoring_runconfig,
            score_copy_runconfig,
            aml_compute_score,
            aml_workspace,
            env,
        )

        published_pipeline = scoring_pipeline.publish(
            name=env.scoring_pipeline_name,
            description="Diabetes Batch Scoring Pipeline",
        )
        pipeline_id_string = "##vso[task.setvariable variable=pipeline_id;isOutput=true]{}".format(  # NOQA: E501
            published_pipeline.id)
        print(pipeline_id_string)
    except Exception as e:
        print(e)
        exit(1)
Ejemplo n.º 3
0
def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(
        name=e.workspace_name,
        subscription_id=e.subscription_id,
        resource_group=e.resource_group,
    )
    print("get_workspace:")
    print(aml_workspace)

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print("aml_compute:")
        print(aml_compute)

    # Create a reusable Azure ML environment
    # Make sure to include `r-essentials'
    #   in h1c4driver/conda_dependencies.yml
    environment = get_environment(
        aml_workspace,
        e.aml_env_name,
        conda_dependencies_file=e.aml_env_train_conda_dep_file,
        create_new=e.rebuild_env,
    )  # NOQA: E501
    run_config = RunConfiguration()
    run_config.environment = environment

    train_step = PythonScriptStep(
        name="Train Model",
        script_name="train_with_r.py",
        compute_target=aml_compute,
        source_directory="h1c4driver/training/R",
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Train created")

    steps = [train_step]

    train_pipeline = Pipeline(workspace=aml_workspace, steps=steps)
    train_pipeline.validate()
    published_pipeline = train_pipeline.publish(
        name=e.pipeline_name,
        description="Model training/retraining pipeline",
        version=e.build_id,
    )
    print(f"Published pipeline: {published_pipeline.name}")
    print(f"for build {published_pipeline.version}")
def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(name=e.workspace_name,
                                  subscription_id=e.subscription_id,
                                  resource_group=e.resource_group)
    print("get_workspace:")
    print(aml_workspace)

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print("aml_compute:")
        print(aml_compute)

    # Create a reusable run configuration environment
    # Read definition from diabetes_regression/azureml_environment.json
    # Make sure to include `r-essentials'
    #   in diabetes_regression/conda_dependencies.yml
    environment = Environment.load_from_directory(e.sources_directory_train)
    if (e.collection_uri is not None and e.teamproject_name is not None):
        builduri_base = e.collection_uri + e.teamproject_name
        builduri_base = builduri_base + "/_build/results?buildId="
        environment.environment_variables["BUILDURI_BASE"] = builduri_base
    environment.register(aml_workspace)

    run_config = RunConfiguration()
    run_config.environment = environment

    train_step = PythonScriptStep(
        name="Train Model",
        script_name="train_with_r.py",
        compute_target=aml_compute,
        source_directory="diabetes_regression/training/R",
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Train created")

    steps = [train_step]

    train_pipeline = Pipeline(workspace=aml_workspace, steps=steps)
    train_pipeline.validate()
    published_pipeline = train_pipeline.publish(
        name=e.pipeline_name,
        description="Model training/retraining pipeline",
        version=e.build_id)
    print(f'Published pipeline: {published_pipeline.name}')
    print(f'for build {published_pipeline.version}')
Ejemplo n.º 5
0
def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(name=e.workspace_name,
                                  subscription_id=e.subscription_id,
                                  resource_group=e.resource_group)
    print("get_workspace:")
    print(aml_workspace)

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print("aml_compute:")
        print(aml_compute)

    run_config = RunConfiguration(conda_dependencies=CondaDependencies.create(
        conda_packages=[
            'numpy', 'pandas', 'scikit-learn', 'tensorflow', 'keras'
        ],
        pip_packages=[
            'azure', 'azureml-core', 'azure-storage', 'azure-storage-blob'
        ]))
    run_config.environment.docker.enabled = True
    run_config.environment.docker.base_image = "mcr.microsoft.com/mlops/python"

    train_step = PythonScriptStep(
        name="Train Model",
        script_name="train_with_r.py",
        compute_target=aml_compute,
        source_directory="diabetes_regression/training/R",
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Train created")

    steps = [train_step]

    train_pipeline = Pipeline(workspace=aml_workspace, steps=steps)
    train_pipeline.validate()
    published_pipeline = train_pipeline.publish(
        name=e.pipeline_name + "_with_R",
        description="Model training/retraining pipeline",
        version=e.build_id)
    print(f'Published pipeline: {published_pipeline.name}')
    print(f'for build {published_pipeline.version}')
Ejemplo n.º 6
0
def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(
        name=e.workspace_name,
        subscription_id=e.subscription_id,
        resource_group=e.resource_group
    )
    print("get_workspace:")
    print(aml_workspace)

    # Get Azure machine learning cluster
    aml_compute = get_compute(
        aml_workspace,
        e.compute_name,
        e.vm_size)
    if aml_compute is not None:
        print("aml_compute:")
        print(aml_compute)

    train_step = DatabricksStep(
        name="DBPythonInLocalMachine",
        num_workers=1,
        python_script_name="train_with_r_on_databricks.py",
        source_directory="emp_retention/training/R",
        run_name='DB_Python_R_demo',
        existing_cluster_id=e.db_cluster_id,
        compute_target=aml_compute,
        allow_reuse=False
    )

    print("Step Train created")

    steps = [train_step]

    train_pipeline = Pipeline(workspace=aml_workspace, steps=steps)
    train_pipeline.validate()
    published_pipeline = train_pipeline.publish(
        name=e.pipeline_name + "_with_R_on_DB",
        description="Model training/retraining pipeline",
        version=e.build_id
    )
    print(f'Published pipeline: {published_pipeline.name}')
    print(f'for build {published_pipeline.version}')
Ejemplo n.º 7
0
def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(name=e.workspace_name,
                                  subscription_id=e.subscription_id,
                                  resource_group=e.resource_group)
    print("get_workspace:")
    print(aml_workspace)

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print("aml_compute:")
        print(aml_compute)

    # Create a run configuration environment
    conda_deps_file = "diabetes_regression/training_dependencies.yml"
    conda_deps = CondaDependencies(conda_deps_file)
    run_config = RunConfiguration(conda_dependencies=conda_deps)
    run_config.environment.docker.enabled = True

    train_step = PythonScriptStep(
        name="Train Model",
        script_name="train_with_r.py",
        compute_target=aml_compute,
        source_directory="diabetes_regression/training/R",
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Train created")

    steps = [train_step]

    train_pipeline = Pipeline(workspace=aml_workspace, steps=steps)
    train_pipeline.validate()
    published_pipeline = train_pipeline.publish(
        name=e.pipeline_name,
        description="Model training/retraining pipeline",
        version=e.build_id)
    print(f'Published pipeline: {published_pipeline.name}')
    print(f'for build {published_pipeline.version}')
def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(name=e.workspace_name,
                                  subscription_id=e.subscription_id,
                                  resource_group=e.resource_group)
    print(f"get_workspace: {aml_workspace}")

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print(f"aml_compute: {aml_compute}")

    # Prepare the dataset input
    data_store = aml_workspace.get_default_datastore()
    print("data_store: %s" % data_store.name)

    # Parameters
    sources_directory_train = e.sources_directory_train
    build_id = e.build_id
    pipeline_name = 'Prepare Data Pipeline'
    train_ds_name = e.dataset_name
    train_data_path = e.datafile_path

    # Register the train dataset
    if (train_ds_name not in aml_workspace.datasets):
        train_path_on_datastore = train_data_path  # +'/*.csv'
        train_ds_data_path = [(data_store, train_path_on_datastore)]
        train_ds = Dataset.File.from_files(path=train_ds_data_path,
                                           validate=False)
        train_ds = train_ds.register(workspace=aml_workspace,
                                     name=train_ds_name,
                                     description='train data',
                                     tags={'format': 'CSV'},
                                     create_new_version=True)
    else:
        train_ds = Dataset.get_by_name(aml_workspace, train_ds_name)

    # Conda environment
    environment = Environment.from_conda_specification(
        "myenv", os.path.join(sources_directory_train,
                              "conda_dependencies.yml"))
    run_config = RunConfiguration()
    run_config.environment = environment

    with open(os.path.join(sources_directory_train,
                           'pipeline_config.json')) as json_file:
        pipe_param = json.load(json_file)
        for param in pipe_param['pipeline_parameter']:
            print(param)

    # Prepare pipeline parameters
    source_blob_url_param = PipelineParameter(name="source_blob_url",
                                              default_value="url")
    data_file_param = PipelineParameter(name="data_file",
                                        default_value="data_file")
    target_column_param = PipelineParameter(name="target_column",
                                            default_value="target_column")
    features_param = PipelineParameter(name="features", default_value="")

    # train_storage_connection_string = "DefaultEndpointsProtocol=https;AccountName=forecastingml8724233808;AccountKey=9o2ZH/5cLtmYmNyoHpoeKEA7Xjw0zi1fHLjI0Z0CZeQL5i4Ky2FZ9Wa6VpSYgK6uwLaHC3eamwnfEAscNTcgYw==;EndpointSuffix=core.windows.net"
    # Copy data step
    copy_step = PythonScriptStep(
        name="Copy Data",
        script_name="copy_data.py",
        arguments=[
            "--source_blob_url", source_blob_url_param,
            "--train_storage_connection_string",
            e.train_storage_connection_string, "--train_storage_container",
            e.train_storage_container, "--data_file", data_file_param,
            "--data_file_path", train_data_path
        ],
        runconfig=run_config,
        compute_target=aml_compute,
        source_directory=sources_directory_train)
    print("Step Copy Data created")

    # Prepare data step
    prepare_step = PythonScriptStep(name="Prepare Data",
                                    script_name="prepare.py",
                                    arguments=[
                                        "--data_file_path", train_data_path,
                                        "--data_file", data_file_param,
                                        "--target_column", target_column_param,
                                        "--features", features_param
                                    ],
                                    runconfig=run_config,
                                    compute_target=aml_compute,
                                    source_directory=sources_directory_train)
    print("Step Prepare created")

    # Publish the pipeline
    prepare_step.run_after(copy_step)
    pipeline_steps = [copy_step, prepare_step]
    pipeline = Pipeline(workspace=aml_workspace, steps=pipeline_steps)
    pipeline._set_experiment_name
    pipeline.validate()
    published_pipeline = pipeline.publish(name=pipeline_name,
                                          description="Prepare Data pipeline",
                                          version=build_id)
    print(f'Published pipeline: {published_pipeline.name}')
    print(f'for build {published_pipeline.version}')

    # Run the pipelines
    runs = []
    for param in pipe_param['pipeline_parameter']:
        # pipeline_parameters = {"model_name": "nyc_energy_model", "build_id": build_id}
        target_column = param['automl_settings']['label_column_name']
        param.pop('automl_settings')
        param.update({"target_column":
                      target_column})  # Special process target_column
        print(param)
        pipeline_run = published_pipeline.submit(aml_workspace,
                                                 e.experiment_name, param)
        runs.append(pipeline_run)
        print("Pipeline run initiated ", pipeline_run.id)

    # Wait for all runs to finish
    wait(lambda: are_all_runs_finished(runs),
         timeout_seconds=3600,
         sleep_seconds=5,
         waiting_for="all runs are finished")
    print("All prepare data pipeline runs done")
def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(
        name=e.workspace_name,
        subscription_id=e.subscription_id,
        resource_group=e.resource_group,
    )
    print("get_workspace:")
    print(aml_workspace)

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print("aml_compute:")
        print(aml_compute)

    # Create a reusable Azure ML environment
    environment = get_environment(
        aml_workspace,
        e.aml_env_name,
        conda_dependencies_file=e.aml_env_train_conda_dep_file,
        create_new=e.rebuild_env,
    )  #
    run_config = RunConfiguration()
    run_config.environment = environment

    if e.datastore_name:
        datastore_name = e.datastore_name
    else:
        datastore_name = aml_workspace.get_default_datastore().name
    run_config.environment.environment_variables[
        "DATASTORE_NAME"] = datastore_name  # NOQA: E501

    model_name_param = PipelineParameter(
        name="model_name", default_value=e.model_name)  # NOQA: E501
    dataset_version_param = PipelineParameter(name="dataset_version",
                                              default_value=e.dataset_version)
    data_file_path_param = PipelineParameter(name="data_file_path",
                                             default_value="none")
    caller_run_id_param = PipelineParameter(name="caller_run_id",
                                            default_value="none")  # NOQA: E501

    # Get dataset name
    dataset_name = e.dataset_name

    # Check to see if dataset exists
    if dataset_name not in aml_workspace.datasets:
        # This call creates an example CSV from sklearn sample data. If you
        # have already bootstrapped your project, you can comment this line
        # out and use your own CSV.
        create_sample_data_csv()

        # Use a CSV to read in the data set.
        file_name = "safedriver.csv"

        if not os.path.exists(file_name):
            raise Exception(
                'Could not find CSV dataset at "%s". If you have bootstrapped your project, you will need to provide a CSV.'  # NOQA: E501
                % file_name)  # NOQA: E501

        # Upload file to default datastore in workspace
        datatstore = Datastore.get(aml_workspace, datastore_name)
        target_path = "training-data/"
        datatstore.upload_files(
            files=[file_name],
            target_path=target_path,
            overwrite=True,
            show_progress=False,
        )

        # Register dataset
        path_on_datastore = os.path.join(target_path, file_name)
        dataset = Dataset.Tabular.from_delimited_files(
            path=(datatstore, path_on_datastore))
        dataset = dataset.register(
            workspace=aml_workspace,
            name=dataset_name,
            description="safedriver training data",
            tags={"format": "CSV"},
            create_new_version=True,
        )

    # Create a PipelineData to pass data between steps
    pipeline_data = PipelineData(
        "pipeline_data", datastore=aml_workspace.get_default_datastore())

    train_step = PythonScriptStep(
        name="Train Model",
        script_name=e.train_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        outputs=[pipeline_data],
        arguments=[
            "--model_name",
            model_name_param,
            "--step_output",
            pipeline_data,
            "--dataset_version",
            dataset_version_param,
            "--data_file_path",
            data_file_path_param,
            "--caller_run_id",
            caller_run_id_param,
            "--dataset_name",
            dataset_name,
        ],
        runconfig=run_config,
        allow_reuse=True,
    )
    print("Step Train created")

    evaluate_step = PythonScriptStep(
        name="Evaluate Model ",
        script_name=e.evaluate_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        arguments=[
            "--model_name",
            model_name_param,
            "--allow_run_cancel",
            e.allow_run_cancel,
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Evaluate created")

    register_step = PythonScriptStep(
        name="Register Model ",
        script_name=e.register_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        inputs=[pipeline_data],
        arguments=[
            "--model_name",
            model_name_param,
            "--step_input",
            pipeline_data,
        ],  # NOQA: E501
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Register created")
    # Check run_evaluation flag to include or exclude evaluation step.
    if (e.run_evaluation).lower() == "true":
        print("Include evaluation step before register step.")
        evaluate_step.run_after(train_step)
        register_step.run_after(evaluate_step)
        steps = [train_step, evaluate_step, register_step]
    else:
        print("Exclude evaluation step and directly run register step.")
        register_step.run_after(train_step)
        steps = [train_step, register_step]

    train_pipeline = Pipeline(workspace=aml_workspace, steps=steps)
    train_pipeline._set_experiment_name
    train_pipeline.validate()
    published_pipeline = train_pipeline.publish(
        name=e.pipeline_name,
        description="Model training/retraining pipeline",
        version=e.build_id,
    )
    print(f"Published pipeline: {published_pipeline.name}")
    print(f"for build {published_pipeline.version}")
Ejemplo n.º 10
0
def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(name=e.workspace_name,
                                  subscription_id=e.subscription_id,
                                  resource_group=e.resource_group)
    print("get_workspace:")
    print(aml_workspace)

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print("aml_compute:")
        print(aml_compute)

    # Create a reusable Azure ML environment
    environment = get_environment(aml_workspace,
                                  e.aml_env_name,
                                  create_new=False)  # NOQA: E501

    run_config = RunConfiguration()
    run_config.environment = environment

    if (e.datastore_name):
        datastore_name = e.datastore_name
    else:
        datastore_name = aml_workspace.get_default_datastore().name
    run_config.environment.environment_variables[
        "DATASTORE_NAME"] = datastore_name  # NOQA: E501

    model_name_param = PipelineParameter(name="model_name",
                                         default_value=e.model_name)
    dataset_version_param = PipelineParameter(name="dataset_version",
                                              default_value=e.dataset_version)
    data_file_path_param = PipelineParameter(name="data_file_path",
                                             default_value="none")
    caller_run_id_param = PipelineParameter(name="caller_run_id",
                                            default_value="none")

    # Get dataset name
    dataset_name = e.dataset_name

    # # Check to see if dataset exists
    # if (dataset_name not in aml_workspace.datasets):
    #     # Create dataset from lacemlops sample data
    #     sample_data = load_lacemlops()
    #     df = pd.DataFrame(
    #         data=sample_data.data,
    #         columns=sample_data.feature_names)
    #     df['Y'] = sample_data.target
    #     file_name = 'lacemlops.csv'
    #     df.to_csv(file_name, index=False)

    #     # Upload file to default datastore in workspace
    #     datatstore = Datastore.get(aml_workspace, datastore_name)
    #     target_path = 'training-data/'
    #     datatstore.upload_files(
    #         files=[file_name],
    #         target_path=target_path,
    #         overwrite=True,
    #         show_progress=False)

    #     # Register dataset
    #     path_on_datastore = os.path.join(target_path, file_name)
    #     dataset = Dataset.Tabular.from_delimited_files(
    #         path=(datatstore, path_on_datastore))
    #     dataset = dataset.register(
    #         workspace=aml_workspace,
    #         name=dataset_name,
    #         description='lacemlops training data',
    #         tags={'format': 'CSV'},
    #         create_new_version=True)

    # Create a PipelineData to pass data between steps
    pipeline_data = PipelineData(
        'pipeline_data', datastore=aml_workspace.get_default_datastore())

    train_step = PythonScriptStep(
        name="Train Model",
        script_name=e.train_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        outputs=[pipeline_data],
        arguments=[
            "--model_name",
            model_name_param,
            "--step_output",
            pipeline_data,
            "--dataset_version",
            dataset_version_param,
            "--data_file_path",
            data_file_path_param,
            "--caller_run_id",
            caller_run_id_param,
            "--dataset_name",
            dataset_name,
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Train created")

    evaluate_step = PythonScriptStep(
        name="Evaluate Model ",
        script_name=e.evaluate_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        arguments=[
            "--model_name",
            model_name_param,
            "--allow_run_cancel",
            e.allow_run_cancel,
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Evaluate created")

    register_step = PythonScriptStep(
        name="Register Model ",
        script_name=e.register_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        inputs=[pipeline_data],
        arguments=[
            "--model_name",
            model_name_param,
            "--step_input",
            pipeline_data,
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Register created")
    # Check run_evaluation flag to include or exclude evaluation step.
    if ((e.run_evaluation).lower() == 'true'):
        print("Include evaluation step before register step.")
        evaluate_step.run_after(train_step)
        register_step.run_after(evaluate_step)
        steps = [train_step, evaluate_step, register_step]
    else:
        print("Exclude evaluation step and directly run register step.")
        register_step.run_after(train_step)
        steps = [train_step, register_step]

    train_pipeline = Pipeline(workspace=aml_workspace, steps=steps)
    train_pipeline._set_experiment_name
    train_pipeline.validate()
    published_pipeline = train_pipeline.publish(
        name=e.pipeline_name,
        description="Model training/retraining pipeline",
        version=e.build_id)
    print(f'Published pipeline: {published_pipeline.name}')
    print(f'for build {published_pipeline.version}')
Ejemplo n.º 11
0
def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(
        name=e.workspace_name,
        subscription_id=e.subscription_id,
        resource_group=e.resource_group,
    )
    print(f"get_workspace:{aml_workspace}")

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print(f"aml_compute:{aml_compute}")

    # Create a reusable Azure ML environment
    environment = get_environment(
        aml_workspace,
        e.aml_env_name,
        create_new=e.rebuild_env,
        enable_docker=True,
        dockerfile='ml_model/preprocess/Dockerfile'
    )  #
    run_config = RunConfiguration()
    run_config.environment = environment

    if e.datastore_name:
        datastore_name = e.datastore_name
    else:
        datastore_name = aml_workspace.get_default_datastore().name
    run_config.environment.environment_variables["DATASTORE_NAME"] = datastore_name  # NOQA: E501

    datastore = Datastore(aml_workspace, name=datastore_name)
    data_file_path_param = PipelineParameter(name="data_file_path", default_value=e.dataset_name)  # NOQA: E501

    # The version of the input/output dataset can't be determined at pipeline publish time, only run time.  # NOQA: E501
    # Options to store output data:
    # Option 1: Use blob API to write output data. Otherwise, no way to dynamically change the output dataset based on PipelineParameter, # NOQA: E501
    #     The following will not work. It generate a path like "PipelineParameter_Name:data_file_path_Default:gear_images"  # NOQA: E501
    #         output_ds = OutputFileDatasetConfig(destination=(datastore, data_file_path_param))  # NOQA: E501
    #     This option means writing a file locally and upload to the datastore. Fewer dataset, more code.  # NOQA: E501
    # Option 2: Use a dynamic path in OutputFileDatasetConfig, and register a new dataset at completion  # NOQA: E501
    #     Output dataset can be mounted, so more dataset to maintain, less code.   # NOQA: E501
    # Using Option 2 below.
    output_dataset = OutputFileDatasetConfig(
        name=e.processed_dataset_name,
        destination=(datastore, "/dataset/{output-name}/{run-id}")
    ).register_on_complete(
        name=e.processed_dataset_name)

    preprocess_step = PythonScriptStep(
        name="Preprocess Data with OS cmd",
        script_name='preprocess/preprocess_os_cmd_aml.py',
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        arguments=[
            "--dataset_name", e.dataset_name,
            "--datastore_name", datastore_name,
            "--data_file_path", data_file_path_param,
            "--output_dataset", output_dataset,
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Preprocess OS cmd created")

    steps = [preprocess_step]
    preprocess_pipeline = Pipeline(workspace=aml_workspace, steps=steps)
    preprocess_pipeline._set_experiment_name
    preprocess_pipeline.validate()
    published_pipeline = preprocess_pipeline.publish(
        name=e.preprocessing_pipeline_name,
        description="Data preprocessing OS cmd pipeline",
        version=e.build_id,
    )
    print(f"Published pipeline: {published_pipeline.name}")
    print(f"for build {published_pipeline.version}")
def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(name=e.workspace_name,
                                  subscription_id=e.subscription_id,
                                  resource_group=e.resource_group)
    print("get_workspace:")
    print(aml_workspace)

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print("aml_compute:")
        print(aml_compute)

    # Create a run configuration environment
    conda_deps_file = "diabetes_regression/training_dependencies.yml"
    conda_deps = CondaDependencies(conda_deps_file)
    run_config = RunConfiguration(conda_dependencies=conda_deps)
    run_config.environment.docker.enabled = True
    config_envvar = {}
    if (e.collection_uri is not None and e.teamproject_name is not None):
        builduri_base = e.collection_uri + e.teamproject_name
        builduri_base = builduri_base + "/_build/results?buildId="
        config_envvar["BUILDURI_BASE"] = builduri_base
    run_config.environment.environment_variables = config_envvar

    model_name_param = PipelineParameter(name="model_name",
                                         default_value=e.model_name)
    build_id_param = PipelineParameter(name="build_id",
                                       default_value=e.build_id)

    dataset_name = ""
    if (e.datastore_name is not None and e.datafile_name is not None):
        dataset_name = e.dataset_name
        datastore = Datastore.get(aml_workspace, e.datastore_name)
        data_path = [(datastore, e.datafile_name)]
        dataset = Dataset.Tabular.from_delimited_files(path=data_path)
        dataset.register(workspace=aml_workspace,
                         name=e.dataset_name,
                         description="dataset with training data",
                         create_new_version=True)

    train_step = PythonScriptStep(
        name="Train Model",
        script_name=e.train_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        arguments=[
            "--build_id",
            build_id_param,
            "--model_name",
            model_name_param,
            "--dataset_name",
            dataset_name,
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Train created")

    evaluate_step = PythonScriptStep(
        name="Evaluate Model ",
        script_name=e.evaluate_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        arguments=[
            "--build_id",
            build_id_param,
            "--model_name",
            model_name_param,
            "--allow_run_cancel",
            e.allow_run_cancel,
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Evaluate created")

    register_step = PythonScriptStep(
        name="Register Model ",
        script_name=e.register_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        arguments=[
            "--build_id",
            build_id_param,
            "--model_name",
            model_name_param,
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Register created")
    # Check run_evaluation flag to include or exclude evaluation step.
    if ((e.run_evaluation).lower() == 'true'):
        print("Include evaluation step before register step.")
        evaluate_step.run_after(train_step)
        register_step.run_after(evaluate_step)
        steps = [train_step, evaluate_step, register_step]
    else:
        print("Exclude evaluation step and directly run register step.")
        register_step.run_after(train_step)
        steps = [train_step, register_step]

    train_pipeline = Pipeline(workspace=aml_workspace, steps=steps)
    train_pipeline._set_experiment_name
    train_pipeline.validate()
    published_pipeline = train_pipeline.publish(
        name=e.pipeline_name,
        description="Model training/retraining pipeline",
        version=e.build_id)
    print(f'Published pipeline: {published_pipeline.name}')
    print(f'for build {published_pipeline.version}')
Ejemplo n.º 13
0
def main():
    e = Env()
    
    from azureml.core.authentication import InteractiveLoginAuthentication

    myten=os.environ.get("AZURE_TENANT_ID")
    interactive_auth = InteractiveLoginAuthentication(tenant_id=os.environ.get("AZURE_TENANT_ID"))
    subscription=os.environ.get("CSUBSCRIPTION")
    workspace_name=e.workspace_name
    resource_group=e.resource_group

    aml_workspace = Workspace.get(
        name = workspace_name,
        subscription_id = subscription,
        resource_group=resource_group,
        auth=interactive_auth
    )

    from ml_service.util.attach_compute import get_compute

    # Get Azure machine learning cluster
    # If not present then get_compute will create a compute based on environment variables

    aml_compute = get_compute(
        aml_workspace,
        e.compute_name,
        e.vm_size)
    if aml_compute is not None:
        print("aml_compute:")
        print(aml_compute)

    print("SDK version: ", azureml.core.VERSION)

    ## Variable names that can be passed in as parameter values
    from azureml.pipeline.core.graph import PipelineParameter
    from azureml.core import Datastore

    model_name_param = PipelineParameter(
        name="model_name", default_value=e.model_name)
    dataset_version_param = PipelineParameter(
        name="dataset_version", default_value=e.dataset_version)
    data_file_path_param = PipelineParameter(
        name="data_file_path", default_value="none")
    caller_run_id_param = PipelineParameter(
        name="caller_run_id", default_value="none")
    #model_path = PipelineParameter(
    #    name="model_path", default_value=e.model_path)    

    if (e.datastore_name):
        datastore_name = e.datastore_name
    else:
        datastore_name = aml_workspace.get_default_datastore().name

    # Get the datastore whether it is the default or named store
    datastore = Datastore.get(aml_workspace, datastore_name)
    dataset_name = e.dataset_name

    # Create a reusable Azure ML environment
    from ml_service.util.manage_environment import get_environment
    from azureml.core import Environment

    # RUN Configuration
    ## Must have this process to work with AzureML-SDK 1.0.85
    from azureml.core.runconfig import RunConfiguration, DEFAULT_CPU_IMAGE
    from azureml.core.conda_dependencies import CondaDependencies

    try:
        app_env=Environment(name="smartschedule_env")
        app_env.register(workspace=aml_workspace)
    except:
        print("Environment not found")
    
    # Create a new runconfig object
    aml_run_config = RunConfiguration()

    aml_run_config.environment.environment_variables["DATASTORE_NAME"] = e.datastore_name  # NOQA: E501

    # Use the aml_compute you created above. 
    aml_run_config.target = aml_compute

    # Enable Docker
    aml_run_config.environment.docker.enabled = True

    # Set Docker base image to the default CPU-based image
    aml_run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE
    #aml_run_config.environment.docker.base_image = "mcr.microsoft.com/azureml/base:0.2.1"

    # Use conda_dependencies.yml to create a conda environment in the Docker image for execution
    aml_run_config.environment.python.user_managed_dependencies = False

    app_conda_deps=CondaDependencies.create(
        conda_packages=['pandas','scikit-learn', 'libgcc','pyodbc', 'sqlalchemy', 'py-xgboost==0.90'], 
        pip_packages=['azureml-sdk[automl,explain,contrib,interpret]==1.4.0', 'xgboost==0.90', 'azureml-dataprep==1.4.6', 'pyarrow', 'azureml-defaults==1.4.0', 'azureml-train-automl-runtime==1.4.0'], pin_sdk_version=False)

    # Specify CondaDependencies obj, add necessary packages
    aml_run_config.environment.python.conda_dependencies = app_conda_deps

    print ("Run configuration created.")
    from azure.common.credentials import ServicePrincipalCredentials
    #from azure.keyvault import KeyVaultClient, KeyVaultAuthentication

    from azure.keyvault.secrets import SecretClient
    from azure.identity import DefaultAzureCredential
    import pandas as pd
    #import sqlalchemy as sql
    import pyodbc

    def get_data(sql_string, columns):
        credentials = None
        credential = DefaultAzureCredential()

        secret_client = SecretClient("https://smrtschd-aml-kv.vault.azure.net", credential=credential)    
        secret = secret_client.get_secret("database-connection")

        #client = KeyVaultClient(KeyVaultAuthentication(auth_callback))
        #secret_bundle = client.get_secret("https://smrtschd-aml-kv.vault.azure.net", "database-connection", "")

        server = 'starlims-sql.database.windows.net'
        database = 'QM12_DATA_AUTOMATION'
        username = '******'
        password = secret.value
        driver= '{ODBC Driver 17 for SQL Server}'
        conn = pyodbc.connect('Driver='+driver+';'+
                            'Server='+server+';'+
                            'Database='+database+';'+
                            'PORT=1433;'+
                            'UID='+username+';'+
                            'PWD='+password+'; MARS_Connection=Yes'
        )

        try:
            SQL_Query = pd.read_sql_query(sql_string, conn)

            df = pd.DataFrame(SQL_Query, columns=columns)
            return df
        except Exception as e:
            print(e)
            raise

    sql_str = "SELECT " \
            "  Dept " \
            ", Method " \
            ", Servgrp " \
            ", Runno " \
            ", TestNo " \
            ", Testcode " \
            ", Total_Duration_Min " \
            ", Total_Duration_Hr " \
            ", Usrnam " \
            ", Eqid " \
            ", Eqtype " \
        "FROM dbo.Draft " \
        "order by TESTCODE, RUNNO, dept, method;"

    columns = ["Dept", "Method", "Servgrp", "Runno", "TestNo", "Testcode", "Total_Duration_Min", "Total_Duration_Hr", "Usrnam", "Eqid","Eqtype"]

    from azureml.core import Dataset
    from sklearn.model_selection import train_test_split

    if (e.train_dataset_name not in aml_workspace.datasets):

        
        df = get_data(sql_str, columns)

        train_df, test_df=train_test_split(df, test_size=0.2)

        MY_DIR = "data"

        CHECK_FOLDER = os.path.isdir(MY_DIR)

        if not CHECK_FOLDER:
            os.makedirs(MY_DIR)
        else:
            print("Folder ", MY_DIR, " is already created")

        #files = ["data/analyst_tests.csv"]
        files = ["data/train_data.csv","data/test_data.csv"]

        def_file_store = Datastore(aml_workspace, "workspacefilestore")

        dtfrm = df.to_csv(files[0], header=True, index=False)

        train_dataframe=train_df.to_csv(files[0], header=True, index=False)
        test_dataframe=test_df.to_csv(files[1], header=True, index=False)
        datastore.upload_files(
            files=files,
            target_path='data/',
            overwrite=True
        )

        from azureml.data.data_reference import DataReference

        blob_input_data_test=DataReference(
            datastore=datastore,
            data_reference_name="smartschedulertest",
            path_on_datastore="data/test_data.csv"
        )
        test_data=Dataset.Tabular.from_delimited_files(blob_input_data_test)
        test_data.register(aml_workspace, e.test_dataset_name, create_new_version=True)

        blob_input_data_train=DataReference(
            datastore=datastore,
            data_reference_name="smartschedulertrain",
            path_on_datastore="data/train_data.csv"
        )
        train_data=Dataset.Tabular.from_delimited_files(blob_input_data_train)
        train_data.register(aml_workspace, e.train_dataset_name, create_new_version=True)

    else:
        from azureml.data.data_reference import DataReference
        print("getting from the datastore instead of uploading")

        train_data=Dataset.get_by_name(aml_workspace, name=e.train_dataset_name)
        test_data=Dataset.get_by_name(aml_workspace, name=e.test_dataset_name)

    # check the training dataset to make sure it has at least 50 records.
    tdf=train_data.to_pandas_dataframe().head(5)

    print(tdf.shape)
    print(tdf)

    # display the first five rows of the data
    # create a variable that can be used for other purposes
    df=train_data.to_pandas_dataframe().head()

    label_column="Total_Duration_Min"

    import random
    import string

    def randomString(stringLength=15):
        letters = string.ascii_lowercase
        return ''.join(random.choice(letters) for i in range(stringLength))

    from azureml.core import Experiment

    experiment = Experiment(aml_workspace, "SmartScheduler_Pipeline")


    import logging

    aml_name = 'smart_scheduler_' + randomString(5)
    print(aml_name)

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.ticker import StrMethodFormatter

    print(df.head(5))
    print(df.shape)
    print(df.dtypes)

    #df.hist(column='Dept')
    list(df.columns.values)

    # Remove Features that are not necessary.
    #df.hist(column="Servgrp", bins=4)
    train_data=train_data.drop_columns(["Runno","TestNo","Total_Duration_Hr"])
    test_data=test_data.drop_columns(["Runno","TestNo","Total_Duration_Hr"])

    print(train_data.to_pandas_dataframe())
    print(test_data.to_pandas_dataframe())

    from azureml.automl.core.featurization import FeaturizationConfig

    # some of the columns could be change to one hot encoding especially if the categorical column
    featurization_config=FeaturizationConfig()
    featurization_config.blocked_transformers=['LabelEncoder']
    featurization_config.add_column_purpose('Dept', 'CategoricalHash')
    featurization_config.add_transformer_params('HashOneHotEncoder',['Method'], {"number_of_bits":3})
    featurization_config.add_column_purpose('Servgrp', 'CategoricalHash')
    featurization_config.add_column_purpose('Testcode', 'Numeric')
    featurization_config.add_column_purpose('Usrnam', 'CategoricalHash')
    featurization_config.add_column_purpose('Eqid', 'CategoricalHash')
    featurization_config.add_column_purpose('Eqtype', 'CategoricalHash')

    from azureml.pipeline.core import Pipeline, PipelineData
    from azureml.pipeline.steps import PythonScriptStep

    #train_model_folder = './scripts/trainmodel'

    automl_settings = {
        "iteration_timeout_minutes": 5,
        "iterations": 5,
        "enable_early_stopping": True,
        "primary_metric": 'spearman_correlation',
        "verbosity": logging.INFO,
        "n_cross_validation":5
    }

    automl_config = AutoMLConfig(task="regression",
                    debug_log='automated_ml_errors.log',
                    #path = train_model_folder,
                    training_data=train_data,
                    featurization=featurization_config,
                    blacklist_models=['XGBoostRegressor'],
                    label_column_name=label_column,
                    compute_target=aml_compute,
                    **automl_settings)

    from azureml.pipeline.steps import AutoMLStep
    from azureml.pipeline.core import TrainingOutput

    metrics_output_name = 'metrics_output'
    best_model_output_name='best_model_output'

    metrics_data = PipelineData(name = 'metrics_data',
                    datastore = datastore,
                    pipeline_output_name=metrics_output_name,
                    training_output=TrainingOutput(type='Metrics'))

    model_data = PipelineData(name='model_data',
                datastore=datastore,
                pipeline_output_name=best_model_output_name,
                training_output=TrainingOutput(type='Model'))

    trainWithAutomlStep = AutoMLStep(
                        name=aml_name,
                        automl_config=automl_config,
                        passthru_automl_config=False,
                        outputs=[metrics_data, model_data],
                        allow_reuse=True
    )

    evaluate_step = PythonScriptStep(
        name="Evaluate Model",
        script_name='./evaluate/evaluate_model.py',
        #  e.evaluate_script_path,
        compute_target=aml_compute,
        source_directory='../app',
        arguments=[
            "--model_name", model_name_param,
            "--allow_run_cancel", e.allow_run_cancel
        ]
    )

    register_step = PythonScriptStep(
        name="Register Model ",
        script_name='register/register_model2.py', #e.register_script_path,
        compute_target=aml_compute,
        source_directory='../app',
        inputs=[model_data],
        arguments=[
            "--model_name", model_name_param,
            "--model_path", model_data,
            "--ds_name", e.train_dataset_name
        ],
        runconfig=aml_run_config,
        allow_reuse=False
    )

    if ((e.run_evaluation).lower() == 'true'):
        print("Include evaluation step before register step.")
        evaluate_step.run_after(trainWithAutomlStep)
        register_step.run_after(evaluate_step)
        pipeline_steps = [ trainWithAutomlStep, evaluate_step, register_step ]
    else:
        print("Exclude the evaluation step and run register step")
        register_step.run_after(trainWithAutomlStep)
        pipeline_steps = [ trainWithAutomlStep, register_step ]

    print( "this is the value for execute pipeline: {}".format(e.execute_pipeline))

    if( (e.execute_pipeline).lower() =='true' ):
        # Execute the pipe normally during testing and debugging
        print("Pipeline submitted for execution.")
        pipeline = Pipeline(workspace = aml_workspace, steps=pipeline_steps)
        pipeline_run = experiment.submit(pipeline)
        pipeline_run.wait_for_completion()
        print("Pipeline is built.")
    else:
        # Generates pipeline that will be called in ML Ops
        train_pipeline = Pipeline(workspace=aml_workspace, steps=pipeline_steps)
        train_pipeline._set_experiment_name
        train_pipeline.validate()
        published_pipeline = train_pipeline.publish(
            name=e.pipeline_name,
            description="Model training/retraining pipeline",
            version=e.build_id
        )
        print(f'Published pipeline: {published_pipeline.name}')
        print(f'for build {published_pipeline.version}')
def main():
    e = Env()
    aml_workspace = Workspace.get(
        name=e.workspace_name,
        subscription_id=e.subscription_id,
        resource_group=e.resource_group
    )
    print("get_workspace:")
    print(aml_workspace)

    aml_compute = get_compute(
        aml_workspace,
        e.compute_name,
        e.vm_size)
    if aml_compute is not None:
        print("aml_compute:")
        print(aml_compute)

    environment = get_environment(
        aml_workspace, e.aml_env_name, create_new=e.rebuild_env)
    run_config = RunConfiguration()
    run_config.environment = environment

    if (e.datastore_name):
        datastore_name = e.datastore_name
    else:
        datastore_name = aml_workspace.get_default_datastore().name

    run_config.environment.environment_variables["DATASTORE_NAME"] \
        = datastore_name

    dataset_name = e.dataset_name
    file_name = e.file_name
    datastore = Datastore.get(aml_workspace, datastore_name)

    if (dataset_name not in aml_workspace.datasets):
        raise Exception("Could not find dataset at \"%s\"." % dataset_name)
    else:
        dataset = Dataset.get_by_name(aml_workspace, name=dataset_name)
        dataset.download(target_path='.', overwrite=True)
        datastore.upload_files([file_name],
                               target_path=dataset_name,
                               overwrite=True)

    raw_data_file = DataReference(datastore=datastore,
                                  data_reference_name="Raw_Data_File",
                                  path_on_datastore=dataset_name + '/'
                                  + file_name)

    clean_data_file = PipelineParameter(name="clean_data_file",
                                        default_value="/clean_data.csv")
    clean_data_folder = PipelineData("clean_data_folder",
                                     datastore=datastore)

    prepDataStep = PythonScriptStep(name="Prepare Data",
                                    source_directory=e.sources_directory_train,
                                    script_name=e.data_prep_script_path,
                                    arguments=["--raw_data_file",
                                               raw_data_file,
                                               "--clean_data_folder",
                                               clean_data_folder,
                                               "--clean_data_file",
                                               clean_data_file],
                                    inputs=[raw_data_file],
                                    outputs=[clean_data_folder],
                                    compute_target=aml_compute,
                                    allow_reuse=False)

    print("Step Prepare Data created")

    new_model_file = PipelineParameter(name="new_model_file ",
                                       default_value='/' + e.model_name
                                       + '.pkl')
    new_model_folder = PipelineData("new_model_folder", datastore=datastore)
    est = SKLearn(source_directory=e.sources_directory_train,
                  entry_script=e.train_script_path,
                  pip_packages=['azureml-sdk', 'scikit-learn==0.20.3',
                                'azureml-dataprep[pandas,fuse]>=1.1.14'],
                  compute_target=aml_compute)

    trainingStep = EstimatorStep(
        name="Model Training",
        estimator=est,
        estimator_entry_script_arguments=["--clean_data_folder",
                                          clean_data_folder,
                                          "--new_model_folder",
                                          new_model_folder,
                                          "--clean_data_file",
                                          clean_data_file.default_value,
                                          "--new_model_file",
                                          new_model_file.default_value],
        runconfig_pipeline_params=None,
        inputs=[clean_data_folder],
        outputs=[new_model_folder],
        compute_target=aml_compute,
        allow_reuse=False)

    print("Step Train created")

    model_name_param = PipelineParameter(name="model_name",
                                         default_value=e.model_name)

    evaluateStep = PythonScriptStep(
        name="Evaluate Model",
        source_directory=e.sources_directory_train,
        script_name=e.evaluate_script_path,
        arguments=["--model_name", model_name_param],
        compute_target=aml_compute,
        allow_reuse=False)

    print("Step Evaluate created")

    registerStep = PythonScriptStep(
        name="Register Model",
        source_directory=e.sources_directory_train,
        script_name=e.register_script_path,
        arguments=["--new_model_folder", new_model_folder,
                   "--new_model_file", new_model_file,
                   "--model_name", model_name_param],
        inputs=[new_model_folder],
        compute_target=aml_compute,
        allow_reuse=False)

    print("Step Register created")

    if ((e.run_evaluation).lower() == 'true'):
        print("Include evaluation step before register step.")
        trainingStep.run_after(prepDataStep)
        evaluateStep.run_after(trainingStep)
        registerStep.run_after(evaluateStep)
    else:
        print("Exclude evaluation step and directly run register step.")
        trainingStep.run_after(prepDataStep)
        registerStep.run_after(trainingStep)

    pipeline = Pipeline(workspace=aml_workspace, steps=[registerStep])
    pipeline.validate()
    print("Pipeline is built")

    pipeline._set_experiment_name
    published_pipeline = pipeline.publish(
        name=e.pipeline_name,
        description="Predict Employee Retention Model training pipeline",
        version=e.build_id
    )
    print(f'Published pipeline: {published_pipeline.name}')
    print(f'for build {published_pipeline.version}')
Ejemplo n.º 15
0
def main():
    e = Env()
    print(e.__dict__)
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(name=e.workspace_name,
                                  subscription_id=e.subscription_id,
                                  resource_group=e.resource_group)
    print("get_workspace:")
    print(aml_workspace)

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print("aml_compute:")
        print(aml_compute)

    # Create a reusable Azure ML environment
    environment = get_environment(aml_workspace,
                                  e.aml_env_name,
                                  create_new=e.rebuild_env)  #
    run_config = RunConfiguration()
    run_config.environment = environment

    if e.datastore_name:
        datastore_name = e.datastore_name
    else:
        datastore_name = aml_workspace.get_default_datastore().name
    run_config.environment.environment_variables[
        "DATASTORE_NAME"] = datastore_name  # NOQA: E501

    model_name_param = PipelineParameter(name="model_name",
                                         default_value=e.model_name)
    dataset_version_param = PipelineParameter(name="dataset_version",
                                              default_value=e.dataset_version)
    data_file_path_param = PipelineParameter(name="data_file_path",
                                             default_value="none")
    caller_run_id_param = PipelineParameter(name="caller_run_id",
                                            default_value="none")

    # Get dataset name
    dataset_name = e.dataset_name

    # Check to see if dataset exists
    if dataset_name not in aml_workspace.datasets:
        raise ValueError(
            f"can't find dataset {dataset_name} in datastore {datastore_name}")

    # Create PipelineData to pass data between steps
    model_data = PipelineData("model_data",
                              datastore=aml_workspace.get_default_datastore())
    train_ds = (PipelineData("train_ds",
                             datastore=aml_workspace.get_default_datastore()).
                as_dataset().parse_delimited_files().register(
                    name="train", create_new_version=True))
    test_ds = (PipelineData(
        "test_ds", datastore=aml_workspace.get_default_datastore()).as_dataset(
        ).parse_delimited_files().register(name="test",
                                           create_new_version=True))

    prepare_step = PythonScriptStep(
        name="Prepare Data",
        script_name=e.prepare_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        outputs=[train_ds, test_ds],
        arguments=[
            "--dataset_version", dataset_version_param, "--data_file_path",
            data_file_path_param, "--dataset_name", dataset_name,
            "--caller_run_id", caller_run_id_param, "--train_ds", train_ds,
            "--test_ds", test_ds
        ],
        runconfig=run_config,
        allow_reuse=True,
    )
    print("Step Prepare created")

    train_step = PythonScriptStep(
        name="Train Model",
        script_name=e.train_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        inputs=[
            train_ds.as_named_input("training_data"),
            test_ds.as_named_input("testing_data")
        ],
        outputs=[model_data],
        arguments=[
            "--model_name", model_name_param, "--model_data", model_data
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Train created")

    evaluate_step = PythonScriptStep(
        name="Evaluate Model ",
        script_name=e.evaluate_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        arguments=[
            "--model_name",
            model_name_param,
            "--allow_run_cancel",
            e.allow_run_cancel,
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Evaluate created")

    register_step = PythonScriptStep(
        name="Register Model ",
        script_name=e.register_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        inputs=[model_data],
        arguments=[
            "--model_name", model_name_param, "--step_input", model_data
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Register created")
    # Check run_evaluation flag to include or exclude evaluation step.
    if (e.run_evaluation).lower() == "true":
        print("Include evaluation step before register step.")
        evaluate_step.run_after(train_step)
        register_step.run_after(evaluate_step)
        steps = [prepare_step, train_step, evaluate_step, register_step]
    else:
        print("Exclude evaluation step and directly run register step.")
        register_step.run_after(train_step)
        steps = [prepare_step, train_step, register_step]

    train_pipeline = Pipeline(workspace=aml_workspace, steps=steps)
    train_pipeline._set_experiment_name
    train_pipeline.validate()
    published_pipeline = train_pipeline.publish(
        name=e.pipeline_name,
        description="Model training/retraining pipeline",
        version=e.build_id)
    print(f"Published pipeline: {published_pipeline.name}")
    print(f"for build {published_pipeline.version}")
Ejemplo n.º 16
0
def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(name=e.workspace_name,
                                  subscription_id=e.subscription_id,
                                  resource_group=e.resource_group)
    print(f"get_workspace: {aml_workspace}")

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print(f"aml_compute: {aml_compute}")

    # Prepare the dataset input
    data_store = aml_workspace.get_default_datastore()
    print("data_store: %s" % data_store.name)

    train_ds_name = e.dataset_name
    train_data_path = e.datafile_path
    sources_directory_train = e.sources_directory_train
    pipeline_name = e.pipeline_name
    build_id = e.build_id

    # Register the train dataset
    if (train_ds_name not in aml_workspace.datasets):
        train_path_on_datastore = train_data_path  # +'/*.csv'
        train_ds_data_path = [(data_store, train_path_on_datastore)]
        train_ds = Dataset.File.from_files(path=train_ds_data_path,
                                           validate=False)
        train_ds = train_ds.register(workspace=aml_workspace,
                                     name=train_ds_name,
                                     description='train data',
                                     tags={'format': 'CSV'},
                                     create_new_version=True)
    else:
        train_ds = Dataset.get_by_name(aml_workspace, train_ds_name)

    train_input = train_ds.as_named_input('train_input')

    # Conda environment
    environment = Environment.from_conda_specification(
        "myenv", os.path.join(sources_directory_train,
                              "conda_dependencies.yml"))
    # Logging into Azure Application Insights
    env = {
        "APPLICATIONINSIGHTS_CONNECTION_STRING":
        e.applicationinsights_connection_string
    }
    env['AZUREML_FLUSH_INGEST_WAIT'] = ''
    env['DISABLE_ENV_MISMATCH'] = True
    environment.environment_variables = env

    from ff.util.helper import build_parallel_run_config

    # PLEASE MODIFY the following three settings based on your compute and
    # experiment timeout.
    process_count_per_node = 6
    node_count = 3
    # this timeout(in seconds) is inline with AutoML experiment timeout or (no
    # of iterations * iteration timeout)
    run_invocation_timeout = 3700

    parallel_run_config = build_parallel_run_config(sources_directory_train,
                                                    environment, aml_compute,
                                                    node_count,
                                                    process_count_per_node,
                                                    run_invocation_timeout)

    from azureml.pipeline.core import PipelineData

    output_dir = PipelineData(name="training_output", datastore=data_store)

    #from azureml.contrib.pipeline.steps import ParallelRunStep
    from azureml.pipeline.steps import ParallelRunStep

    parallel_run_step = ParallelRunStep(
        name="many-models-training",
        parallel_run_config=parallel_run_config,
        allow_reuse=False,
        inputs=[train_input],
        output=output_dir
        # models=[],
        # arguments=[]
    )

    pipeline = Pipeline(workspace=aml_workspace, steps=parallel_run_step)
    pipeline._set_experiment_name
    pipeline.validate()
    published_pipeline = pipeline.publish(name=pipeline_name,
                                          description="FF AutomML pipeline",
                                          version=build_id)
    print(f'Published pipeline: {published_pipeline.name}')
    print(f'for build {published_pipeline.version}')
def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(
        name=e.workspace_name,
        subscription_id=e.subscription_id,
        resource_group=e.resource_group,
    )
    print(f"get_workspace:{aml_workspace}")

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print(f"aml_compute:{aml_compute}")

    # Create a reusable Azure ML environment
    environment = get_environment(
        aml_workspace,
        e.aml_env_name,
        conda_dependencies_file=e.aml_env_train_conda_dep_file,
        create_new=e.rebuild_env,
    )  #
    run_config = RunConfiguration()
    run_config.environment = environment

    if e.datastore_name:
        datastore_name = e.datastore_name
    else:
        datastore_name = aml_workspace.get_default_datastore().name
    run_config.environment.environment_variables[
        "DATASTORE_NAME"] = datastore_name  # NOQA: E501

    # datastore and dataset names are fixed for this pipeline, however
    # data_file_path can be specified for registering new versions of dataset
    # Note that AML pipeline parameters don't take empty string as default, "" won't work  # NOQA: E501
    model_name_param = PipelineParameter(
        name="model_name", default_value=e.model_name)  # NOQA: E501
    data_file_path_param = PipelineParameter(
        name="data_file_path", default_value="nopath")  # NOQA: E501
    ml_params = PipelineParameter(name="ml_params",
                                  default_value="default")  # NOQA: E501

    # Create a PipelineData to pass data between steps
    pipeline_data = PipelineData(
        "pipeline_data", datastore=aml_workspace.get_default_datastore())

    train_step = PythonScriptStep(
        name="Train Model",
        script_name="train/train_aml.py",
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        outputs=[pipeline_data],
        arguments=[
            "--model_name",
            model_name_param,
            "--step_output",
            pipeline_data,
            "--data_file_path",
            data_file_path_param,
            "--dataset_name",
            e.processed_dataset_name,
            "--datastore_name",
            datastore_name,
            "--ml_params",
            ml_params,
        ],
        runconfig=run_config,
        allow_reuse=True,
    )
    print("Step Train created")

    evaluate_step = PythonScriptStep(
        name="Evaluate Model ",
        script_name="evaluate/evaluate_model.py",
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        arguments=[
            "--model_name",
            model_name_param,
            "--ml_params",
            ml_params,
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Evaluate created")

    register_step = PythonScriptStep(
        name="Register Model ",
        script_name="register/register_model.py",
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        inputs=[pipeline_data],
        arguments=[
            "--model_name",
            model_name_param,
            "--step_input",
            pipeline_data,
            "--ml_params",
            ml_params,
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Register created")

    evaluate_step.run_after(train_step)
    register_step.run_after(evaluate_step)
    steps = [train_step, evaluate_step, register_step]

    train_pipeline = Pipeline(workspace=aml_workspace, steps=steps)
    train_pipeline._set_experiment_name
    train_pipeline.validate()
    published_pipeline = train_pipeline.publish(
        name=e.training_pipeline_name,
        description="Model training/retraining pipeline",
        version=e.build_id,
    )
    print(f"Published pipeline: {published_pipeline.name}")
    print(f"for build {published_pipeline.version}")
def main():
    e = Env()
    # Get Azure machine learning workspace
    aml_workspace = Workspace.get(name=e.workspace_name,
                                  subscription_id=e.subscription_id,
                                  resource_group=e.resource_group)
    print("get_workspace:")
    print(aml_workspace)

    # Get Azure machine learning cluster
    aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
    if aml_compute is not None:
        print("aml_compute:")
        print(aml_compute)

    # Create a reusable run configuration environment
    # Read definition from diabetes_regression/azureml_environment.json
    environment = Environment.load_from_directory(e.sources_directory_train)
    if (e.collection_uri is not None and e.teamproject_name is not None):
        builduri_base = e.collection_uri + e.teamproject_name
        builduri_base = builduri_base + "/_build/results?buildId="
        environment.environment_variables["BUILDURI_BASE"] = builduri_base
    environment.register(aml_workspace)

    run_config = RunConfiguration()
    run_config.environment = environment

    model_name_param = PipelineParameter(name="model_name",
                                         default_value=e.model_name)
    build_id_param = PipelineParameter(name="build_id",
                                       default_value=e.build_id)

    # Get dataset name
    dataset_name = e.dataset_name

    # Check to see if dataset exists
    if (dataset_name not in aml_workspace.datasets):
        # Create dataset from diabetes sample data
        sample_data = load_diabetes()
        df = pd.DataFrame(data=sample_data.data,
                          columns=sample_data.feature_names)
        df['Y'] = sample_data.target
        file_name = 'diabetes.csv'
        df.to_csv(file_name, index=False)

        # Upload file to default datastore in workspace
        default_ds = aml_workspace.get_default_datastore()
        target_path = 'training-data/'
        default_ds.upload_files(files=[file_name],
                                target_path=target_path,
                                overwrite=True,
                                show_progress=False)

        # Register dataset
        path_on_datastore = os.path.join(target_path, file_name)
        dataset = Dataset.Tabular.from_delimited_files(
            path=(default_ds, path_on_datastore))
        dataset = dataset.register(workspace=aml_workspace,
                                   name=dataset_name,
                                   description='diabetes training data',
                                   tags={'format': 'CSV'},
                                   create_new_version=True)

    # Get the dataset
    dataset = Dataset.get_by_name(aml_workspace, dataset_name)

    # Create a PipelineData to pass data between steps
    pipeline_data = PipelineData(
        'pipeline_data', datastore=aml_workspace.get_default_datastore())

    train_step = PythonScriptStep(
        name="Train Model",
        script_name=e.train_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        inputs=[dataset.as_named_input('training_data')],
        outputs=[pipeline_data],
        arguments=[
            "--build_id", build_id_param, "--model_name", model_name_param,
            "--step_output", pipeline_data
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Train created")

    evaluate_step = PythonScriptStep(
        name="Evaluate Model ",
        script_name=e.evaluate_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        arguments=[
            "--build_id",
            build_id_param,
            "--model_name",
            model_name_param,
            "--allow_run_cancel",
            e.allow_run_cancel,
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Evaluate created")

    register_step = PythonScriptStep(
        name="Register Model ",
        script_name=e.register_script_path,
        compute_target=aml_compute,
        source_directory=e.sources_directory_train,
        inputs=[pipeline_data],
        arguments=[
            "--build_id",
            build_id_param,
            "--model_name",
            model_name_param,
            "--step_input",
            pipeline_data,
        ],
        runconfig=run_config,
        allow_reuse=False,
    )
    print("Step Register created")
    # Check run_evaluation flag to include or exclude evaluation step.
    if ((e.run_evaluation).lower() == 'true'):
        print("Include evaluation step before register step.")
        evaluate_step.run_after(train_step)
        register_step.run_after(evaluate_step)
        steps = [train_step, evaluate_step, register_step]
    else:
        print("Exclude evaluation step and directly run register step.")
        register_step.run_after(train_step)
        steps = [train_step, register_step]

    train_pipeline = Pipeline(workspace=aml_workspace, steps=steps)
    train_pipeline._set_experiment_name
    train_pipeline.validate()
    published_pipeline = train_pipeline.publish(
        name=e.pipeline_name,
        description="Model training/retraining pipeline",
        version=e.build_id)
    print(f'Published pipeline: {published_pipeline.name}')
    print(f'for build {published_pipeline.version}')