Ejemplo n.º 1
0
def main():
    data = datasets.load_digits()
    X = normalize(data.data)
    y = data.target

    n_samples, n_features = np.shape(X)
    n_hidden, n_output = 50, 10

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=1)

    optimizer = GradientDescent_(learning_rate=0.0001, momentum=0.3)

    # MLP
    clf = MultilayerPerceptron(n_iterations=6000,
                            batch_size=200,
                            optimizer=optimizer,
                            val_error=True)

    clf.add(DenseLayer(n_inputs=n_features, n_units=n_hidden))
    clf.add(DenseLayer(n_inputs=n_hidden, n_units=n_hidden))
    clf.add(DenseLayer(n_inputs=n_hidden, n_units=n_output, activation_function=Softmax))  
    
    clf.fit(X_train, y_train)
    clf.plot_errors()

    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)
    print ("Accuracy:", accuracy)

    # Reduce dimension to two using PCA and plot the results
    pca = PCA()
    pca.plot_in_2d(X_test, y_pred, title="Multilayer Perceptron", accuracy=accuracy, legend_labels=np.unique(y))
def main():
    data = datasets.load_digits()
    X = normalize(data.data)
    y = data.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, seed=1)

    # MLP
    clf = MultilayerPerceptron(n_hidden=12,
        n_iterations=1000,
        learning_rate=0.0001, 
        momentum=0.8,
        activation_function=ExpLU,
        early_stopping=True,
        plot_errors=True)

    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print ("Accuracy:", accuracy)

    # Reduce dimension to two using PCA and plot the results
    pca = PCA()
    pca.plot_in_2d(X_test, y_pred, title="Multilayer Perceptron", accuracy=accuracy, legend_labels=np.unique(y))
Ejemplo n.º 3
0
def main():

    print("-- XGBoost --")

    data = datasets.load_iris()
    X = data.data
    y = data.target

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.4,
                                                        seed=2)

    clf = XGBoost(debug=True)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print("Accuracy:", accuracy)

    pca = PCA()
    pca.plot_in_2d(X_test,
                   y_pred,
                   title="XGBoost",
                   accuracy=accuracy,
                   legend_labels=data.target_names)
Ejemplo n.º 4
0
def main():
    data = datasets.load_digits()
    X = normalize(data.data)
    y = data.target
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.33,
                                                        seed=1)

    # Optimization method for finding weights that minimizes loss
    optimizer = RMSprop(learning_rate=0.01)

    # Perceptron
    clf = Perceptron(n_iterations=5000,
                     activation_function=ExpLU,
                     optimizer=optimizer,
                     early_stopping=True,
                     plot_errors=True)

    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print("Accuracy:", accuracy)

    # Reduce dimension to two using PCA and plot the results
    pca = PCA()
    pca.plot_in_2d(X_test,
                   y_pred,
                   title="Perceptron",
                   accuracy=accuracy,
                   legend_labels=np.unique(y))
Ejemplo n.º 5
0
def main():
    data = datasets.load_digits()
    X = data.data
    y = data.target

    digit1 = 1
    digit2 = 8
    idx = np.append(np.where(y == digit1)[0], np.where(y == digit2)[0])
    y = data.target[idx]
    # Change labels to {-1, 1}
    y[y == digit1] = -1
    y[y == digit2] = 1
    X = data.data[idx]

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)

    # Adaboost classification
    clf = Adaboost(n_clf=5)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print("Accuracy:", accuracy)

    # Reduce dimensions to 2d using pca and plot the results
    pca = PCA()
    pca.plot_in_2d(X_test, y_pred, title="Adaboost", accuracy=accuracy)
def main():
    # Load the dataset
    X, y = datasets.make_blobs()

    # Cluster the data
    clf = GaussianMixtureModel(k=3)
    y_pred = clf.predict(X)

    pca = PCA()
    pca.plot_in_2d(X, y_pred, title="GMM Clustering")
    pca.plot_in_2d(X, y, title="Actual Clustering")
Ejemplo n.º 7
0
def main():
    # Load the dataset
    X, y = datasets.make_moons(n_samples=300, noise=0.1, shuffle=False)

    # Cluster the data using DBSCAN
    clf = DBSCAN(eps=0.17, min_samples=5)
    y_pred = clf.predict(X)

    # Project the data onto the 2 primary principal components
    pca = PCA()
    pca.plot_in_2d(X, y_pred, title="DBSCAN")
    pca.plot_in_2d(X, y, title="Actual Clustering")
def main():
    # Load the dataset
    X, y = datasets.make_blobs()

    # Cluster the data using K-Medoids
    clf = PAM(k=3)
    y_pred = clf.predict(X)

    # Project the data onto the 2 primary principal components
    pca = PCA()
    pca.plot_in_2d(X, y_pred, title="PAM Clustering")
    pca.plot_in_2d(X, y, title="Actual Clustering")
Ejemplo n.º 9
0
def main():

    print("-- Classification Tree --")

    data = datasets.load_iris()
    X = data.data
    y = data.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    clf = ClassificationTree()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print("Accuracy:", accuracy)

    pca = PCA()
    pca.plot_in_2d(X_test,
                   y_pred,
                   title="Decision Tree",
                   accuracy=accuracy,
                   legend_labels=data.target_names)

    print("-- Regression Tree --")

    X, y = datasets.make_regression(n_features=1,
                                    n_samples=100,
                                    bias=0,
                                    noise=5)

    X_train, X_test, y_train, y_test = train_test_split(standardize(X),
                                                        y,
                                                        test_size=0.3)

    clf = RegressionTree()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    mse = mean_squared_error(y_test, y_pred)

    print("Mean Squared Error:", mse)

    # Plot the results
    plt.scatter(X_test[:, 0], y_test, color='black')
    plt.scatter(X_test[:, 0], y_pred, color='green')
    plt.title("Regression Tree (%.2f MSE)" % mse)
    plt.show()
Ejemplo n.º 10
0
def main():
    data = datasets.load_iris()
    X = normalize(data.data)
    y = data.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)

    clf = NaiveBayes()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print ("Accuracy:", accuracy)

    # Reduce dimension to two using PCA and plot the results
    pca = PCA()
    pca.plot_in_2d(X_test, y_pred, title="Naive Bayes", accuracy=accuracy, legend_labels=data.target_names)
Ejemplo n.º 11
0
def main():
    data = datasets.load_iris()
    X = normalize(data.data[data.target != 0])
    y = data.target[data.target != 0]
    y[y == 1] = -1
    y[y == 2] = 1
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

    clf = SupportVectorMachine(kernel=polynomial_kernel, power=4, coef=1)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print ("Accuracy:", accuracy)

    # Reduce dimension to two using PCA and plot the results
    pca = PCA()
    pca.plot_in_2d(X_test, y_pred, title="Support Vector Machine", accuracy=accuracy)
def main():
    data = datasets.load_iris()
    X = normalize(data.data)
    y = data.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

    clf = KNN(k=3)
    y_pred = clf.predict(X_test, X_train, y_train)

    accuracy = accuracy_score(y_test, y_pred)

    print("Accuracy:", accuracy)

    # Reduce dimensions to 2d using pca and plot the results
    pca = PCA()
    pca.plot_in_2d(X_test,
                   y_pred,
                   title="K Nearest Neighbors",
                   accuracy=accuracy,
                   legend_labels=data.target_names)
def main():
    # Load dataset
    data = datasets.load_iris()
    X = normalize(data.data[data.target != 0])
    y = data.target[data.target != 0]
    y[y == 1] = 0
    y[y == 2] = 1

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, seed=1)

    clf = LogisticRegression(gradient_descent=True)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print ("Accuracy:", accuracy)

    # Reduce dimension to two using PCA and plot the results
    pca = PCA()
    pca.plot_in_2d(X_test, y_pred, title="Logistic Regression", accuracy=accuracy)