def mlp_predict(model_file_name, test_file_name, pred_file_name, n_dim): logger.info('loading test file') (test_set_x, test_set_y) = svm2numpy(test_file_name, n_dim) logger.info('predicting') f = open(pred_file_name, 'w') for label in get_y_pred(model_file_name, test_set_x): f.write(str(label)+'\n')
def featdel(input_file_name, n_features, model_file_name): logger.info('loading input file: ' + input_file_name) x, y = svm2numpy(input_file_name, n_features) logger.info('deleting features') x_sum = x.sum(axis=0) model = [] for idx in xrange(len(x_sum)): if x_sum[idx] == 0.0: model.append(idx) logger.info(('before deletion: %i, after deletion: %i') % (n_features, n_features - len(model))) logger.info('outputing model to file: ' + model_file_name) np.save(model_file_name, np.array(model))
def gen_feat(input_file_name, n_features, model_file_name, output_file_name): logger.info('loading input file: ' + input_file_name) x, y = svm2numpy(input_file_name, n_features) logger.info('loading model file: ' + model_file_name) model = np.load(model_file_name) logger.info('outputing file: ' + output_file_name) x = np.delete(x, model, 1) f = open(output_file_name, 'w') for n in xrange(len(x)): output_str = str(y[n]) for idx in xrange(len(x[n])): if x[n, idx] != 0: output_str = ('%s %i:%f') % (output_str, idx, x[n, idx]) f.write(output_str + '\n')
def gen_feat(input_file_name, n_features, model_file_name, output_file_name): logger.info('loading input file: ' + input_file_name) x, y = svm2numpy(input_file_name, n_features) logger.info('loading model file: ' + model_file_name) mask_idx = np.load(model_file_name) logger.info('len after selection: %i' % (len(mask_idx))) logger.info('outputing file: ' + output_file_name) f = open(output_file_name, 'w') for n in xrange(x.shape[0]): output_str = str(y[n]) ptr = 1 for idx in mask_idx: if x[n, int(idx)-1] != 0.0: output_str = ('%s %i:%f') % (output_str, ptr, x[n, int(idx)-1]) ptr += 1 f.write(output_str + '\n')