Ejemplo n.º 1
0
def main(run_id, dataset_dir, ckpt_run_dir, output_dir, validation_only=False):
    r"""Main logic."""
    num_parallel_workers = 2
    use_cuda = True
    max_batch_per_epoch = None
    train_epochs = 164
    batch_size = 128

    initialize_backends(comm_backend='mpi',
                        logging_level='INFO',
                        logging_file=os.path.join(output_dir, 'mlbench.log'),
                        use_cuda=use_cuda,
                        seed=42,
                        cudnn_deterministic=False,
                        ckpt_run_dir=ckpt_run_dir,
                        delete_existing_ckpts=not validation_only)

    rank = dist.get_rank()
    world_size = dist.get_world_size()

    model = ResNetCIFAR(resnet_size=20,
                        bottleneck=False,
                        num_classes=10,
                        version=1)

    optimizer = SSGDWM(model,
                       world_size=world_size,
                       num_coordinates=1,
                       lr=0.1,
                       weight_decay=0)

    # Create a learning rate scheduler for an optimizer
    scheduler = MultiStepLR(optimizer, milestones=[82, 109], gamma=0.1)

    # A loss_function for computing the loss
    loss_function = CrossEntropyLoss()

    if use_cuda:
        model = model.cuda()
        optimizer = optimizer.cuda()
        loss_function = loss_function.cuda()

    # Metrics like Top 1/5 Accuracy
    metrics = [TopKAccuracy(topk=1), TopKAccuracy(topk=5)]

    train_set = CIFAR10V1(dataset_dir, train=True, download=True)
    val_set = CIFAR10V1(dataset_dir, train=False, download=True)

    train_set = partition_dataset_by_rank(train_set, rank, world_size)
    val_set = partition_dataset_by_rank(val_set, rank, world_size)

    train_loader = DataLoader(train_set,
                              batch_size=batch_size,
                              shuffle=True,
                              num_workers=num_parallel_workers,
                              pin_memory=use_cuda,
                              drop_last=False)

    val_loader = DataLoader(val_set,
                            batch_size=batch_size,
                            shuffle=False,
                            num_workers=num_parallel_workers,
                            pin_memory=use_cuda,
                            drop_last=False)

    checkpointer = Checkpointer(ckpt_run_dir=ckpt_run_dir,
                                rank=rank,
                                freq=CheckpointFreq.NONE)

    if not validation_only:
        controlflow = TrainValidation(model=model,
                                      optimizer=optimizer,
                                      loss_function=loss_function,
                                      metrics=metrics,
                                      scheduler=scheduler,
                                      batch_size=batch_size,
                                      train_epochs=train_epochs,
                                      rank=rank,
                                      world_size=world_size,
                                      run_id=run_id,
                                      dtype='fp32',
                                      validate=True,
                                      schedule_per='epoch',
                                      checkpoint=checkpointer,
                                      transform_target_type=None,
                                      average_models=True,
                                      use_cuda=use_cuda,
                                      max_batch_per_epoch=max_batch_per_epoch)

        controlflow.run(dataloader_train=train_loader,
                        dataloader_val=val_loader,
                        dataloader_train_fn=None,
                        dataloader_val_fn=None,
                        resume=False,
                        repartition_per_epoch=False)
    else:
        cecf = CheckpointsEvaluationControlFlow(ckpt_dir=ckpt_run_dir,
                                                rank=rank,
                                                world_size=world_size,
                                                checkpointer=checkpointer,
                                                model=model,
                                                epochs=train_epochs,
                                                loss_function=loss_function,
                                                metrics=metrics,
                                                use_cuda=use_cuda,
                                                dtype='fp32',
                                                max_batch_per_epoch=None)

        train_stats = cecf.evaluate_by_epochs(train_loader)
        with open(os.path.join(output_dir, "train_stats.json"), 'w') as f:
            json.dump(train_stats, f)

        val_stats = cecf.evaluate_by_epochs(val_loader)
        with open(os.path.join(output_dir, "val_stats.json"), 'w') as f:
            json.dump(val_stats, f)
Ejemplo n.º 2
0
def train_loop(
    run_id,
    dataset_dir,
    ckpt_run_dir,
    output_dir,
    validation_only=False,
    use_cuda=False,
    light_target=False,
):
    """Main logic."""
    num_parallel_workers = 2
    max_batch_per_epoch = None
    train_epochs = 20
    batch_size = 100

    n_features = 2000

    l1_coef = 0.0
    l2_coef = 0.0000025  # Regularization 1 / train_size ( 1 / 400,000)
    dtype = "fp32"

    rank = dist.get_rank()
    world_size = dist.get_world_size()

    lr = 4
    scaled_lr = lr * min(16, world_size)

    by_layer = False
    agg_grad = False  # According to paper, we aggregate weights after update

    model = LogisticRegression(n_features)

    # A loss_function for computing the loss
    loss_function = BCELossRegularized(l1=l1_coef, l2=l2_coef, model=model)

    if use_cuda:
        model = model.cuda()
        loss_function = loss_function.cuda()

    optimizer = CentralizedSGD(
        world_size=world_size,
        model=model,
        lr=scaled_lr,
        use_cuda=use_cuda,
        by_layer=by_layer,
        agg_grad=agg_grad,
    )

    metrics = [
        TopKAccuracy(),  # Binary accuracy with threshold 0.5
        F1Score(),
        DiceCoefficient(),
    ]

    train_set = LMDBDataset(name="epsilon",
                            data_type="train",
                            root=dataset_dir)
    val_set = LMDBDataset(name="epsilon", data_type="test", root=dataset_dir)

    train_set = partition_dataset_by_rank(train_set, rank, world_size)
    val_set = partition_dataset_by_rank(val_set, rank, world_size)

    train_loader = DataLoader(
        train_set,
        batch_size=batch_size,
        shuffle=True,
        num_workers=num_parallel_workers,
        pin_memory=use_cuda,
        drop_last=False,
    )

    val_loader = DataLoader(
        val_set,
        batch_size=batch_size,
        shuffle=False,
        num_workers=num_parallel_workers,
        pin_memory=use_cuda,
        drop_last=False,
    )

    num_batches_per_device_train = len(train_loader)

    scheduler = ReduceLROnPlateau(
        optimizer.optimizer,
        factor=0.75,
        patience=0,
        verbose=True,
        threshold_mode="abs",
        threshold=0.01,
        min_lr=lr,
    )
    checkpointer = Checkpointer(ckpt_run_dir=ckpt_run_dir,
                                rank=rank,
                                freq=CheckpointFreq.NONE)

    if not validation_only:
        if light_target:
            goal = task2_time_to_accuracy_light_goal()
        else:
            goal = task2_time_to_accuracy_goal()

        tracker = Tracker(metrics, run_id, rank, goal=goal)

        dist.barrier()
        tracker.start()

        for epoch in range(0, train_epochs):
            # Set tracker and model in training mode
            model.train()
            tracker.train()

            for batch_idx, (data, target) in enumerate(train_loader):
                tracker.batch_start()
                data, target = prepare_batch(
                    data,
                    target,
                    dtype=dtype,
                    transform_target_dtype=False,
                    use_cuda=use_cuda,
                )
                tracker.record_batch_load()

                # Clear gradients in the optimizer.
                optimizer.zero_grad()
                tracker.record_batch_init()

                # Compute the output
                output = model(data)
                tracker.record_batch_fwd_pass()

                # Compute the loss
                loss = loss_function(output, target)
                tracker.record_batch_comp_loss()

                # Backprop
                loss.backward()
                tracker.record_batch_backprop()

                # Aggregate gradients/parameters from all workers and apply updates to model
                optimizer.step(tracker=tracker)

                metrics_results = compute_train_batch_metrics(
                    output,
                    target,
                    metrics,
                )

                tracker.record_batch_comp_metrics()

                # scheduler.batch_step()
                tracker.batch_end()

                record_train_batch_stats(
                    batch_idx,
                    loss.item(),
                    output,
                    metrics_results,
                    tracker,
                    num_batches_per_device_train,
                )

            tracker.epoch_end()

            # Perform validation and gather results
            metrics_values, loss = validation_round(
                val_loader,
                model=model,
                loss_function=loss_function,
                metrics=metrics,
                dtype=dtype,
                tracker=tracker,
                transform_target_type=False,
                use_cuda=use_cuda,
                max_batches=max_batch_per_epoch,
            )
            # Scheduler per epoch
            scheduler.step(loss)
            # Record validation stats
            is_best = record_validation_stats(metrics_values=metrics_values,
                                              loss=loss,
                                              tracker=tracker,
                                              rank=rank)
            checkpointer.save(tracker, model, optimizer, scheduler,
                              tracker.current_epoch, is_best)
            if tracker.goal_reached:
                print("Goal Reached!")
                dist.barrier()
                time.sleep(10)
                return
    else:
        cecf = CheckpointsEvaluationControlFlow(
            ckpt_dir=ckpt_run_dir,
            rank=rank,
            world_size=world_size,
            checkpointer=checkpointer,
            model=model,
            epochs=train_epochs,
            loss_function=loss_function,
            metrics=metrics,
            use_cuda=use_cuda,
            dtype="fp32",
            max_batch_per_epoch=None,
        )

        train_stats = cecf.evaluate_by_epochs(train_loader)
        with open(os.path.join(output_dir, "train_stats.json"), "w") as f:
            json.dump(train_stats, f)

        val_stats = cecf.evaluate_by_epochs(val_loader)
        with open(os.path.join(output_dir, "val_stats.json"), "w") as f:
            json.dump(val_stats, f)
Ejemplo n.º 3
0
def train_loop(
    run_id,
    dataset_dir,
    ckpt_run_dir,
    output_dir,
    validation_only=False,
    use_cuda=False,
    light_target=False,
):
    """Train loop"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()

    rank = dist.get_rank()
    world_size = dist.get_world_size()

    train_epochs = 8
    train_min_len, train_max_len = 0, 75
    val_min_len, val_max_len = 0, 150
    math_mode = "fp16"  # One of `fp16`, `fp32`
    lang = ("en", "de")

    # Training
    train_global_batch_size = 2048  # Global batch size
    max_bs = 128  # Max batch size for used hardware
    update_freq = int(max(1, train_global_batch_size // (max_bs * world_size)))
    train_batch_size = int(train_global_batch_size // (world_size * update_freq))
    val_batch_size = 64

    # Model attributes
    model_args = {
        "hidden_size": 1024,
        "num_layers": 4,
        "dropout": 0.2,
        "share_embedding": True,
        "fusion": True,
    }

    # Criterion
    criterion_args = {"smoothing": 0.1, "fast_xentropy": True}

    # Loss scaling
    loss_scaling = {"init_scale": 1024, "upscale_interval": 128}

    # Optimizer
    optimizer_args = {
        "lr": 2e-3,
        "grad_clip": 5.0,
    }

    # Scheduler
    scheduler_args = {
        "warmup_steps": 200,
        "remain_steps": 0.4,
        "decay_interval": 0.05,
        "decay_steps": 4,
        "decay_factor": 0.5,
    }

    # Translator
    translator_args = {
        "beam_size": 5,
        "len_norm_factor": 0.6,
        "cov_penalty_factor": 0.1,
        "len_norm_const": 5.0,
        "max_seq_len": 150,
    }

    # Build train/val datsets
    train_set = WMT16Dataset(
        dataset_dir,
        math_precision=math_mode,
        lang=lang,
        train=True,
        download=True,
        preprocessed=True,
        min_len=train_min_len,
        max_len=train_max_len,
    )
    train_set.prepare()
    val_set = WMT16Dataset(
        dataset_dir,
        math_precision=math_mode,
        lang=lang,
        validation=True,
        download=False,
        min_len=val_min_len,
        max_len=val_max_len,
        sort=True,
    )

    tokenizer = train_set.tokenizer

    # Build model
    model = GNMT(vocab_size=train_set.vocab_size, **model_args)

    # Build loss function
    criterion = LabelSmoothing(padding_idx=wmt16_config.PAD, **criterion_args)

    # Bilingual Evaluation Understudy Score
    metrics = [BLEUScore()]

    # Partition data
    train_set = partition_dataset_by_rank(train_set, rank, world_size)
    val_set = partition_dataset_by_rank(val_set, rank, world_size)

    collate_fn = build_collate_fn(sort=True)
    train_loader = DataLoader(
        train_set,
        batch_size=train_batch_size,
        collate_fn=collate_fn,
        num_workers=2,
        pin_memory=True,
        drop_last=False,
        shuffle=True,
    )

    val_loader = DataLoader(
        val_set,
        batch_size=val_batch_size,
        collate_fn=collate_fn,
        num_workers=2,
        pin_memory=True,
        drop_last=False,
    )

    validate_every = update_freq * round(
        len(train_loader) * 0.30 / update_freq
    )  # Validate every 30%

    # Build optimizer & scheduler
    total_train_iters = (len(train_loader) // update_freq) * train_epochs

    print("Number of batches per epoch {}".format(len(train_loader)))
    print("Train iterations per epoch {}".format(total_train_iters / train_epochs))

    if use_cuda:
        model = model.cuda()
        criterion = criterion.cuda()

    use_horovod = math_mode == "fp16" and dist.get_backend() == dist.Backend.MPI

    if use_horovod:
        hvd.init()
        logger.info("Using horovod rank={}".format(hvd.rank()))
        tensor = torch.tensor([1])
        res = hvd.allreduce(tensor, op=hvd.Sum)
        assert res[0] == world_size

    fp_optimizer, optimizer, model = build_optimizer(
        model=model,
        math=math_mode,
        loss_scaling=loss_scaling,
        use_cuda=use_cuda,
        use_horovod=use_horovod,
        **optimizer_args
    )

    # Create a learning rate scheduler for an optimizer
    scheduler = ExponentialWarmupMultiStepLR(
        optimizer, total_train_iters, **scheduler_args
    )

    # Translator
    translator = Translator(model=model, trg_tokenizer=tokenizer, **translator_args)

    checkpointer = Checkpointer(
        ckpt_run_dir=ckpt_run_dir, rank=rank, freq=CheckpointFreq.BEST
    )

    if not validation_only:

        if light_target:
            goal = task4_time_to_bleu_goal(20)
        else:
            goal = task4_time_to_bleu_goal(24)

        num_batches_per_device_train = len(train_loader)
        tracker = Tracker(metrics, run_id, rank, goal=goal)

        dist.barrier()
        tracker.start()

        for epoch in range(0, train_epochs):
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

            model.train()
            tracker.train()
            for batch_idx, (data, target) in enumerate(train_loader):
                tracker.batch_start()
                data, target = prepare_batch(data, target, use_cuda=use_cuda)
                tracker.record_batch_load()

                is_last = batch_idx == len(train_loader)
                update = (batch_idx % update_freq) == update_freq - 1
                init = (batch_idx % update_freq) == 0

                # Clear gradients in the optimizer.
                if init:
                    fp_optimizer.zero_grad()
                    tracker.record_batch_init()

                # Compute the output
                output = compute_model_output(model, data, target)
                tracker.record_batch_fwd_pass()

                # Compute the loss
                loss, loss_per_token = compute_loss(
                    data, target, output, criterion, update_freq
                )
                tracker.record_batch_comp_loss()
                # Backprop
                fp_optimizer.backward_loss(loss)
                tracker.record_batch_backprop()

                # Opt step
                if update or is_last:
                    # For this task, simply sum all gradients
                    updated = fp_optimizer.step(tracker=tracker, denom=1)

                    # Learning rate scheduler
                    if updated:
                        scheduler.step()

                tracker.batch_end()

                record_train_batch_stats(
                    batch_idx=batch_idx,
                    loss=loss_per_token,
                    output=target[0],  # Use target just for the size
                    metric_results={},
                    tracker=tracker,
                    num_batches_per_device_train=num_batches_per_device_train,
                )

                # Validation during training
                if (batch_idx + 1) % validate_every == 0:
                    if torch.cuda.is_available():
                        torch.cuda.empty_cache()

                    metrics_values, loss = validation_round(
                        val_loader,
                        metrics,
                        model,
                        criterion,
                        update_freq,
                        translator,
                        tracker=tracker,
                        use_cuda=use_cuda,
                    )

                    record_validation_stats(metrics_values, loss, tracker, rank)
                    if tracker.goal_reached:
                        break

                    model.train()
                    tracker.train()

            if torch.cuda.is_available():
                torch.cuda.empty_cache()

            metrics_values, loss = validation_round(
                val_loader,
                metrics,
                model,
                criterion,
                update_freq,
                translator,
                use_cuda=use_cuda,
            )

            is_best = record_validation_stats(metrics_values, loss, tracker, rank)

            checkpointer.save(
                tracker,
                model,
                fp_optimizer.optimizer,
                scheduler,
                tracker.current_epoch,
                is_best,
            )

            tracker.epoch_end()

            if tracker.goal_reached:
                print("Goal Reached!")
                dist.barrier()
                time.sleep(10)
                return
    else:
        cecf = CheckpointsEvaluationControlFlow(
            ckpt_dir=ckpt_run_dir,
            rank=rank,
            world_size=world_size,
            checkpointer=checkpointer,
            model=model,
            epochs=train_epochs,
            loss_function=criterion,
            metrics=metrics,
            use_cuda=use_cuda,
            dtype="fp32",
            max_batch_per_epoch=None,
        )

        train_stats = cecf.evaluate_by_epochs(train_loader)
        with open(os.path.join(output_dir, "train_stats.json"), "w") as f:
            json.dump(train_stats, f)

        val_stats = cecf.evaluate_by_epochs(val_loader)
        with open(os.path.join(output_dir, "val_stats.json"), "w") as f:
            json.dump(val_stats, f)
Ejemplo n.º 4
0
def train_loop(run_id,
               dataset_dir,
               ckpt_run_dir,
               output_dir,
               validation_only=False,
               use_cuda=False,
               light_target=False):
    r"""Main logic."""
    num_parallel_workers = 2
    max_batch_per_epoch = None
    train_epochs = 164
    batch_size = 128

    rank = dist.get_rank()
    world_size = dist.get_world_size()

    model = ResNetCIFAR(resnet_size=20,
                        bottleneck=False,
                        num_classes=10,
                        version=1)

    optimizer = CentralizedSGD(world_size=world_size,
                               model=model,
                               lr=0.1,
                               momentum=0.9,
                               weight_decay=1e-4,
                               nesterov=False)

    # Create a learning rate scheduler for an optimizer
    scheduler = MultiStepLR(optimizer, milestones=[82, 109], gamma=0.1)

    # A loss_function for computing the loss
    loss_function = CrossEntropyLoss()

    if use_cuda:
        model = model.cuda()
        loss_function = loss_function.cuda()

    # Metrics like Top 1/5 Accuracy
    metrics = [TopKAccuracy(topk=1), TopKAccuracy(topk=5)]

    train_set = CIFAR10V1(dataset_dir, train=True, download=True)
    val_set = CIFAR10V1(dataset_dir, train=False, download=True)

    train_set = partition_dataset_by_rank(train_set, rank, world_size)
    val_set = partition_dataset_by_rank(val_set, rank, world_size)

    train_loader = DataLoader(train_set,
                              batch_size=batch_size,
                              shuffle=True,
                              num_workers=num_parallel_workers,
                              pin_memory=use_cuda,
                              drop_last=False)

    val_loader = DataLoader(val_set,
                            batch_size=batch_size,
                            shuffle=False,
                            num_workers=num_parallel_workers,
                            pin_memory=use_cuda,
                            drop_last=False)

    checkpointer = Checkpointer(ckpt_run_dir=ckpt_run_dir,
                                rank=rank,
                                freq=CheckpointFreq.NONE)

    if not validation_only:
        if light_target:
            goal = task1_time_to_accuracy_light_goal
        else:
            goal = task1_time_to_accuracy_goal

        tracker = Tracker(metrics, run_id, rank, goal=goal)

        dist.barrier()

        tracker.start()

        for epoch in range(0, train_epochs):
            train_round(train_loader,
                        model,
                        optimizer,
                        loss_function,
                        metrics,
                        scheduler,
                        'fp32',
                        schedule_per='epoch',
                        transform_target_type=None,
                        use_cuda=use_cuda,
                        max_batch_per_epoch=max_batch_per_epoch,
                        tracker=tracker)

            is_best = validation_round(val_loader,
                                       model,
                                       loss_function,
                                       metrics,
                                       run_id,
                                       rank,
                                       'fp32',
                                       transform_target_type=None,
                                       use_cuda=use_cuda,
                                       max_batch_per_epoch=max_batch_per_epoch,
                                       tracker=tracker)

            checkpointer.save(tracker, model, optimizer, scheduler,
                              tracker.current_epoch, is_best)

            tracker.epoch_end()

            if tracker.goal_reached:
                print("Goal Reached!")
                return

    else:
        cecf = CheckpointsEvaluationControlFlow(ckpt_dir=ckpt_run_dir,
                                                rank=rank,
                                                world_size=world_size,
                                                checkpointer=checkpointer,
                                                model=model,
                                                epochs=train_epochs,
                                                loss_function=loss_function,
                                                metrics=metrics,
                                                use_cuda=use_cuda,
                                                dtype='fp32',
                                                max_batch_per_epoch=None)

        train_stats = cecf.evaluate_by_epochs(train_loader)
        with open(os.path.join(output_dir, "train_stats.json"), 'w') as f:
            json.dump(train_stats, f)

        val_stats = cecf.evaluate_by_epochs(val_loader)
        with open(os.path.join(output_dir, "val_stats.json"), 'w') as f:
            json.dump(val_stats, f)
def main(run_id, validation_only=False):
    r"""Main logic."""
    num_parallel_workers = 2
    dataset_root = '/datasets/torch/cifar10'
    ckpt_run_dir = '/checkpoints/decentralized/cifar_resnet20'
    use_cuda = True
    train_epochs = 164

    initialize_backends(
        comm_backend='mpi',
        logging_level='INFO',
        logging_file='/mlbench.log',
        use_cuda=use_cuda,
        seed=42,
        cudnn_deterministic=False,
        ckpt_run_dir=ckpt_run_dir,
        delete_existing_ckpts=not validation_only)

    rank = dist.get_rank()
    world_size = dist.get_world_size()

    batch_size = 256 // world_size

    model = ResNetCIFAR(
        resnet_size=20,
        bottleneck=False,
        num_classes=10,
        version=1)

    optimizer = optim.SGD(
        model.parameters(),
        lr=0.1,
        momentum=0.9,
        weight_decay=1e-4,
        nesterov=True)

    # Create a learning rate scheduler for an optimizer
    scheduler = MultiStepLR(
        optimizer,
        milestones=[82, 109],
        gamma=0.1)

    # A loss_function for computing the loss
    loss_function = CrossEntropyLoss()

    if use_cuda:
        model = model.cuda()
        loss_function = loss_function.cuda()

    # Metrics like Top 1/5 Accuracy
    metrics = [
        TopKAccuracy(topk=1),
        TopKAccuracy(topk=5)
    ]

    train_set = CIFAR10V1(dataset_root, train=True, download=True)
    val_set = CIFAR10V1(dataset_root, train=False, download=True)

    train_set = partition_dataset_by_rank(train_set, rank, world_size)
    val_set = partition_dataset_by_rank(val_set, rank, world_size)

    train_loader = DataLoader(
        train_set,
        batch_size=batch_size,
        shuffle=True,
        num_workers=num_parallel_workers,
        pin_memory=use_cuda,
        drop_last=False)

    val_loader = DataLoader(
        val_set,
        batch_size=batch_size,
        shuffle=False,
        num_workers=num_parallel_workers,
        pin_memory=use_cuda,
        drop_last=False)

    checkpointer = Checkpointer(
        ckpt_run_dir=ckpt_run_dir,
        rank=rank,
        checkpoint_all=True)

    if not validation_only:
        # Aggregation
        ring_neighbors = [(rank + 1) % world_size, (rank - 1) % world_size]

        agg_fn = DecentralizedAggregation(
            rank=rank, neighbors=ring_neighbors).agg_model

        controlflow = TrainValidation(
            model=model,
            optimizer=optimizer,
            loss_function=loss_function,
            metrics=metrics,
            scheduler=scheduler,
            batch_size=batch_size,
            train_epochs=train_epochs,
            rank=rank,
            world_size=world_size,
            run_id=run_id,
            dtype='fp32',
            validate=True,
            schedule_per='epoch',
            checkpoint=checkpointer,
            transform_target_type=None,
            average_models=True,
            use_cuda=use_cuda,
            max_batch_per_epoch=None,
            agg_fn=agg_fn)

        controlflow.run(
            dataloader_train=train_loader,
            dataloader_val=val_loader,
            dataloader_train_fn=None,
            dataloader_val_fn=None,
            resume=False,
            repartition_per_epoch=False)
    else:
        cecf = CheckpointsEvaluationControlFlow(
            ckpt_dir=ckpt_run_dir,
            rank=rank,
            world_size=world_size,
            checkpointer=checkpointer,
            model=model,
            epochs=train_epochs,
            loss_function=loss_function,
            metrics=metrics,
            use_cuda=use_cuda,
            dtype='fp32',
            max_batch_per_epoch=None)

        train_stats = cecf.evaluate_by_epochs(train_loader)
        with open(os.path.join(ckpt_run_dir, "train_stats.json"), 'w') as f:
            json.dump(train_stats, f)

        val_stats = cecf.evaluate_by_epochs(val_loader)
        with open(os.path.join(ckpt_run_dir, "val_stats.json"), 'w') as f:
            json.dump(val_stats, f)
Ejemplo n.º 6
0
def train_loop(
    run_id,
    dataset_dir,
    ckpt_run_dir,
    output_dir,
    validation_only=False,
    use_cuda=False,
    light_target=False,
):
    """Train loop"""
    num_parallel_workers = 2
    max_batch_per_epoch = None
    train_epochs = 164
    batch_size = 128
    dtype = "fp32"

    rank = dist.get_rank()
    world_size = dist.get_world_size()

    # LR = 0.1 / 256 / sample
    lr = 0.02
    scaled_lr = lr * world_size
    by_layer = False

    # Create Model
    model = ResNetCIFAR(resnet_size=20,
                        bottleneck=False,
                        num_classes=10,
                        version=1)

    # Create optimizer
    optimizer = CentralizedSGD(
        world_size=world_size,
        model=model,
        lr=lr,
        momentum=0.9,
        weight_decay=1e-4,
        nesterov=False,
        use_cuda=use_cuda,
        by_layer=by_layer,
    )

    # A loss_function for computing the loss
    loss_function = CrossEntropyLoss()

    if use_cuda:
        model = model.cuda()
        loss_function = loss_function.cuda()

    # Metrics like Top 1/5 Accuracy
    metrics = [TopKAccuracy(topk=1), TopKAccuracy(topk=5)]

    train_set = CIFAR10V1(dataset_dir, train=True, download=True)
    val_set = CIFAR10V1(dataset_dir, train=False, download=True)

    # Create train/validation sets and loaders
    train_set = partition_dataset_by_rank(train_set, rank, world_size)
    val_set = partition_dataset_by_rank(val_set, rank, world_size)

    train_loader = DataLoader(
        train_set,
        batch_size=batch_size,
        shuffle=True,
        num_workers=num_parallel_workers,
        pin_memory=use_cuda,
        drop_last=False,
    )

    val_loader = DataLoader(
        val_set,
        batch_size=batch_size,
        shuffle=False,
        num_workers=num_parallel_workers,
        pin_memory=use_cuda,
        drop_last=False,
    )

    # Create a learning rate scheduler for an optimizer
    scheduler = ReduceLROnPlateauWithWarmup(
        optimizer.optimizer,
        warmup_init_lr=lr,
        scaled_lr=scaled_lr,
        warmup_epochs=int(math.log(world_size, 2)),  # Adaptive warmup period
        factor=0.5,
        threshold_mode="abs",
        threshold=0.01,
        patience=1,
        verbose=True,
        min_lr=lr,
    )

    checkpointer = Checkpointer(ckpt_run_dir=ckpt_run_dir,
                                rank=rank,
                                freq=CheckpointFreq.NONE)

    if not validation_only:
        if light_target:
            goal = task1_time_to_accuracy_light_goal()
        else:
            goal = task1_time_to_accuracy_goal()

        num_batches_per_device_train = len(train_loader)

        tracker = Tracker(metrics, run_id, rank, goal=goal)

        dist.barrier()

        tracker.start()

        for epoch in range(0, train_epochs):
            # Set tracker and model in training mode
            model.train()
            tracker.train()

            for batch_idx, (data, target) in enumerate(train_loader):
                tracker.batch_start()
                data, target = prepare_batch(
                    data,
                    target,
                    dtype=dtype,
                    transform_target_dtype=False,
                    use_cuda=use_cuda,
                )
                tracker.record_batch_load()

                # Clear gradients in the optimizer.
                optimizer.zero_grad()
                tracker.record_batch_init()

                # Compute the output
                output = model(data)
                tracker.record_batch_fwd_pass()

                # Compute the loss
                loss = loss_function(output, target)
                tracker.record_batch_comp_loss()

                # Backprop
                loss.backward()
                tracker.record_batch_backprop()

                # Aggregate gradients/parameters from all workers and apply updates to model
                optimizer.step(tracker=tracker)

                metrics_results = compute_train_batch_metrics(
                    output,
                    target,
                    metrics,
                )
                tracker.record_batch_comp_metrics()
                tracker.batch_end()

                record_train_batch_stats(
                    batch_idx,
                    loss.item(),
                    output,
                    metrics_results,
                    tracker,
                    num_batches_per_device_train,
                )

            # Scheduler per epoch
            tracker.epoch_end()

            # Perform validation and gather results
            metrics_values, loss = validation_round(
                val_loader,
                model=model,
                loss_function=loss_function,
                metrics=metrics,
                dtype=dtype,
                tracker=tracker,
                transform_target_type=False,
                use_cuda=use_cuda,
                max_batches=max_batch_per_epoch,
            )
            scheduler.step(loss)

            # Record validation stats
            is_best = record_validation_stats(metrics_values=metrics_values,
                                              loss=loss,
                                              tracker=tracker,
                                              rank=rank)

            checkpointer.save(tracker, model, optimizer, scheduler,
                              tracker.current_epoch, is_best)

            if tracker.goal_reached:
                print("Goal Reached!")
                dist.barrier()
                time.sleep(10)
                return
    else:
        cecf = CheckpointsEvaluationControlFlow(
            ckpt_dir=ckpt_run_dir,
            rank=rank,
            world_size=world_size,
            checkpointer=checkpointer,
            model=model,
            epochs=train_epochs,
            loss_function=loss_function,
            metrics=metrics,
            use_cuda=use_cuda,
            dtype="fp32",
            max_batch_per_epoch=None,
        )

        train_stats = cecf.evaluate_by_epochs(train_loader)
        with open(os.path.join(output_dir, "train_stats.json"), "w") as f:
            json.dump(train_stats, f)

        val_stats = cecf.evaluate_by_epochs(val_loader)
        with open(os.path.join(output_dir, "val_stats.json"), "w") as f:
            json.dump(val_stats, f)
Ejemplo n.º 7
0
def train_loop(
    run_id,
    dataset_dir,
    ckpt_run_dir,
    output_dir,
    validation_only=False,
    use_cuda=False,
    light_target=False,
    by_layer=False,
):
    r"""Main logic."""
    num_parallel_workers = 2
    train_epochs = 164
    batch_size = 128

    rank = dist.get_rank()
    world_size = dist.get_world_size()
    current_device = cuda.current_device()

    local_model = ResNetCIFAR(resnet_size=20,
                              bottleneck=False,
                              num_classes=10,
                              version=1).to(current_device)
    model = DDP(local_model, device_ids=[current_device])

    optimizer = SGD(
        model.parameters(),
        lr=0.1,
        momentum=0.9,
        weight_decay=1e-4,
    )

    # Create a learning rate scheduler for an optimizer
    scheduler = MultiStepLR(optimizer, milestones=[82, 109], gamma=0.1)

    # A loss_function for computing the loss
    loss_function = CrossEntropyLoss()

    if use_cuda:
        model = model.cuda()
        loss_function = loss_function.cuda()

    # Metrics like Top 1/5 Accuracy
    metrics = [TopKAccuracy(topk=1), TopKAccuracy(topk=5)]

    train_set = CIFAR10V1(dataset_dir, train=True, download=True)
    val_set = CIFAR10V1(dataset_dir, train=False, download=True)

    train_set = partition_dataset_by_rank(train_set, rank, world_size)
    val_set = partition_dataset_by_rank(val_set, rank, world_size)

    train_loader = DataLoader(
        train_set,
        batch_size=batch_size,
        shuffle=True,
        num_workers=num_parallel_workers,
        pin_memory=use_cuda,
        drop_last=False,
    )

    val_loader = DataLoader(
        val_set,
        batch_size=batch_size,
        shuffle=False,
        num_workers=num_parallel_workers,
        pin_memory=use_cuda,
        drop_last=False,
    )

    checkpointer = Checkpointer(ckpt_run_dir=ckpt_run_dir,
                                rank=rank,
                                freq=CheckpointFreq.NONE)

    if not validation_only:
        if light_target:
            goal = task1_time_to_accuracy_light_goal()
        else:
            goal = task1_time_to_accuracy_goal()

        tracker = Tracker(metrics, run_id, rank, goal=goal)

        dist.barrier()

        tracker.start()

        for epoch in range(0, train_epochs):
            model.train()
            tracker.train()

            data_iter = iterate_dataloader(train_loader,
                                           dtype="fp32",
                                           use_cuda=use_cuda)
            num_batches_per_device_train = len(train_loader)

            for batch_idx, (data, target) in enumerate(data_iter):
                tracker.batch_start()

                # Clear gradients in the optimizer.
                optimizer.zero_grad()
                tracker.record_batch_init()

                # Compute the output
                output = model(data)
                tracker.record_batch_fwd_pass()

                # Compute the loss
                loss = loss_function(output, target)
                tracker.record_batch_comp_loss()

                # Backprop
                loss.backward()
                tracker.record_batch_backprop()

                # Aggregate gradients/parameters from all workers and apply updates to model
                optimizer.step()
                tracker.record_batch_opt_step()

                metrics_results = compute_train_batch_metrics(
                    output,
                    target,
                    metrics,
                )

                tracker.record_batch_comp_metrics()
                tracker.batch_end()

                record_train_batch_stats(
                    batch_idx,
                    loss.item(),
                    output,
                    metrics_results,
                    tracker,
                    num_batches_per_device_train,
                )

            tracker.epoch_end()
            metrics_values, loss = validation_round(
                val_loader,
                model=model,
                loss_function=loss_function,
                metrics=metrics,
                dtype="fp32",
                tracker=tracker,
                use_cuda=use_cuda,
            )

            scheduler.step()
            # Record validation stats
            is_best = record_validation_stats(metrics_values=metrics_values,
                                              loss=loss,
                                              tracker=tracker,
                                              rank=rank)

            checkpointer.save(tracker, model, optimizer, scheduler,
                              tracker.current_epoch, is_best)

            if tracker.goal_reached:
                print("Goal Reached!")
                time.sleep(10)
                return

    else:
        cecf = CheckpointsEvaluationControlFlow(
            ckpt_dir=ckpt_run_dir,
            rank=rank,
            world_size=world_size,
            checkpointer=checkpointer,
            model=model,
            epochs=train_epochs,
            loss_function=loss_function,
            metrics=metrics,
            use_cuda=use_cuda,
            dtype="fp32",
            max_batch_per_epoch=None,
        )

        train_stats = cecf.evaluate_by_epochs(train_loader)
        with open(os.path.join(output_dir, "train_stats.json"), "w") as f:
            json.dump(train_stats, f)

        val_stats = cecf.evaluate_by_epochs(val_loader)
        with open(os.path.join(output_dir, "val_stats.json"), "w") as f:
            json.dump(val_stats, f)
Ejemplo n.º 8
0
def train_loop(
    run_id,
    dataset_dir,
    ckpt_run_dir,
    output_dir,
    validation_only=False,
    use_cuda=False,
    light_target=False,
    seed=42,
):
    """Train loop"""
    train_epochs = 10

    math_mode = "fp16"
    rank = dist.get_rank()
    world_size = dist.get_world_size()

    # Dataset arguments
    train_global_batch_size = 2**17  # Global batch size
    max_bs = 2**13  # Max batch size for used hardware
    update_freq = int(max(1, train_global_batch_size // (max_bs * world_size)))
    max_tokens = int(train_global_batch_size // (world_size * update_freq))

    max_source_positions, max_target_positions = 80, 80
    seq_len_multiple = 2
    left_pad = (True, False)
    lang = ("en", "de")

    # specific arch
    model_args = deepcopy(DEFAULT_TRANSFORMER_ARCH)
    model_args["max_source_positions"] = max_source_positions
    model_args["max_target_positions"] = max_target_positions
    model_args["share_all_embeddings"] = True
    model_args["dropout"] = 0.1
    model_args["softmax_type"] = "fast_fill"

    lr = 1.976e-3
    optimizer_args = {
        "lr": lr,
        "eps": 1e-9,
        "betas": (0.9, 0.98),
    }
    scheduler_args = {
        "base_lr": lr,
        "warmup_init_lr": 0.0,
        "warmup_steps": 1000
    }

    loss_scaling_fp16 = {
        "init_scale": 2.0**7,
        "scale_factor": 2,
        "scale_window": 2000,
    }

    criterion_args = {"smoothing": 0.1, "fast_xentropy": True}

    # Horovod stuff
    use_horovod = (math_mode
                   == "fp16") and dist.get_backend() == dist.Backend.MPI
    if use_horovod:
        hvd.init()
        logger.info("Using horovod rank={}".format(hvd.rank()))
        tensor = torch.tensor([1])
        res = hvd.allreduce(tensor, op=hvd.Sum)
        assert res[0] == world_size

    # Load train and validation datasets
    train_set = WMT17Dataset(
        dataset_dir,
        download=True,
        train=True,
        shuffle=True,
        lang=lang,
        left_pad=left_pad,
        max_positions=(max_source_positions, max_target_positions),
        seq_len_multiple=seq_len_multiple,
    )

    validation_set = WMT17Dataset(
        dataset_dir,
        download=False,
        test=True,
        shuffle=True,
        lang=lang,
        left_pad=left_pad,
        max_positions=(max_source_positions, max_target_positions),
        seq_len_multiple=seq_len_multiple,
    )
    src_dict, trg_dict = train_set.src_dict, train_set.trg_dict

    train_batches = get_batches(train_set,
                                max_tokens=max_tokens,
                                bsz_mult=8,
                                shuffle=True,
                                seed=seed)
    val_batches = get_batches(validation_set,
                              max_tokens=max_tokens,
                              bsz_mult=8,
                              shuffle=False)

    train_batches = equalize_batches(train_batches, world_size, seed=seed)

    # Partition by rank
    train_batches = partition_dataset_by_rank(train_batches, rank, world_size)
    val_batches = partition_dataset_by_rank(val_batches, rank, world_size)

    total_train_points = sum(len(b) for b in train_batches)

    validate_every = update_freq * round(
        len(train_batches) * 0.30 / update_freq)  # Validate every 30%

    assert (validate_every % update_freq) == 0
    logger.info("Using {} total train points, {} batches".format(
        total_train_points, len(train_batches)))

    train_loader = DataLoader(
        train_set,
        num_workers=1,
        pin_memory=False,
        collate_fn=train_set.collater,
        batch_sampler=train_batches,
    )

    val_loader = DataLoader(
        validation_set,
        num_workers=1,
        pin_memory=False,
        collate_fn=validation_set.collater,
        batch_sampler=val_batches,
    )

    model = TransformerModel(Arguments(model_args), src_dict, trg_dict)
    criterion = LabelSmoothing(padding_idx=src_dict.pad(), **criterion_args)

    if use_cuda:
        model = model.cuda()
        criterion = criterion.cuda()

    fp_optimizer, optimizer, model = build_optimizer(
        model,
        optimizer_args,
        math_mode=math_mode,
        scaling_args=loss_scaling_fp16,
        use_horovod=use_horovod,
        use_cuda=use_cuda,
    )

    scheduler = SQRTTimeDecayLRWithWarmup(optimizer, **scheduler_args)

    metrics = [BLEUScore(use_raw=True)]
    checkpointer = Checkpointer(ckpt_run_dir=ckpt_run_dir,
                                rank=rank,
                                freq=CheckpointFreq.BEST)

    translator = SequenceGenerator(
        model,
        src_dict=deepcopy(src_dict),
        trg_dict=deepcopy(trg_dict),
        beam_size=4,
        stop_early=True,
        normalize_scores=True,
        len_penalty=0.6,
        sampling=False,
        sampling_topk=-1,
        minlen=1,
    )
    if not validation_only:

        if light_target:
            goal = task4_time_to_bleu_goal(20)
        else:
            goal = task4_time_to_bleu_goal(25)

        num_batches_per_device_train = len(train_loader)
        tracker = Tracker(metrics, run_id, rank, goal=goal)

        dist.barrier()
        tracker.start()

        for epoch in range(0, train_epochs):
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

            model.train()
            tracker.train()

            iter_sample_size = 0
            for batch_idx, sample in enumerate(train_loader):
                tracker.batch_start()

                sample = prepare_batch(sample, use_cuda=use_cuda)
                tracker.record_batch_load()

                is_last = batch_idx == len(train_loader)
                update = (batch_idx % update_freq) == update_freq - 1
                init = (batch_idx % update_freq) == 0

                # Clear gradients in the optimizer.
                if init:
                    fp_optimizer.zero_grad()
                    iter_sample_size = 0
                    tracker.record_batch_init()

                # Compute the output
                output = model(**sample["net_input"])
                tracker.record_batch_fwd_pass()

                loss, sample_size = compute_loss(sample, output, criterion)
                loss_per_sample = loss.item() / sample_size
                iter_sample_size += sample_size
                tracker.record_batch_comp_loss()

                # Backprop
                fp_optimizer.backward_loss(loss)
                tracker.record_batch_backprop()

                if update or is_last:
                    # Get batch size over all workers
                    full_bs = get_full_batch_size(iter_sample_size,
                                                  world_size=world_size,
                                                  use_cuda=use_cuda)

                    updated = opt_step(
                        fp_optimizer,
                        tracker,
                        full_bs,
                        update_freq,
                        math_mode,
                        world_size,
                    )

                    if updated:
                        scheduler.step()

                tracker.batch_end()

                record_train_batch_stats(
                    batch_idx=batch_idx,
                    loss=loss_per_sample,
                    output=torch.Tensor([0]),
                    metric_results={},
                    tracker=tracker,
                    num_batches_per_device_train=num_batches_per_device_train,
                )

                if (batch_idx + 1) % validate_every == 0:
                    if torch.cuda.is_available():
                        torch.cuda.empty_cache()

                    metric_values, loss = validation_round(
                        val_loader,
                        metrics,
                        criterion,
                        translator,
                        tracker=tracker,
                        use_cuda=use_cuda,
                    )
                    record_validation_stats(metric_values, loss, tracker, rank)
                    if tracker.goal_reached:
                        break

                    model.train()
                    tracker.train()

            if torch.cuda.is_available():
                torch.cuda.empty_cache()

            metric_values, loss = validation_round(
                val_loader,
                metrics,
                criterion,
                translator,
                tracker=tracker,
                use_cuda=use_cuda,
            )
            is_best = record_validation_stats(metric_values, loss, tracker,
                                              rank)
            checkpointer.save(
                tracker,
                model,
                optimizer,
                scheduler,
                tracker.current_epoch,
                is_best,
            )
            tracker.epoch_end()

            if tracker.goal_reached:
                print("Goal Reached!")
                time.sleep(10)
                return
    else:
        cecf = CheckpointsEvaluationControlFlow(
            ckpt_dir=ckpt_run_dir,
            rank=rank,
            world_size=world_size,
            checkpointer=checkpointer,
            model=model,
            epochs=train_epochs,
            loss_function=criterion,
            metrics=metrics,
            use_cuda=use_cuda,
            dtype="fp32",
            max_batch_per_epoch=None,
        )

        train_stats = cecf.evaluate_by_epochs(train_loader)
        with open(os.path.join(output_dir, "train_stats.json"), "w") as f:
            json.dump(train_stats, f)