Ejemplo n.º 1
0
def _save_model_metadata(
    dst_dir,
    spark_model,
    mlflow_model,
    sample_input,
    conda_env,
    signature=None,
    input_example=None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Saves model metadata into the passed-in directory. The persisted metadata assumes that a
    model can be loaded from a relative path to the metadata file (currently hard-coded to
    "sparkml").
    """
    import pyspark

    if sample_input is not None:
        mleap.add_to_model(
            mlflow_model=mlflow_model,
            path=dst_dir,
            spark_model=spark_model,
            sample_input=sample_input,
        )
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, dst_dir)

    conda_env, pip_requirements, pip_constraints = (_process_pip_requirements(
        get_default_pip_requirements(),
        pip_requirements,
        extra_pip_requirements,
    ) if conda_env is None else _process_conda_env(conda_env))

    with open(os.path.join(dst_dir, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(dst_dir, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(dst_dir, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))

    mlflow_model.add_flavor(FLAVOR_NAME,
                            pyspark_version=pyspark.__version__,
                            model_data=_SPARK_MODEL_PATH_SUB)
    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.spark",
        data=_SPARK_MODEL_PATH_SUB,
        env=_CONDA_ENV_FILE_NAME,
    )
    mlflow_model.save(os.path.join(dst_dir, MLMODEL_FILE_NAME))
Ejemplo n.º 2
0
def test_process_conda_env(tmpdir):
    def make_conda_env(pip_deps):
        return {
            "name": "mlflow-env",
            "channels": ["conda-forge"],
            "dependencies": ["python=3.7.9", "pip", {"pip": pip_deps}],
        }

    conda_env, reqs, cons = _process_conda_env(make_conda_env(["a"]))
    assert _get_pip_deps(conda_env) == ["mlflow", "a"]
    assert reqs == ["mlflow", "a"]
    assert cons == []

    conda_env_file = tmpdir.join("conda_env.yaml")
    conda_env_file.write(yaml.dump(make_conda_env(["a"])))
    conda_env, reqs, cons = _process_conda_env(conda_env_file.strpath)
    assert _get_pip_deps(conda_env) == ["mlflow", "a"]
    assert reqs == ["mlflow", "a"]
    assert cons == []

    # Ensure a requirement for mlflow is preserved
    conda_env, reqs, cons = _process_conda_env(make_conda_env(["mlflow==1.2.3"]))
    assert _get_pip_deps(conda_env) == ["mlflow==1.2.3"]
    assert reqs == ["mlflow==1.2.3"]
    assert cons == []

    con_file = tmpdir.join("constraints.txt")
    con_file.write("c")
    conda_env, reqs, cons = _process_conda_env(make_conda_env(["a", f"-c {con_file.strpath}"]))
    assert _get_pip_deps(conda_env) == ["mlflow", "a", "-c constraints.txt"]
    assert reqs == ["mlflow", "a", "-c constraints.txt"]
    assert cons == ["c"]

    with pytest.raises(TypeError, match=r"Expected .+, but got `int`"):
        _process_conda_env(0)
Ejemplo n.º 3
0
def save_model(
    spacy_model,
    path,
    conda_env=None,
    mlflow_model=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save a spaCy model to a path on the local file system.

    :param spacy_model: spaCy model to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: {{ conda_env }}
    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.

    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    """
    import spacy

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException(
            "Unable to save MLflow model to {path} - path '{path}' "
            "already exists".format(path=path))

    model_data_subpath = "model.spacy"
    model_data_path = os.path.join(path, model_data_subpath)
    os.makedirs(model_data_path)

    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # Save spacy-model
    spacy_model.to_disk(path=model_data_path)

    # Save the pyfunc flavor if at least one text categorizer in spaCy pipeline
    if any([
            isinstance(pipe_component[1], spacy.pipeline.TextCategorizer)
            for pipe_component in spacy_model.pipeline
    ]):
        pyfunc.add_to_model(
            mlflow_model,
            loader_module="mlflow.spacy",
            data=model_data_subpath,
            env=_CONDA_ENV_FILE_NAME,
        )
    else:
        _logger.warning(
            "Generating only the spacy flavor for the provided spacy model. This means the model "
            "can be loaded back via `mlflow.spacy.load_model`, but cannot be loaded back using "
            "pyfunc APIs like `mlflow.pyfunc.load_model` or via the `mlflow models` CLI commands. "
            "MLflow will only generate the pyfunc flavor for spacy models containing a pipeline "
            "component that is an instance of spacy.pipeline.TextCategorizer.")

    mlflow_model.add_flavor(FLAVOR_NAME,
                            spacy_version=spacy.__version__,
                            data=model_data_subpath)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                model_data_path,
                FLAVOR_NAME,
                fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))
Ejemplo n.º 4
0
def save_model(keras_model,
               path,
               conda_env=None,
               mlflow_model=None,
               custom_objects=None,
               keras_module=None,
               signature: ModelSignature = None,
               input_example: ModelInputExample = None,
               pip_requirements=None,
               extra_pip_requirements=None,
               **kwargs):
    """
    Save a Keras model to a path on the local file system.

    :param keras_model: Keras model to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: {{ conda_env }}
    :param mlflow_model: MLflow model config this flavor is being added to.
    :param custom_objects: A Keras ``custom_objects`` dictionary mapping names (strings) to
                           custom classes or functions associated with the Keras model. MLflow saves
                           these custom layers using CloudPickle and restores them automatically
                           when the model is loaded with :py:func:`mlflow.keras.load_model` and
                           :py:func:`mlflow.pyfunc.load_model`.
    :param keras_module: Keras module to be used to save / load the model
                         (``keras`` or ``tf.keras``). If not provided, MLflow will
                         attempt to infer the Keras module based on the given model.
    :param kwargs: kwargs to pass to ``keras_model.save`` method.

    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example can be a Pandas DataFrame where the given
                          example will be serialized to json using the Pandas split-oriented
                          format, or a numpy array where the example will be serialized to json
                          by converting it to a list. Bytes are base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}

    .. code-block:: python
        :caption: Example

        import mlflow
        # Build, compile, and train your model
        keras_model = ...
        keras_model_path = ...
        keras_model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"])
        results = keras_model.fit(
            x_train, y_train, epochs=20, batch_size = 128, validation_data=(x_val, y_val))
        # Save the model as an MLflow Model
        mlflow.keras.save_model(keras_model, keras_model_path)
    """
    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    if keras_module is None:

        def _is_plain_keras(model):
            try:
                import keras

                if Version(keras.__version__) < Version("2.2.0"):
                    import keras.engine

                    return isinstance(model, keras.engine.Model)
                else:
                    # NB: Network is the first parent with save method
                    import keras.engine.network

                    return isinstance(model, keras.engine.network.Network)
            except ImportError:
                return False

        def _is_tf_keras(model):
            try:
                # NB: Network is not exposed in tf.keras, we check for Model instead.
                import tensorflow.keras.models

                return isinstance(model, tensorflow.keras.models.Model)
            except ImportError:
                return False

        if _is_plain_keras(keras_model):
            keras_module = importlib.import_module("keras")
        elif _is_tf_keras(keras_model):
            keras_module = importlib.import_module("tensorflow.keras")
        else:
            raise MlflowException(
                "Unable to infer keras module from the model, please specify "
                "which keras module ('keras' or 'tensorflow.keras') is to be "
                "used to save and load the model.")
    elif type(keras_module) == str:
        keras_module = importlib.import_module(keras_module)

    # check if path exists
    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException("Path '{}' already exists".format(path))

    # construct new data folder in existing path
    data_subpath = "data"
    data_path = os.path.join(path, data_subpath)
    os.makedirs(data_path)

    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # save custom objects if there are custom objects
    if custom_objects is not None:
        _save_custom_objects(data_path, custom_objects)

    # save keras module spec to path/data/keras_module.txt
    with open(os.path.join(data_path, _KERAS_MODULE_SPEC_PATH), "w") as f:
        f.write(keras_module.__name__)

    # Use the SavedModel format if `save_format` is unspecified
    save_format = kwargs.get("save_format", "tf")

    # save keras save_format to path/data/save_format.txt
    with open(os.path.join(data_path, _KERAS_SAVE_FORMAT_PATH), "w") as f:
        f.write(save_format)

    # save keras model
    # To maintain prior behavior, when the format is HDF5, we save
    # with the h5 file extension. Otherwise, model_path is a directory
    # where the saved_model.pb will be stored (for SavedModel format)
    file_extension = ".h5" if save_format == "h5" else ""
    model_subpath = os.path.join(data_subpath, _MODEL_SAVE_PATH)
    model_path = os.path.join(path, model_subpath) + file_extension
    if path.startswith("/dbfs/"):
        # The Databricks Filesystem uses a FUSE implementation that does not support
        # random writes. It causes an error.
        with tempfile.NamedTemporaryFile(suffix=".h5") as f:
            keras_model.save(f.name, **kwargs)
            f.flush()  # force flush the data
            shutil.copyfile(src=f.name, dst=model_path)
    else:
        keras_model.save(model_path, **kwargs)

    # update flavor info to mlflow_model
    mlflow_model.add_flavor(
        FLAVOR_NAME,
        keras_module=keras_module.__name__,
        keras_version=keras_module.__version__,
        save_format=save_format,
        data=data_subpath,
    )

    # append loader_module, data and env data to mlflow_model
    pyfunc.add_to_model(mlflow_model,
                        loader_module="mlflow.keras",
                        data=data_subpath,
                        env=_CONDA_ENV_FILE_NAME)

    # save mlflow_model to path/MLmodel
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    include_cloudpickle = custom_objects is not None
    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements(
                include_cloudpickle, keras_module)
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                path, FLAVOR_NAME, fallback=default_reqs)
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))
Ejemplo n.º 5
0
def save_model(
    diviner_model,
    path,
    conda_env=None,
    code_paths=None,
    mlflow_model=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save a ``Diviner`` model object to a path on the local file system.

    :param diviner_model: ``Diviner`` model that has been ``fit`` on a grouped temporal
                          ``DataFrame``.
    :param path: Local path destination for the serialized model is to be saved.
    :param conda_env: {{ conda_env }}
    :param code_paths: A list of local filesystem paths to Python file dependencies (or directories
                       containing file dependencies). These files are *prepended* to the system
                       path when the model is loaded.
    :param mlflow_model: :py:mod:`mlflow.models.Model` the flavor that this model is being added to.
    :param signature: :py:class:`Model Signature <mlflow.models.ModelSignature>` describes model
                      input and output :py:class:`Schema <mlflow.types.Schema>`. The model
                      signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: py

                        from mlflow.models.signature import infer_signature

                        model = diviner.GroupedProphet().fit(data, ("region", "state"))
                        predictions = model.predict(prediction_config)
                        signature = infer_signature(data, predictions)

    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a ``Pandas DataFrame`` and
                          then serialized to json using the ``Pandas`` split-oriented format.
                          Bytes are base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    """
    import diviner

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    path = pathlib.Path(path).absolute()

    _validate_and_prepare_target_save_path(str(path))

    # NB: When moving to native pathlib implementations, path encoding as string will not be needed.
    code_dir_subpath = _validate_and_copy_code_paths(code_paths, str(path))

    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, str(path))

    diviner_model.save(str(path.joinpath(_MODEL_BINARY_FILE_NAME)))

    model_bin_kwargs = {_MODEL_BINARY_KEY: _MODEL_BINARY_FILE_NAME}
    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.diviner",
        env=_CONDA_ENV_FILE_NAME,
        code=code_dir_subpath,
        **model_bin_kwargs,
    )
    flavor_conf = {
        _MODEL_TYPE_KEY: diviner_model.__class__.__name__,
        **model_bin_kwargs
    }
    mlflow_model.add_flavor(FLAVOR_NAME,
                            diviner_version=diviner.__version__,
                            code=code_dir_subpath,
                            **flavor_conf)
    mlflow_model.save(str(path.joinpath(MLMODEL_FILE_NAME)))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            inferred_reqs = mlflow.models.infer_pip_requirements(
                str(path), FLAVOR_NAME, fallback=default_reqs)
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs, pip_requirements, extra_pip_requirements)
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    with path.joinpath(_CONDA_ENV_FILE_NAME).open("w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    if pip_constraints:
        write_to(str(path.joinpath(_CONSTRAINTS_FILE_NAME)),
                 "\n".join(pip_constraints))
    write_to(str(path.joinpath(_REQUIREMENTS_FILE_NAME)),
             "\n".join(pip_requirements))
Ejemplo n.º 6
0
def save_model(
    lgb_model,
    path,
    conda_env=None,
    mlflow_model=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save a LightGBM model to a path on the local file system.

    :param lgb_model: LightGBM model (an instance of `lightgbm.Booster`_) to be saved.
                      Note that models that implement the `scikit-learn API`_  are not supported.
    :param path: Local path where the model is to be saved.
    :param conda_env: {{ conda_env }}
    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.

    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    """
    import lightgbm as lgb

    _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException("Path '{}' already exists".format(path))
    model_data_subpath = "model.lgb"
    model_data_path = os.path.join(path, model_data_subpath)
    os.makedirs(path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # Save a LightGBM model
    lgb_model.save_model(model_data_path)

    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.lightgbm",
        data=model_data_subpath,
        env=_CONDA_ENV_FILE_NAME,
    )
    mlflow_model.add_flavor(FLAVOR_NAME, lgb_version=lgb.__version__, data=model_data_subpath)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                path, FLAVOR_NAME, fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs, pip_requirements, extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))
Ejemplo n.º 7
0
def _save_model_metadata(
    dst_dir,
    spark_model,
    mlflow_model,
    sample_input,
    conda_env,
    signature=None,
    input_example=None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Saves model metadata into the passed-in directory. The persisted metadata assumes that a
    model can be loaded from a relative path to the metadata file (currently hard-coded to
    "sparkml").
    """
    import pyspark

    if sample_input is not None:
        mleap.add_to_model(
            mlflow_model=mlflow_model,
            path=dst_dir,
            spark_model=spark_model,
            sample_input=sample_input,
        )
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, dst_dir)

    mlflow_model.add_flavor(FLAVOR_NAME,
                            pyspark_version=pyspark.__version__,
                            model_data=_SPARK_MODEL_PATH_SUB)
    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.spark",
        data=_SPARK_MODEL_PATH_SUB,
        env=_CONDA_ENV_FILE_NAME,
    )
    mlflow_model.save(os.path.join(dst_dir, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                dst_dir,
                FLAVOR_NAME,
                fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    with open(os.path.join(dst_dir, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(dst_dir, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(dst_dir, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))
Ejemplo n.º 8
0
def save_model(cb_model,
               path,
               conda_env=None,
               mlflow_model=None,
               signature: ModelSignature = None,
               input_example: ModelInputExample = None,
               pip_requirements=None,
               extra_pip_requirements=None,
               **kwargs):
    """
    Save a CatBoost model to a path on the local file system.

    :param cb_model: CatBoost model (an instance of `CatBoost`_, `CatBoostClassifier`_,
                     or `CatBoostRegressor`_) to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: {{ conda_env }}
    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)

    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    :param kwargs: kwargs to pass to `CatBoost.save_model`_ method.
    """
    import catboost as cb

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException("Path '{}' already exists".format(path))
    os.makedirs(path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    model_data_path = os.path.join(path, _MODEL_BINARY_FILE_NAME)
    cb_model.save_model(model_data_path, **kwargs)

    model_bin_kwargs = {_MODEL_BINARY_KEY: _MODEL_BINARY_FILE_NAME}
    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.catboost",
        env=_CONDA_ENV_FILE_NAME,
        **model_bin_kwargs,
    )

    flavor_conf = {
        _MODEL_TYPE_KEY: cb_model.__class__.__name__,
        _SAVE_FORMAT_KEY: kwargs.get("format", "cbm"),
        **model_bin_kwargs,
    }
    mlflow_model.add_flavor(
        FLAVOR_NAME,
        catboost_version=cb.__version__,
        **flavor_conf,
    )
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                path,
                FLAVOR_NAME,
                fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))
Ejemplo n.º 9
0
def save_model(
    fastai_learner,
    path,
    conda_env=None,
    code_paths=None,
    mlflow_model=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
    **kwargs,
):
    """
    Save a fastai Learner to a path on the local file system.

    :param fastai_learner: fastai Learner to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: {{ conda_env }}
    :param code_paths: A list of local filesystem paths to Python file dependencies (or directories
                       containing file dependencies). These files are *prepended* to the system
                       path when the model is loaded.
    :param mlflow_model: MLflow model config this flavor is being added to.

    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}

    :param kwargs: kwargs to pass to ``Learner.save`` method.

    .. code-block:: python
        :caption: Example

        import os

        import mlflow.fastai

        # Create a fastai Learner model
        model = ...

        # Start MLflow session and save model to current working directory
        with mlflow.start_run():
            model.fit(epochs, learning_rate)
            mlflow.fastai.save_model(model, 'model')

        # Load saved model for inference
        model_uri = "{}/{}".format(os.getcwd(), 'model')
        loaded_model = mlflow.fastai.load_model(model_uri)
        results = loaded_model.predict(predict_data)
    """
    import fastai
    from fastai.callback.all import ParamScheduler
    from pathlib import Path

    _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException("Path '{}' already exists".format(path))
    model_data_subpath = "model.fastai"
    model_data_path = os.path.join(path, model_data_subpath)
    model_data_path = Path(model_data_path)
    os.makedirs(path)
    code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)

    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # ParamScheduler currently is not pickable
    # hence it is been removed before export and added again after export
    cbs = [c for c in fastai_learner.cbs if isinstance(c, ParamScheduler)]
    fastai_learner.remove_cbs(cbs)
    fastai_learner.export(model_data_path, **kwargs)
    fastai_learner.add_cbs(cbs)

    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.fastai",
        data=model_data_subpath,
        code=code_dir_subpath,
        env=_CONDA_ENV_FILE_NAME,
    )
    mlflow_model.add_flavor(
        FLAVOR_NAME,
        fastai_version=fastai.__version__,
        data=model_data_subpath,
        code=code_dir_subpath,
    )
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                path,
                FLAVOR_NAME,
                fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))
Ejemplo n.º 10
0
def save_explainer(
    explainer,
    path,
    serialize_model_using_mlflow=True,
    conda_env=None,
    mlflow_model=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save a SHAP explainer to a path on the local file system. Produces an MLflow Model
    containing the following flavors:

        - :py:mod:`mlflow.shap`
        - :py:mod:`mlflow.pyfunc`

    :param explainer: SHAP explainer to be saved.
    :param path: Local path where the explainer is to be saved.
    :param serialize_model_using_mlflow: When set to True, MLflow will extract the underlying
                                         model and serialize it as an MLmodel, otherwise it
                                         uses SHAP's internal serialization. Defaults to True.
                                         Currently MLflow serialization is only supported for
                                         models of 'sklearn' or 'pytorch' flavors.

    :param conda_env: Either a dictionary representation of a Conda environment or the path to a
                      Conda environment yaml file. If provided, this decsribes the environment
                      this model should be run in. At minimum, it should specify the dependencies
                      contained in :func:`get_default_conda_env()`. If `None`, the default
                      :func:`get_default_conda_env()` environment is added to the model.
                      The following is an *example* dictionary representation of a Conda
                      environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.6.0',
                                'shap=0.37.0'
                            ]
                        }

    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    """
    import shap

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    if os.path.exists(path):
        raise MlflowException(
            message="Path '{}' already exists".format(path),
            error_code=RESOURCE_ALREADY_EXISTS,
        )

    os.makedirs(path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    underlying_model_flavor = None
    underlying_model_path = None
    serializable_by_mlflow = False

    # saving the underlying model if required
    if serialize_model_using_mlflow:
        underlying_model_flavor = get_underlying_model_flavor(explainer.model)

        if underlying_model_flavor != _UNKNOWN_MODEL_FLAVOR:
            serializable_by_mlflow = True  # prevents SHAP from serializing the underlying model
            underlying_model_path = os.path.join(path,
                                                 _UNDERLYING_MODEL_SUBPATH)
        else:
            warnings.warn(
                "Unable to serialize underlying model using MLflow, will use SHAP serialization"
            )

        if underlying_model_flavor == mlflow.sklearn.FLAVOR_NAME:
            mlflow.sklearn.save_model(explainer.model.inner_model.__self__,
                                      underlying_model_path)
        elif underlying_model_flavor == mlflow.pytorch.FLAVOR_NAME:
            mlflow.pytorch.save_model(explainer.model.inner_model,
                                      underlying_model_path)

    # saving the explainer object
    explainer_data_subpath = "explainer.shap"
    explainer_output_path = os.path.join(path, explainer_data_subpath)
    with open(explainer_output_path, "wb") as explainer_output_file_handle:
        if serialize_model_using_mlflow and serializable_by_mlflow:
            explainer.save(explainer_output_file_handle, model_saver=False)
        else:
            explainer.save(explainer_output_file_handle)

    conda_env, pip_requirements, pip_constraints = (_process_pip_requirements(
        get_default_pip_requirements(),
        pip_requirements,
        extra_pip_requirements,
    ) if conda_env is None else _process_conda_env(conda_env))

    # merging the conda environment generated by serializing the underlying model
    if underlying_model_path is not None:
        underlying_model_conda_env = _get_conda_env_for_underlying_model(
            underlying_model_path)
        conda_env = _merge_environments(conda_env, underlying_model_conda_env)
        pip_requirements = _get_pip_deps(conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))

    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.shap",
        model_path=explainer_data_subpath,
        underlying_model_flavor=underlying_model_flavor,
        env=_CONDA_ENV_FILE_NAME,
    )

    mlflow_model.add_flavor(
        FLAVOR_NAME,
        shap_version=shap.__version__,
        serialized_explainer=explainer_data_subpath,
        underlying_model_flavor=underlying_model_flavor,
    )

    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
Ejemplo n.º 11
0
def save_model(
    pmdarima_model,
    path,
    conda_env=None,
    mlflow_model=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save a pmdarima ``ARIMA`` model or ``Pipeline`` object to a path on the local file system.

    :param pmdarima_model: pmdarima ``ARIMA`` or ``Pipeline`` model that has been ``fit`` on a
                           temporal series.
    :param path: Local path destination for the serialized model (in pickle format) is to be saved.
    :param conda_env: {{ conda_env }}
    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
    :param signature: :py:class:`Model Signature <mlflow.models.ModelSignature>` describes model
                      input and output :py:class:`Schema <mlflow.types.Schema>`. The model
                      signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: py

                        from mlflow.models.signature import infer_signature

                        model = pmdarima.auto_arima(data)
                        predictions = model.predict(n_periods=30, return_conf_int=False)
                        signature = infer_signature(data, predictions)

                      .. Warning:: if utilizing confidence interval generation in the ``predict``
                        method of a ``pmdarima`` model (``return_conf_int=True``), the signature
                        will not be inferred due to the complex tuple return type when using the
                        native ``ARIMA.predict()`` API. ``infer_schema`` will function correctly
                        if using the ``pyfunc`` flavor of the model, though.

    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a ``Pandas DataFrame`` and
                          then serialized to json using the ``Pandas`` split-oriented format.
                          Bytes are base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    """
    import pmdarima

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException(f"Path '{path}' already exists")
    os.makedirs(path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    model_data_path = os.path.join(path, _MODEL_BINARY_FILE_NAME)
    _save_model(pmdarima_model, model_data_path)

    model_bin_kwargs = {_MODEL_BINARY_KEY: _MODEL_BINARY_FILE_NAME}
    pyfunc.add_to_model(mlflow_model,
                        loader_module="mlflow.pmdarima",
                        env=_CONDA_ENV_FILE_NAME,
                        **model_bin_kwargs)
    flavor_conf = {
        _MODEL_TYPE_KEY: pmdarima_model.__class__.__name__,
        **model_bin_kwargs,
    }
    mlflow_model.add_flavor(FLAVOR_NAME,
                            pmdarima_version=pmdarima.__version__,
                            **flavor_conf)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            inferred_reqs = mlflow.models.infer_pip_requirements(
                path, FLAVOR_NAME, fallback=default_reqs)
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs, pip_requirements, extra_pip_requirements)
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))
Ejemplo n.º 12
0
def save_model(
    pr_model,
    path,
    conda_env=None,
    mlflow_model=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save a Prophet model to a path on the local file system.

    :param pr_model: Prophet model (an instance of Prophet() forecaster that has been fit
                     on a temporal series.
    :param path: Local path where the serialized model (as JSON) is to be saved.
    :param conda_env: {{ conda_env }}
    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature

                        model = Prophet().fit(df)
                        train = model.history
                        predictions = model.predict(model.make_future_dataframe(30))
                        signature = infer_signature(train, predictions)
    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    """

    import prophet

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException(f"Path '{path}' already exists")
    os.makedirs(path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    model_data_path = os.path.join(path, _MODEL_BINARY_FILE_NAME)
    _save_model(pr_model, model_data_path)

    model_bin_kwargs = {_MODEL_BINARY_KEY: _MODEL_BINARY_FILE_NAME}
    pyfunc.add_to_model(mlflow_model,
                        loader_module="mlflow.prophet",
                        env=_CONDA_ENV_FILE_NAME,
                        **model_bin_kwargs)
    flavor_conf = {
        _MODEL_TYPE_KEY: pr_model.__class__.__name__,
        **model_bin_kwargs,
    }
    mlflow_model.add_flavor(
        FLAVOR_NAME,
        prophet_version=prophet.__version__,
        **flavor_conf,
    )
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            # cannot use inferred requirements due to prophet's build process
            # as the package installation of pystan requires Cython to be present
            # in the path. Prophet's installation itself requires imports of
            # existing libraries, preventing the execution of a batched pip install
            # and instead using a a strictly defined list of dependencies.
            # NOTE: if Prophet .whl build architecture is changed, this should be
            # modified to a standard inferred approach.
            default_reqs = get_default_pip_requirements()
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))
Ejemplo n.º 13
0
def save_model(
    h2o_model,
    path,
    conda_env=None,
    mlflow_model=None,
    settings=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save an H2O model to a path on the local file system.

    :param h2o_model: H2O model to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: {{ conda_env }}
    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.

    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
    """
    import h2o

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise Exception("Path '{}' already exists".format(path))
    model_data_subpath = "model.h2o"
    model_data_path = os.path.join(path, model_data_subpath)
    os.makedirs(model_data_path)

    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # Save h2o-model
    if hasattr(h2o, "download_model"):
        h2o_save_location = h2o.download_model(model=h2o_model,
                                               path=model_data_path)
    else:
        warnings.warn(
            "If your cluster is remote, H2O may not store the model correctly. "
            "Please upgrade H2O version to a newer version")
        h2o_save_location = h2o.save_model(model=h2o_model,
                                           path=model_data_path,
                                           force=True)
    model_file = os.path.basename(h2o_save_location)

    # Save h2o-settings
    if settings is None:
        settings = {}
    settings["full_file"] = h2o_save_location
    settings["model_file"] = model_file
    settings["model_dir"] = model_data_path
    with open(os.path.join(model_data_path, "h2o.yaml"), "w") as settings_file:
        yaml.safe_dump(settings, stream=settings_file)

    pyfunc.add_to_model(mlflow_model,
                        loader_module="mlflow.h2o",
                        data=model_data_subpath,
                        env=_CONDA_ENV_FILE_NAME)
    mlflow_model.add_flavor(FLAVOR_NAME,
                            h2o_version=h2o.__version__,
                            data=model_data_subpath)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                path,
                FLAVOR_NAME,
                fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))
Ejemplo n.º 14
0
Archivo: h2o.py Proyecto: harupy/mlflow
def save_model(
    h2o_model,
    path,
    conda_env=None,
    mlflow_model=None,
    settings=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save an H2O model to a path on the local file system.

    :param h2o_model: H2O model to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: Either a dictionary representation of a Conda environment or the path to a
                      Conda environment yaml file. If provided, this describes the environment
                      this model should be run in. At minimum, it should specify the dependencies
                      contained in :func:`get_default_conda_env()`. If ``None``, the default
                      :func:`get_default_conda_env()` environment is added to the model.
                      The following is an *example* dictionary representation of a Conda
                      environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.7.0',
                                'pip': [
                                    'h2o==3.20.0.8'
                                ]
                            ]
                        }

    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.

    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
    """
    import h2o

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise Exception("Path '{}' already exists".format(path))
    model_data_subpath = "model.h2o"
    model_data_path = os.path.join(path, model_data_subpath)
    os.makedirs(model_data_path)

    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # Save h2o-model
    if hasattr(h2o, "download_model"):
        h2o_save_location = h2o.download_model(model=h2o_model,
                                               path=model_data_path)
    else:
        warnings.warn(
            "If your cluster is remote, H2O may not store the model correctly. "
            "Please upgrade H2O version to a newer version")
        h2o_save_location = h2o.save_model(model=h2o_model,
                                           path=model_data_path,
                                           force=True)
    model_file = os.path.basename(h2o_save_location)

    # Save h2o-settings
    if settings is None:
        settings = {}
    settings["full_file"] = h2o_save_location
    settings["model_file"] = model_file
    settings["model_dir"] = model_data_path
    with open(os.path.join(model_data_path, "h2o.yaml"), "w") as settings_file:
        yaml.safe_dump(settings, stream=settings_file)

    conda_env, pip_requirements, pip_constraints = (_process_pip_requirements(
        get_default_pip_requirements(),
        pip_requirements,
        extra_pip_requirements,
    ) if conda_env is None else _process_conda_env(conda_env))

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))

    pyfunc.add_to_model(mlflow_model,
                        loader_module="mlflow.h2o",
                        data=model_data_subpath,
                        env=_CONDA_ENV_FILE_NAME)
    mlflow_model.add_flavor(FLAVOR_NAME,
                            h2o_version=h2o.__version__,
                            data=model_data_subpath)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
Ejemplo n.º 15
0
def save_model(
    lgb_model,
    path,
    conda_env=None,
    mlflow_model=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save a LightGBM model to a path on the local file system.

    :param lgb_model: LightGBM model (an instance of `lightgbm.Booster`_) to be saved.
                      Note that models that implement the `scikit-learn API`_  are not supported.
    :param path: Local path where the model is to be saved.
    :param conda_env: Either a dictionary representation of a Conda environment or the path to a
                      Conda environment yaml file. If provided, this describes the environment
                      this model should be run in. At minimum, it should specify the dependencies
                      contained in :func:`get_default_conda_env()`. If ``None``, the default
                      :func:`get_default_conda_env()` environment is added to the model.
                      The following is an *example* dictionary representation of a Conda
                      environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.7.0',
                                'pip': [
                                    'lightgbm==2.3.0'
                                ]
                            ]
                        }

    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.

    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    """
    import lightgbm as lgb

    _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException("Path '{}' already exists".format(path))
    model_data_subpath = "model.lgb"
    model_data_path = os.path.join(path, model_data_subpath)
    os.makedirs(path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # Save a LightGBM model
    lgb_model.save_model(model_data_path)

    conda_env, pip_requirements, pip_constraints = (
        _process_pip_requirements(
            get_default_pip_requirements(), pip_requirements, extra_pip_requirements,
        )
        if conda_env is None
        else _process_conda_env(conda_env)
    )

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))

    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.lightgbm",
        data=model_data_subpath,
        env=_CONDA_ENV_FILE_NAME,
    )
    mlflow_model.add_flavor(FLAVOR_NAME, lgb_version=lgb.__version__, data=model_data_subpath)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
Ejemplo n.º 16
0
def save_model(
    onnx_model,
    path,
    conda_env=None,
    code_paths=None,
    mlflow_model=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
    onnx_execution_providers=None,
):
    """
    Save an ONNX model to a path on the local file system.

    :param onnx_model: ONNX model to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: {{ conda_env }}
    :param code_paths: A list of local filesystem paths to Python file dependencies (or directories
                       containing file dependencies). These files are *prepended* to the system
                       path when the model is loaded.
    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.

    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example can be a Pandas DataFrame where the given
                          example will be serialized to json using the Pandas split-oriented
                          format, or a numpy array where the example will be serialized to json
                          by converting it to a list. Bytes are base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    :param onnx_execution_providers: List of strings defining onnxruntime execution providers.
                                     Defaults to example:
                                     ``['CUDAExecutionProvider', 'CPUExecutionProvider']``
                                     This uses GPU preferentially over CPU.
                                     See onnxruntime API for further descriptions:
                                     https://onnxruntime.ai/docs/execution-providers/
    """
    import onnx

    if onnx_execution_providers is None:
        onnx_execution_providers = ONNX_EXECUTION_PROVIDERS

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    path = os.path.abspath(path)
    _validate_and_prepare_target_save_path(path)
    code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)

    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)
    model_data_subpath = "model.onnx"
    model_data_path = os.path.join(path, model_data_subpath)

    # Save onnx-model
    onnx.save_model(onnx_model, model_data_path)

    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.onnx",
        data=model_data_subpath,
        env=_CONDA_ENV_FILE_NAME,
        code=code_dir_subpath,
    )
    mlflow_model.add_flavor(
        FLAVOR_NAME,
        onnx_version=onnx.__version__,
        data=model_data_subpath,
        providers=onnx_execution_providers,
        code=code_dir_subpath,
    )
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                path,
                FLAVOR_NAME,
                fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))

    _PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
Ejemplo n.º 17
0
def save_model(
    gluon_model,
    path,
    mlflow_model=None,
    conda_env=None,
    code_paths=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save a Gluon model to a path on the local file system.

    :param gluon_model: Gluon model to be saved. Must be already hybridized.
    :param path: Local path where the model is to be saved.
    :param mlflow_model: MLflow model config this flavor is being added to.
    :param conda_env: {{ conda_env }}
    :param code_paths: A list of local filesystem paths to Python file dependencies (or directories
                       containing file dependencies). These files are *prepended* to the system
                       path when the model is loaded.
    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example can be a Pandas DataFrame where the given
                          example will be serialized to json using the Pandas split-oriented
                          format, or a numpy array where the example will be serialized to json
                          by converting it to a list. Bytes are base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}

    .. code-block:: python
        :caption: Example

        from mxnet.gluon import Trainer
        from mxnet.gluon.contrib import estimator
        from mxnet.gluon.loss import SoftmaxCrossEntropyLoss
        from mxnet.gluon.nn import HybridSequential
        from mxnet.metric import Accuracy
        import mlflow
        # Build, compile, and train your model
        gluon_model_path = ...
        net = HybridSequential()
        with net.name_scope():
            ...
        net.hybridize()
        net.collect_params().initialize()
        softmax_loss = SoftmaxCrossEntropyLoss()
        trainer = Trainer(net.collect_params())
        est = estimator.Estimator(net=net, loss=softmax_loss, metrics=Accuracy(), trainer=trainer)
        est.fit(train_data=train_data, epochs=100, val_data=validation_data)
        # Save the model as an MLflow Model
        mlflow.gluon.save_model(net, gluon_model_path)
    """
    import mxnet as mx

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)
    path = os.path.abspath(path)
    _validate_and_prepare_target_save_path(path)
    data_subpath = "data"
    data_path = os.path.join(path, data_subpath)
    os.makedirs(data_path)
    code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # The epoch argument of the export method does not play any role in selecting
    # a specific epoch's parameters, and is there only for display purposes.
    gluon_model.export(os.path.join(data_path, _MODEL_SAVE_PATH))

    pyfunc.add_to_model(mlflow_model,
                        loader_module="mlflow.gluon",
                        env=_CONDA_ENV_FILE_NAME,
                        code=code_dir_subpath)
    mlflow_model.add_flavor(FLAVOR_NAME,
                            mxnet_version=mx.__version__,
                            code=code_dir_subpath)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            inferred_reqs = mlflow.models.infer_pip_requirements(
                path,
                FLAVOR_NAME,
                fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))

    _PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
Ejemplo n.º 18
0
def _save_model_with_class_artifacts_params(
    path,
    python_model,
    artifacts=None,
    conda_env=None,
    code_paths=None,
    mlflow_model=None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    :param path: The path to which to save the Python model.
    :param python_model: An instance of a subclass of :class:`~PythonModel`. ``python_model``
                        defines how the model loads artifacts and how it performs inference.
    :param artifacts: A dictionary containing ``<name, artifact_uri>`` entries.
                      Remote artifact URIs
                      are resolved to absolute filesystem paths, producing a dictionary of
                      ``<name, absolute_path>`` entries. ``python_model`` can reference these
                      resolved entries as the ``artifacts`` property of the ``context``
                      attribute. If ``None``, no artifacts are added to the model.
    :param conda_env: Either a dictionary representation of a Conda environment or the
                      path to a Conda environment yaml file. If provided, this decsribes the
                      environment this model should be run in. At minimum, it should specify
                      the dependencies
                      contained in :func:`get_default_conda_env()`. If ``None``, the default
                      :func:`get_default_conda_env()` environment is added to the model.
    :param code_paths: A list of local filesystem paths to Python file dependencies (or directories
                       containing file dependencies). These files are *prepended* to the system
                       path before the model is loaded.
    :param mlflow_model: The model configuration to which to add the ``mlflow.pyfunc`` flavor.
    """
    if mlflow_model is None:
        mlflow_model = Model()

    custom_model_config_kwargs = {
        CONFIG_KEY_CLOUDPICKLE_VERSION: cloudpickle.__version__,
    }
    if isinstance(python_model, PythonModel):
        saved_python_model_subpath = "python_model.pkl"
        with open(os.path.join(path, saved_python_model_subpath), "wb") as out:
            cloudpickle.dump(python_model, out)
        custom_model_config_kwargs[
            CONFIG_KEY_PYTHON_MODEL] = saved_python_model_subpath
    else:
        raise MlflowException(
            message=
            ("`python_model` must be a subclass of `PythonModel`. Instead, found an"
             " object of type: {python_model_type}".format(
                 python_model_type=type(python_model))),
            error_code=INVALID_PARAMETER_VALUE,
        )

    if artifacts:
        saved_artifacts_config = {}
        with TempDir() as tmp_artifacts_dir:
            tmp_artifacts_config = {}
            saved_artifacts_dir_subpath = "artifacts"
            for artifact_name, artifact_uri in artifacts.items():
                tmp_artifact_path = _download_artifact_from_uri(
                    artifact_uri=artifact_uri,
                    output_path=tmp_artifacts_dir.path())
                tmp_artifacts_config[artifact_name] = tmp_artifact_path
                saved_artifact_subpath = posixpath.join(
                    saved_artifacts_dir_subpath,
                    os.path.relpath(path=tmp_artifact_path,
                                    start=tmp_artifacts_dir.path()),
                )
                saved_artifacts_config[artifact_name] = {
                    CONFIG_KEY_ARTIFACT_RELATIVE_PATH: saved_artifact_subpath,
                    CONFIG_KEY_ARTIFACT_URI: artifact_uri,
                }

            shutil.move(tmp_artifacts_dir.path(),
                        os.path.join(path, saved_artifacts_dir_subpath))
        custom_model_config_kwargs[
            CONFIG_KEY_ARTIFACTS] = saved_artifacts_config

    saved_code_subpath = None
    if code_paths is not None:
        saved_code_subpath = "code"
        for code_path in code_paths:
            _copy_file_or_tree(src=code_path,
                               dst=path,
                               dst_dir=saved_code_subpath)

    mlflow.pyfunc.add_to_model(
        model=mlflow_model,
        loader_module=__name__,
        code=saved_code_subpath,
        env=_CONDA_ENV_FILE_NAME,
        **custom_model_config_kwargs,
    )
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                path,
                mlflow.pyfunc.FLAVOR_NAME,
                fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))

    _PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
Ejemplo n.º 19
0
def save_explainer(
    explainer,
    path,
    serialize_model_using_mlflow=True,
    conda_env=None,
    code_paths=None,
    mlflow_model=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save a SHAP explainer to a path on the local file system. Produces an MLflow Model
    containing the following flavors:

        - :py:mod:`mlflow.shap`
        - :py:mod:`mlflow.pyfunc`

    :param explainer: SHAP explainer to be saved.
    :param path: Local path where the explainer is to be saved.
    :param serialize_model_using_mlflow: When set to True, MLflow will extract the underlying
                                         model and serialize it as an MLmodel, otherwise it
                                         uses SHAP's internal serialization. Defaults to True.
                                         Currently MLflow serialization is only supported for
                                         models of 'sklearn' or 'pytorch' flavors.

    :param conda_env: {{ conda_env }}
    :param code_paths: A list of local filesystem paths to Python file dependencies (or directories
                       containing file dependencies). These files are *prepended* to the system
                       path when the model is loaded.
    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    """
    import shap

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    _validate_and_prepare_target_save_path(path)
    code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)

    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    underlying_model_flavor = None
    underlying_model_path = None
    serializable_by_mlflow = False

    # saving the underlying model if required
    if serialize_model_using_mlflow:
        underlying_model_flavor = get_underlying_model_flavor(explainer.model)

        if underlying_model_flavor != _UNKNOWN_MODEL_FLAVOR:
            serializable_by_mlflow = True  # prevents SHAP from serializing the underlying model
            underlying_model_path = os.path.join(path,
                                                 _UNDERLYING_MODEL_SUBPATH)
        else:
            warnings.warn(
                "Unable to serialize underlying model using MLflow, will use SHAP serialization"
            )

        if underlying_model_flavor == mlflow.sklearn.FLAVOR_NAME:
            mlflow.sklearn.save_model(explainer.model.inner_model.__self__,
                                      underlying_model_path)
        elif underlying_model_flavor == mlflow.pytorch.FLAVOR_NAME:
            mlflow.pytorch.save_model(explainer.model.inner_model,
                                      underlying_model_path)

    # saving the explainer object
    explainer_data_subpath = "explainer.shap"
    explainer_output_path = os.path.join(path, explainer_data_subpath)
    with open(explainer_output_path, "wb") as explainer_output_file_handle:
        if serialize_model_using_mlflow and serializable_by_mlflow:
            explainer.save(explainer_output_file_handle, model_saver=False)
        else:
            explainer.save(explainer_output_file_handle)

    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.shap",
        model_path=explainer_data_subpath,
        underlying_model_flavor=underlying_model_flavor,
        env=_CONDA_ENV_FILE_NAME,
        code=code_dir_subpath,
    )

    mlflow_model.add_flavor(
        FLAVOR_NAME,
        shap_version=shap.__version__,
        serialized_explainer=explainer_data_subpath,
        underlying_model_flavor=underlying_model_flavor,
        code=code_dir_subpath,
    )

    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                path,
                FLAVOR_NAME,
                fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    if underlying_model_path is not None:
        underlying_model_conda_env = _get_conda_env_for_underlying_model(
            underlying_model_path)
        conda_env = _merge_environments(conda_env, underlying_model_conda_env)
        pip_requirements = _get_pip_deps(conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))

    _PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
Ejemplo n.º 20
0
def save_model(
    tf_saved_model_dir,
    tf_meta_graph_tags,
    tf_signature_def_key,
    path,
    mlflow_model=None,
    conda_env=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save a *serialized* collection of TensorFlow graphs and variables as an MLflow model
    to a local path. This method operates on TensorFlow variables and graphs that have been
    serialized in TensorFlow's ``SavedModel`` format. For more information about ``SavedModel``
    format, see the TensorFlow documentation:
    https://www.tensorflow.org/guide/saved_model#save_and_restore_models.

    :param tf_saved_model_dir: Path to the directory containing serialized TensorFlow variables and
                               graphs in ``SavedModel`` format.
    :param tf_meta_graph_tags: A list of tags identifying the model's metagraph within the
                               serialized ``SavedModel`` object. For more information, see the
                               ``tags`` parameter of the
                               ``tf.saved_model.builder.savedmodelbuilder`` method.
    :param tf_signature_def_key: A string identifying the input/output signature associated with the
                                 model. This is a key within the serialized ``savedmodel``
                                 signature definition mapping. For more information, see the
                                 ``signature_def_map`` parameter of the
                                 ``tf.saved_model.builder.savedmodelbuilder`` method.
    :param path: Local path where the MLflow model is to be saved.
    :param mlflow_model: MLflow model configuration to which to add the ``tensorflow`` flavor.
    :param conda_env: {{ conda_env }}
    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example can be a Pandas DataFrame where the given
                          example will be serialized to json using the Pandas split-oriented
                          format, or a numpy array where the example will be serialized to json
                          by converting it to a list. Bytes are base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    """
    _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)

    _logger.info(
        "Validating the specified TensorFlow model by attempting to load it in a new TensorFlow"
        " graph..."
    )
    _validate_saved_model(
        tf_saved_model_dir=tf_saved_model_dir,
        tf_meta_graph_tags=tf_meta_graph_tags,
        tf_signature_def_key=tf_signature_def_key,
    )
    _logger.info("Validation succeeded!")

    if os.path.exists(path):
        raise MlflowException("Path '{}' already exists".format(path), DIRECTORY_NOT_EMPTY)
    os.makedirs(path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)
    root_relative_path = _copy_file_or_tree(src=tf_saved_model_dir, dst=path, dst_dir=None)
    model_dir_subpath = "tfmodel"
    model_dir_path = os.path.join(path, model_dir_subpath)
    shutil.move(os.path.join(path, root_relative_path), model_dir_path)

    flavor_conf = dict(
        saved_model_dir=model_dir_subpath,
        meta_graph_tags=tf_meta_graph_tags,
        signature_def_key=tf_signature_def_key,
    )
    mlflow_model.add_flavor(FLAVOR_NAME, **flavor_conf)
    pyfunc.add_to_model(mlflow_model, loader_module="mlflow.tensorflow", env=_CONDA_ENV_FILE_NAME)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                path,
                FLAVOR_NAME,
                fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))
Ejemplo n.º 21
0
def save_model(
    pytorch_model,
    path,
    conda_env=None,
    mlflow_model=None,
    code_paths=None,
    pickle_module=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    requirements_file=None,
    extra_files=None,
    pip_requirements=None,
    extra_pip_requirements=None,
    **kwargs,
):
    """
    Save a PyTorch model to a path on the local file system.

    :param pytorch_model: PyTorch model to be saved. Can be either an eager model (subclass of
                          ``torch.nn.Module``) or scripted model prepared via ``torch.jit.script``
                          or ``torch.jit.trace``.

                          The model accept a single ``torch.FloatTensor`` as
                          input and produce a single output tensor.

                          If saving an eager model, any code dependencies of the
                          model's class, including the class definition itself, should be
                          included in one of the following locations:

                          - The package(s) listed in the model's Conda environment, specified
                            by the ``conda_env`` parameter.
                          - One or more of the files specified by the ``code_paths`` parameter.

    :param path: Local path where the model is to be saved.
    :param conda_env: {{ conda_env }}
    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
    :param code_paths: A list of local filesystem paths to Python file dependencies (or directories
                       containing file dependencies). These files are *prepended* to the system
                       path when the model is loaded.
    :param pickle_module: The module that PyTorch should use to serialize ("pickle") the specified
                          ``pytorch_model``. This is passed as the ``pickle_module`` parameter
                          to ``torch.save()``. By default, this module is also used to
                          deserialize ("unpickle") the PyTorch model at load time.

    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example can be a Pandas DataFrame where the given
                          example will be serialized to json using the Pandas split-oriented
                          format, or a numpy array where the example will be serialized to json
                          by converting it to a list. Bytes are base64-encoded.

    :param requirements_file:

        .. warning::

            ``requirements_file`` has been deprecated. Please use ``pip_requirements`` instead.

        A string containing the path to requirements file. Remote URIs are resolved to absolute
        filesystem paths. For example, consider the following ``requirements_file`` string:

        .. code-block:: python

            requirements_file = "s3://my-bucket/path/to/my_file"

        In this case, the ``"my_file"`` requirements file is downloaded from S3. If ``None``,
        no requirements file is added to the model.

    :param extra_files: A list containing the paths to corresponding extra files. Remote URIs
                      are resolved to absolute filesystem paths.
                      For example, consider the following ``extra_files`` list -

                      extra_files = ["s3://my-bucket/path/to/my_file1",
                                    "s3://my-bucket/path/to/my_file2"]

                      In this case, the ``"my_file1 & my_file2"`` extra file is downloaded from S3.

                      If ``None``, no extra files are added to the model.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    :param kwargs: kwargs to pass to ``torch.save`` method.

    .. code-block:: python
        :caption: Example

        import os

        import torch
        import mlflow.pytorch

        # Class defined here
        class LinearNNModel(torch.nn.Module):
            ...

        # Initialize our model, criterion and optimizer
        ...

        # Training loop
        ...

        # Save PyTorch models to current working directory
        with mlflow.start_run() as run:
            mlflow.pytorch.save_model(model, "model")

            # Convert to a scripted model and save it
            scripted_pytorch_model = torch.jit.script(model)
            mlflow.pytorch.save_model(scripted_pytorch_model, "scripted_model")

        # Load each saved model for inference
        for model_path in ["model", "scripted_model"]:
            model_uri = "{}/{}".format(os.getcwd(), model_path)
            loaded_model = mlflow.pytorch.load_model(model_uri)
            print("Loaded {}:".format(model_path))
            for x in [6.0, 8.0, 12.0, 30.0]:
                X = torch.Tensor([[x]])
                y_pred = loaded_model(X)
                print("predict X: {}, y_pred: {:.2f}".format(x, y_pred.data.item()))
            print("--")

    .. code-block:: text
        :caption: Output

        Loaded model:
        predict X: 6.0, y_pred: 11.90
        predict X: 8.0, y_pred: 15.92
        predict X: 12.0, y_pred: 23.96
        predict X: 30.0, y_pred: 60.13
        --
        Loaded scripted_model:
        predict X: 6.0, y_pred: 11.90
        predict X: 8.0, y_pred: 15.92
        predict X: 12.0, y_pred: 23.96
        predict X: 30.0, y_pred: 60.13
    """
    import torch

    _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)

    pickle_module = pickle_module or mlflow_pytorch_pickle_module

    if not isinstance(pytorch_model, torch.nn.Module):
        raise TypeError("Argument 'pytorch_model' should be a torch.nn.Module")
    if code_paths is not None:
        if not isinstance(code_paths, list):
            raise TypeError("Argument code_paths should be a list, not {}".format(type(code_paths)))
    path = os.path.abspath(path)
    if os.path.exists(path):
        raise RuntimeError("Path '{}' already exists".format(path))

    if mlflow_model is None:
        mlflow_model = Model()

    os.makedirs(path)
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    model_data_subpath = "data"
    model_data_path = os.path.join(path, model_data_subpath)
    os.makedirs(model_data_path)
    # Persist the pickle module name as a file in the model's `data` directory. This is necessary
    # because the `data` directory is the only available parameter to `_load_pyfunc`, and it
    # does not contain the MLmodel configuration; therefore, it is not sufficient to place
    # the module name in the MLmodel
    #
    # TODO: Stop persisting this information to the filesystem once we have a mechanism for
    # supplying the MLmodel configuration to `mlflow.pytorch._load_pyfunc`
    pickle_module_path = os.path.join(model_data_path, _PICKLE_MODULE_INFO_FILE_NAME)
    with open(pickle_module_path, "w") as f:
        f.write(pickle_module.__name__)
    # Save pytorch model
    model_path = os.path.join(model_data_path, _SERIALIZED_TORCH_MODEL_FILE_NAME)
    if isinstance(pytorch_model, torch.jit.ScriptModule):
        torch.jit.ScriptModule.save(pytorch_model, model_path)
    else:
        torch.save(pytorch_model, model_path, pickle_module=pickle_module, **kwargs)

    torchserve_artifacts_config = {}

    if extra_files:
        torchserve_artifacts_config[_EXTRA_FILES_KEY] = []
        if not isinstance(extra_files, list):
            raise TypeError("Extra files argument should be a list")

        with TempDir() as tmp_extra_files_dir:
            for extra_file in extra_files:
                _download_artifact_from_uri(
                    artifact_uri=extra_file, output_path=tmp_extra_files_dir.path()
                )
                rel_path = posixpath.join(_EXTRA_FILES_KEY, os.path.basename(extra_file))
                torchserve_artifacts_config[_EXTRA_FILES_KEY].append({"path": rel_path})
            shutil.move(
                tmp_extra_files_dir.path(),
                posixpath.join(path, _EXTRA_FILES_KEY),
            )

    if requirements_file:

        warnings.warn(
            "`requirements_file` has been deprecated. Please use `pip_requirements` instead.",
            FutureWarning,
            stacklevel=2,
        )

        if not isinstance(requirements_file, str):
            raise TypeError("Path to requirements file should be a string")

        with TempDir() as tmp_requirements_dir:
            _download_artifact_from_uri(
                artifact_uri=requirements_file, output_path=tmp_requirements_dir.path()
            )
            rel_path = os.path.basename(requirements_file)
            torchserve_artifacts_config[_REQUIREMENTS_FILE_KEY] = {"path": rel_path}
            shutil.move(tmp_requirements_dir.path(rel_path), path)

    if code_paths is not None:
        code_dir_subpath = "code"
        for code_path in code_paths:
            _copy_file_or_tree(src=code_path, dst=path, dst_dir=code_dir_subpath)
    else:
        code_dir_subpath = None

    mlflow_model.add_flavor(
        FLAVOR_NAME,
        model_data=model_data_subpath,
        pytorch_version=str(torch.__version__),
        **torchserve_artifacts_config,
    )
    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.pytorch",
        data=model_data_subpath,
        pickle_module_name=pickle_module.__name__,
        code=code_dir_subpath,
        env=_CONDA_ENV_FILE_NAME,
    )
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                model_data_path,
                FLAVOR_NAME,
                fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))

    if not requirements_file:
        # Save `requirements.txt`
        write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))
Ejemplo n.º 22
0
def save_model(fastai_learner,
               path,
               conda_env=None,
               mlflow_model=None,
               signature: ModelSignature = None,
               input_example: ModelInputExample = None,
               pip_requirements=None,
               extra_pip_requirements=None,
               **kwargs):
    """
    Save a fastai Learner to a path on the local file system.

    :param fastai_learner: fastai Learner to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: Either a dictionary representation of a Conda environment or the path to a
                      Conda environment yaml file. If provided, this describes the environment
                      this model should be run in. At minimum, it should specify the
                      dependencies contained in :func:`get_default_conda_env()`. If
                      ``None``, the default :func:`get_default_conda_env()` environment is
                      added to the model. The following is an *example* dictionary
                      representation of a Conda environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.7.0',
                                'fastai=1.0.60',
                            ]
                        }
    :param mlflow_model: MLflow model config this flavor is being added to.

    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}

    :param kwargs: kwargs to pass to ``Learner.save`` method.

    .. code-block:: python
        :caption: Example

        import os

        import mlflow.fastai

        # Create a fastai Learner model
        model = ...

        # Start MLflow session and save model to current working directory
        with mlflow.start_run():
            model.fit(epochs, learning_rate)
            mlflow.fastai.save_model(model, 'model')

        # Load saved model for inference
        model_uri = "{}/{}".format(os.getcwd(), 'model')
        loaded_model = mlflow.fastai.load_model(model_uri)
        results = loaded_model.predict(predict_data)
    """
    import fastai
    from pathlib import Path

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException("Path '{}' already exists".format(path))
    model_data_subpath = "model.fastai"
    model_data_path = os.path.join(path, model_data_subpath)
    model_data_path = Path(model_data_path)
    os.makedirs(path)

    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # Save an Learner
    fastai_learner.export(model_data_path, **kwargs)

    conda_env, pip_requirements, pip_constraints = (_process_pip_requirements(
        get_default_pip_requirements(),
        pip_requirements,
        extra_pip_requirements,
    ) if conda_env is None else _process_conda_env(conda_env))

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))

    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.fastai",
        data=model_data_subpath,
        env=_CONDA_ENV_FILE_NAME,
    )
    mlflow_model.add_flavor(FLAVOR_NAME,
                            fastai_version=fastai.__version__,
                            data=model_data_subpath)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
Ejemplo n.º 23
0
def save_model(
    pd_model,
    path,
    training=False,
    conda_env=None,
    code_paths=None,
    mlflow_model=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save a paddle model to a path on the local file system. Produces an MLflow Model
    containing the following flavors:

        - :py:mod:`mlflow.paddle`
        - :py:mod:`mlflow.pyfunc`. NOTE: This flavor is only included for paddle models
          that define `predict()`, since `predict()` is required for pyfunc model inference.

    :param pd_model: paddle model to be saved.
    :param path: Local path where the model is to be saved.
    :param training: Only valid when saving a model trained using the PaddlePaddle high level API.
                     If set to True, the saved model supports both re-training and
                     inference. If set to False, it only supports inference.
    :param conda_env: {{ conda_env }}
    :param code_paths: A list of local filesystem paths to Python file dependencies (or directories
                       containing file dependencies). These files are *prepended* to the system
                       path when the model is loaded.
    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:
                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}

    .. code-block:: python
        :caption: Example

        import mlflow.paddle
        import paddle
        from paddle.nn import Linear
        import paddle.nn.functional as F
        import numpy as np
        import os
        import random
        from sklearn.datasets import load_diabetes
        from sklearn.model_selection import train_test_split
        from sklearn import preprocessing

        def load_data():
            # dataset on boston housing prediction
            X, y = load_diabetes(return_X_y=True, as_frame=True)

            min_max_scaler = preprocessing.MinMaxScaler()
            X_min_max = min_max_scaler.fit_transform(X)
            X_normalized = preprocessing.scale(X_min_max, with_std=False)

            X_train, X_test, y_train, y_test = train_test_split(
                X_normalized, y, test_size=0.2, random_state=42)

            y_train = y_train.reshape(-1, 1)
            y_test = y_test.reshape(-1, 1)
            return np.concatenate(
                (X_train, y_train), axis=1),np.concatenate((X_test, y_test), axis=1
            )

        class Regressor(paddle.nn.Layer):

            def __init__(self):
                super(Regressor, self).__init__()

                self.fc = Linear(in_features=13, out_features=1)

            @paddle.jit.to_static
            def forward(self, inputs):
                x = self.fc(inputs)
                return x

        model = Regressor()
        model.train()
        training_data, test_data = load_data()
        opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

        EPOCH_NUM = 10
        BATCH_SIZE = 10

        for epoch_id in range(EPOCH_NUM):
            np.random.shuffle(training_data)
            mini_batches = [training_data[k : k + BATCH_SIZE]
                for k in range(0, len(training_data), BATCH_SIZE)]
            for iter_id, mini_batch in enumerate(mini_batches):
                x = np.array(mini_batch[:, :-1]).astype('float32')
                y = np.array(mini_batch[:, -1:]).astype('float32')
                house_features = paddle.to_tensor(x)
                prices = paddle.to_tensor(y)

                predicts = model(house_features)

                loss = F.square_error_cost(predicts, label=prices)
                avg_loss = paddle.mean(loss)
                if iter_id%20==0:
                    print("epoch: {}, iter: {}, loss is: {}".format(
                        epoch_id, iter_id, avg_loss.numpy()))

                avg_loss.backward()
                opt.step()
                opt.clear_grad()

        mlflow.log_param('learning_rate', 0.01)
        mlflow.paddle.log_model(model, "model")
        sk_path_dir = './test-out'
        mlflow.paddle.save_model(model, sk_path_dir)
        print("Model saved in run %s" % mlflow.active_run().info.run_uuid)
    """
    import paddle

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    _validate_and_prepare_target_save_path(path)
    code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)

    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    model_data_subpath = "model"
    output_path = os.path.join(path, model_data_subpath)

    if isinstance(pd_model, paddle.Model):
        pd_model.save(output_path, training=training)
    else:
        paddle.jit.save(pd_model, output_path)

    # `PyFuncModel` only works for paddle models that define `predict()`.
    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.paddle",
        model_path=model_data_subpath,
        env=_CONDA_ENV_FILE_NAME,
        code=code_dir_subpath,
    )
    mlflow_model.add_flavor(
        FLAVOR_NAME,
        pickled_model=model_data_subpath,
        paddle_version=paddle.__version__,
        code=code_dir_subpath,
    )
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                path,
                FLAVOR_NAME,
                fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))

    _PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
Ejemplo n.º 24
0
def save_model(
    statsmodels_model,
    path,
    conda_env=None,
    mlflow_model=None,
    remove_data: bool = False,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save a statsmodels model to a path on the local file system.

    :param statsmodels_model: statsmodels model (an instance of `statsmodels.base.model.Results`_)
                              to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: {{ conda_env }}
    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
    :param remove_data: bool. If False (default), then the instance is pickled without changes.
                        If True, then all arrays with length nobs are set to None before
                        pickling. See the remove_data method.
                        In some cases not all arrays will be set to None.

    :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    """
    import statsmodels

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException("Path '{}' already exists".format(path))
    model_data_path = os.path.join(path, STATSMODELS_DATA_SUBPATH)
    os.makedirs(path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # Save a statsmodels model
    statsmodels_model.save(model_data_path, remove_data)
    if _save_model_called_from_autolog and not remove_data:
        saved_model_size = os.path.getsize(model_data_path)
        if saved_model_size >= _model_size_threshold_for_emitting_warning:
            _logger.warning(
                "The fitted model is larger than "
                f"{_model_size_threshold_for_emitting_warning // (1024 * 1024)} MB, "
                f"saving it as artifacts is time consuming.\n"
                "To reduce model size, use `mlflow.statsmodels.autolog(log_models=False)` and "
                "manually log model by "
                '`mlflow.statsmodels.log_model(model, remove_data=True, artifact_path="model")`'
            )

    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.statsmodels",
        data=STATSMODELS_DATA_SUBPATH,
        env=_CONDA_ENV_FILE_NAME,
    )
    mlflow_model.add_flavor(FLAVOR_NAME,
                            statsmodels_version=statsmodels.__version__,
                            data=STATSMODELS_DATA_SUBPATH)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))

    if conda_env is None:
        if pip_requirements is None:
            default_reqs = get_default_pip_requirements()
            # To ensure `_load_pyfunc` can successfully load the model during the dependency
            # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
            inferred_reqs = mlflow.models.infer_pip_requirements(
                path,
                FLAVOR_NAME,
                fallback=default_reqs,
            )
            default_reqs = sorted(set(inferred_reqs).union(default_reqs))
        else:
            default_reqs = None
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(
            conda_env)

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))
Ejemplo n.º 25
0
def save_model(cb_model,
               path,
               conda_env=None,
               mlflow_model=None,
               signature: ModelSignature = None,
               input_example: ModelInputExample = None,
               pip_requirements=None,
               extra_pip_requirements=None,
               **kwargs):
    """
    Save a CatBoost model to a path on the local file system.

    :param cb_model: CatBoost model (an instance of `CatBoost`_, `CatBoostClassifier`_,
                     or `CatBoostRegressor`_) to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: Either a dictionary representation of a Conda environment or the path to a
                      Conda environment yaml file. If provided, this describes the environment
                      this model should be run in. At minimum, it should specify the dependencies
                      contained in :func:`get_default_conda_env()`. If ``None``, the default
                      :func:`get_default_conda_env()` environment is added to the model.
                      The following is an *example* dictionary representation of a Conda
                      environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.7.0',
                                'pip': [
                                    'catboost==0.19.1'
                                ]
                            ]
                        }

    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)

    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}
    :param kwargs: kwargs to pass to `CatBoost.save_model`_ method.
    """
    import catboost as cb

    _validate_env_arguments(conda_env, pip_requirements,
                            extra_pip_requirements)

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException("Path '{}' already exists".format(path))
    os.makedirs(path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    model_data_path = os.path.join(path, _MODEL_BINARY_FILE_NAME)
    cb_model.save_model(model_data_path, **kwargs)

    conda_env, pip_requirements, pip_constraints = (_process_pip_requirements(
        get_default_pip_requirements(),
        pip_requirements,
        extra_pip_requirements,
    ) if conda_env is None else _process_conda_env(conda_env))

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME),
                 "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME),
             "\n".join(pip_requirements))

    model_bin_kwargs = {_MODEL_BINARY_KEY: _MODEL_BINARY_FILE_NAME}
    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.catboost",
        env=_CONDA_ENV_FILE_NAME,
        **model_bin_kwargs,
    )

    flavor_conf = {
        _MODEL_TYPE_KEY: cb_model.__class__.__name__,
        _SAVE_FORMAT_KEY: kwargs.get("format", "cbm"),
        **model_bin_kwargs,
    }
    mlflow_model.add_flavor(
        FLAVOR_NAME,
        catboost_version=cb.__version__,
        **flavor_conf,
    )
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
Ejemplo n.º 26
0
def save_model(
    gluon_model,
    path,
    mlflow_model=None,
    conda_env=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
):
    """
    Save a Gluon model to a path on the local file system.

    :param gluon_model: Gluon model to be saved. Must be already hybridized.
    :param path: Local path where the model is to be saved.
    :param mlflow_model: MLflow model config this flavor is being added to.
    :param conda_env: Either a dictionary representation of a Conda environment or
                      the path to a Conda environment yaml file.
                      If provided, this decribes the environment this model should be
                      run in. At minimum, it should specify the dependencies
                      contained in :func:`get_default_conda_env()`. If ``None``, the default
                      :func:`mlflow.gluon.get_default_conda_env()` environment is added to
                      the model. The following is an *example* dictionary representation of a
                      Conda environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.7.0',
                                'mxnet=1.5.0'
                            ]
                        }

    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example can be a Pandas DataFrame where the given
                          example will be serialized to json using the Pandas split-oriented
                          format, or a numpy array where the example will be serialized to json
                          by converting it to a list. Bytes are base64-encoded.
    :param pip_requirements: {{ pip_requirements }}
    :param extra_pip_requirements: {{ extra_pip_requirements }}

    .. code-block:: python
        :caption: Example

        from mxnet.gluon import Trainer
        from mxnet.gluon.contrib import estimator
        from mxnet.gluon.loss import SoftmaxCrossEntropyLoss
        from mxnet.gluon.nn import HybridSequential
        from mxnet.metric import Accuracy
        import mlflow
        # Build, compile, and train your model
        gluon_model_path = ...
        net = HybridSequential()
        with net.name_scope():
            ...
        net.hybridize()
        net.collect_params().initialize()
        softmax_loss = SoftmaxCrossEntropyLoss()
        trainer = Trainer(net.collect_params())
        est = estimator.Estimator(net=net, loss=softmax_loss, metrics=Accuracy(), trainer=trainer)
        est.fit(train_data=train_data, epochs=100, val_data=validation_data)
        # Save the model as an MLflow Model
        mlflow.gluon.save_model(net, gluon_model_path)
    """
    _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)
    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException("Path '{}' already exists".format(path))
    data_subpath = "data"
    data_path = os.path.join(path, data_subpath)
    os.makedirs(data_path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # The epoch argument of the export method does not play any role in selecting
    # a specific epoch's parameters, and is there only for display purposes.
    gluon_model.export(os.path.join(data_path, _MODEL_SAVE_PATH))

    conda_env, pip_requirements, pip_constraints = (
        _process_pip_requirements(
            get_default_pip_requirements(), pip_requirements, extra_pip_requirements,
        )
        if conda_env is None
        else _process_conda_env(conda_env)
    )

    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save `constraints.txt` if necessary
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))

    # Save `requirements.txt`
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))

    pyfunc.add_to_model(mlflow_model, loader_module="mlflow.gluon", env=_CONDA_ENV_FILE_NAME)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))