def _register_classes(module, superclass, prefix=None, sep='.'): for name in dir(module): attr = getattr(module, name) if isinstance(attr, type) and issubclass(attr, superclass): if attr is superclass: continue if prefix is not None: name = prefix + sep + name mlconfig.register(attr, name=name)
import mlconfig from torch import optim from .rmsprop import TFRMSprop mlconfig.register(optim.SGD) mlconfig.register(optim.Adam) mlconfig.register(optim.lr_scheduler.MultiStepLR) mlconfig.register(optim.lr_scheduler.StepLR) mlconfig.register(optim.lr_scheduler.ExponentialLR)
import torch import torch.nn.functional as F import numpy as np import mlconfig mlconfig.register(torch.nn.CrossEntropyLoss) if torch.cuda.is_available(): torch.backends.cudnn.benchmark = True if torch.cuda.device_count() > 1: device = torch.device('cuda:0') else: device = torch.device('cuda') else: device = torch.device('cpu') @mlconfig.register class SCELoss(torch.nn.Module): def __init__(self, alpha, beta, num_classes=10): super(SCELoss, self).__init__() self.device = device self.alpha = alpha self.beta = beta self.num_classes = num_classes self.cross_entropy = torch.nn.CrossEntropyLoss() def forward(self, pred, labels): # CCE ce = self.cross_entropy(pred, labels) # RCE
def registerClasses(): global registered if not registered: mlconfig.register(ResCNN) mlconfig.register(CachedNonLinearSelfPlay) mlconfig.register(CachedLinearSelfPlay) mlconfig.register(RemoteEvaluationAccess) mlconfig.register(EvaluationWorker) mlconfig.register(LocalEvaluationAccess) mlconfig.register(FakeEvaluationAccess) mlconfig.register(TreeSelfPlayWorker) mlconfig.register(LearntThinkDecider) mlconfig.register(PointsGaussServerLeague) mlconfig.register(EloGaussServerLeague) mlconfig.register(LeaguePlayerAccess) mlconfig.register(FixedPlayerAccess) mlconfig.register(FixedThinkDecider) mlconfig.register(LeagueSelfPlayerWorker) mlconfig.register(NoopPolicyUpdater) mlconfig.register(NoopGameReporter) mlconfig.register(DatasetPolicyTester) mlconfig.register(ShuffleBatchedPolicyPlayer) mlconfig.register(SolverBatchedPolicyPlayer) mlconfig.register(PolicyPlayer) mlconfig.register(PolicyIteratorPlayer) mlconfig.register(LinearSelfPlayWorker) mlconfig.register(MctsPolicyIterator) mlconfig.register(TemperatureMoveDecider) mlconfig.register(MNKGameState) mlconfig.register(SingleProcessReporter) mlconfig.register(SingleProcessUpdater) mlconfig.register(PytorchPolicy) mlconfig.register(dict) mlconfig.register(PlayVs) mlconfig.register(HumanMNKInterface) mlconfig.register(Connect4GameState) mlconfig.register(HumanConnect4Interface) mlconfig.register(RandomPlayPolicy) mlconfig.register(PonsSolver) mlconfig.register(TestDatabaseGenerator) mlconfig.register(BestPlayPolicy) mlconfig.register(DistributedNetworkUpdater) mlconfig.register(DistributedReporter) mlconfig.register(TrainingWorker) mlconfig.register(ConstantTrainingWindowManager) mlconfig.register(StreamTrainingWorker) mlconfig.register(ConstantWindowSizeManager) mlconfig.register(LrStepSchedule) mlconfig.register(SemiPerfectPolicy) mlconfig.register(TestDatabaseGenerator2) mlconfig.register(DatasetPolicyTester2) mlconfig.register(FilePolicyUpdater) mlconfig.register(SupervisedNetworkTrainer) mlconfig.register(DistributedNetworkUpdater2) mlconfig.register(StreamTrainingWorker2) mlconfig.register(OneCycleSchedule) mlconfig.register(SlowWindowSizeManager) registered = True
import argparse import datetime import os import shutil import time import numpy as np import dataset import mlconfig import torch import util import madrys import models from evaluator import Evaluator from trainer import Trainer mlconfig.register(madrys.MadrysLoss) # General Options parser = argparse.ArgumentParser(description='ClasswiseNoise') parser.add_argument('--seed', type=int, default=0, help='seed') parser.add_argument('--version', type=str, default="resnet18") parser.add_argument('--exp_name', type=str, default="test_exp") parser.add_argument('--config_path', type=str, default='configs/cifar10') parser.add_argument('--load_model', action='store_true', default=False) parser.add_argument('--data_parallel', action='store_true', default=False) parser.add_argument('--train', action='store_true', default=False) parser.add_argument('--save_frequency', default=-1, type=int) # Datasets Options parser.add_argument('--train_face', action='store_true', default=False) parser.add_argument('--train_portion', default=1.0, type=float) parser.add_argument('--train_batch_size', default=128,
import mlconfig from torch import optim mlconfig.register(optim.Adam) mlconfig.register(optim.lr_scheduler.StepLR)
import torch import torch.nn as nn import torch.nn.functional as F import mlconfig import torchvision mlconfig.register(torchvision.models.resnet50) mlconfig.register(torch.optim.SGD) mlconfig.register(torch.optim.Adam) mlconfig.register(torch.optim.lr_scheduler.MultiStepLR) mlconfig.register(torch.optim.lr_scheduler.CosineAnnealingLR) mlconfig.register(torch.optim.lr_scheduler.StepLR) mlconfig.register(torch.optim.lr_scheduler.ExponentialLR) class ConvBrunch(nn.Module): def __init__(self, in_planes, out_planes, kernel_size=3): super(ConvBrunch, self).__init__() padding = (kernel_size - 1) // 2 self.out_conv = nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, padding=padding), nn.BatchNorm2d(out_planes), nn.ReLU()) def forward(self, x): return self.out_conv(x) @mlconfig.register class ToyModel(nn.Module): def __init__(self, type='CIFAR10'):
import mlconfig import torch import torch.nn as nn import torchvision from . import DenseNet, ResNet, ToyModel, inception_resnet_v1 mlconfig.register(torch.optim.SGD) mlconfig.register(torch.optim.Adam) mlconfig.register(torch.optim.lr_scheduler.MultiStepLR) mlconfig.register(torch.optim.lr_scheduler.CosineAnnealingLR) mlconfig.register(torch.optim.lr_scheduler.StepLR) mlconfig.register(torch.optim.lr_scheduler.ExponentialLR) mlconfig.register(torch.nn.CrossEntropyLoss) # Models mlconfig.register(ResNet.ResNet) mlconfig.register(ResNet.ResNet18) mlconfig.register(ResNet.ResNet34) mlconfig.register(ResNet.ResNet50) mlconfig.register(ResNet.ResNet101) mlconfig.register(ResNet.ResNet152) mlconfig.register(ToyModel.ToyModel) mlconfig.register(DenseNet.DenseNet121) mlconfig.register(inception_resnet_v1.InceptionResnetV1) # torchvision models mlconfig.register(torchvision.models.resnet18) mlconfig.register(torchvision.models.resnet50) mlconfig.register(torchvision.models.densenet121) # CUDA Options