Ejemplo n.º 1
0
    def test_train_with_validation_on_odd_gap_check_recorded(self):
        trainer = SgdTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (0.66, 80.3)
        trainable.evaluate_validation_set.return_value = (1.25, 50.1)
        train_watcher = _TrainWatcherRecorder()

        (epochs, validation_epochs) = trainer.train(
            trainable,
            np.array([1, 2, 3]),
            np.array([0.1, 0.2, 0.3]),
            np.array([1, 2, 3]),
            np.array([0.1, 0.2, 0.3]),
            train_watcher,
            epochs=7,
            validation_gap=5,
        )

        self.assertEqual(epochs, 7)
        self.assertEqual(validation_epochs, 2)

        self.assertEqual(train_watcher.epochs, list(range(7)))
        self.assertEqual(train_watcher.costs, [0.66] * 7)
        self.assertEqual(train_watcher.accuracies, [80.3] * 7)
        self.assertEqual(train_watcher.validation_epochs, [0, 5])
        self.assertEqual(train_watcher.validation_costs, [1.25] * 2)
        self.assertEqual(train_watcher.validation_accuracies, [50.1] * 2)
Ejemplo n.º 2
0
    def test_train_with_validation_assert_data_is_passed(self):
        trainer = SgdTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (0.09, 100)
        trainable.evaluate_validation_set.return_value = (0.10, 60.0)

        trainer.train(
            trainable,
            np.array([0, 9, 8, 7, 6]),
            np.array([1, 2, 3, 4, 5]),
            np.array([1, 2, 3]),
            np.array([0, 0.5, 0.7]),
            None,
            epochs=1,
            validation_gap=1,
            minibatch_size=5,
            seed=0,
        )

        self.assertEqual(trainable.update_params.call_count, 1)
        self.assertEqual(
            trainable.evaluate_validation_set.call_count,
            1,
        )
        ((validation_dataset, validation_labels), _) = \
            trainable.evaluate_validation_set.call_args
        self.assertTrue(np.array_equal(
            validation_dataset,
            np.array([1, 2, 3]),
        ))
        self.assertTrue(np.array_equal(
            validation_labels,
            np.array([0, 0.5, 0.7]),
        ))
Ejemplo n.º 3
0
    def test_train_multiple_epoch_with_minibatches_check_recorded(self):
        trainer = SgdTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (1.2, 70.5)
        train_watcher = _TrainWatcherRecorder()

        (epochs, validation_epochs) = trainer.train(
            trainable,
            np.array([1, 2, 3]),
            np.array([0.1, 0.2, 0.3]),
            None,
            None,
            train_watcher,
            epochs=5,
            minibatch_size=1,
        )

        self.assertEqual(epochs, 5)
        self.assertEqual(validation_epochs, 0)
        self.assertEqual(train_watcher.epochs, list(range(5)))
        self.assertEqual(train_watcher.costs, [1.2] * 5)
        self.assertEqual(train_watcher.accuracies, [70.5] * 5)
        self.assertEqual(train_watcher.validation_epochs, [])
        self.assertEqual(train_watcher.validation_costs, [])
        self.assertEqual(train_watcher.validation_accuracies, [])
Ejemplo n.º 4
0
    def test_train_assert_returned_epochs_is_zero(self):
        trainer = SgdTrainer()
        trainable = MagicMock()

        epochs, validation_epochs = trainer.train(
            trainable,
            np.array([None]),
            np.array([None]),
            None,
            None,
            None,
        )

        self.assertEqual(epochs, 0)
        self.assertEqual(validation_epochs, 0)
Ejemplo n.º 5
0
    def test_train_check_recorded(self):
        arch = MagicMock()
        arch.update_params.return_value = (0.4, None)
        model = Model(arch)
        trainer = SgdTrainer()
        measurer = MagicMock()
        measurer.measure.return_value = 60.5
        train_watcher = _TrainWatcherRecorder()

        model.train(
            np.array([None]),
            np.array([None]),
            None,
            None,
            trainer,
            measurer,
            train_watcher,
            epochs=8,
        )

        self.assertEqual(train_watcher.epochs, list(range(8)))
        self.assertEqual(train_watcher.costs, [0.4] * 8)
        self.assertEqual(train_watcher.accuracies, [60.5] * 8)
        self.assertEqual(train_watcher.validation_epochs, [])
        self.assertEqual(train_watcher.validation_costs, [])
        self.assertEqual(train_watcher.validation_accuracies, [])
Ejemplo n.º 6
0
    def test_train_check_returned(self):
        arch = MagicMock()
        arch.update_params.return_value = (0.4, None)
        model = Model(arch)
        trainer = SgdTrainer()
        measurer = MagicMock()
        measurer.measure.return_value = 60.5

        (
            epochs,
            costs,
            accuracies,
            validation_epochs,
            validation_costs,
            validation_accuracies,
        ) = model.train(
            np.array([None]),
            np.array([None]),
            None,
            None,
            trainer,
            measurer,
            None,
            epochs=8,
        )

        self.assertEqual(epochs, 8)
        self.assertEqual(costs, [0.4] * 8)
        self.assertEqual(accuracies, [60.5] * 8)
        self.assertEqual(validation_epochs, 0)
        self.assertEqual(validation_costs, [])
        self.assertEqual(validation_accuracies, [])
Ejemplo n.º 7
0
    def test_train_with_minibatches_check_recorded(self):
        arch = MagicMock()
        arch.update_params.return_value = (0.1, None)
        arch.check_cost.return_value = (0.66, None)
        model = Model(arch)
        trainer = SgdTrainer()
        measurer = MagicMock()
        measurer.measure.return_value = 90.5
        train_watcher = _TrainWatcherRecorder()

        model.train(
            np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2]),
            np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2]),
            np.array([None]),
            np.array([None]),
            trainer,
            measurer,
            train_watcher,
            epochs=9,
            validation_gap=3,
            minibatch_size=3,
        )

        self.assertEqual(train_watcher.epochs, list(range(9)))
        self.assertEqual(train_watcher.costs, [0.1] * 9)
        self.assertEqual(train_watcher.accuracies, [90.5] * 9)
        self.assertEqual(train_watcher.validation_epochs, [0, 3, 6])
        self.assertEqual(train_watcher.validation_costs, [0.66] * 3)
        self.assertEqual(train_watcher.validation_accuracies, [90.5] * 3)
Ejemplo n.º 8
0
    def test_train_with_minibatches_check_returned(self):
        arch = MagicMock()
        arch.update_params.return_value = (16.7, None)
        arch.check_cost.return_value = (24.6, None)
        model = Model(arch)
        trainer = SgdTrainer()
        measurer = MagicMock()
        measurer.measure.return_value = 33.8

        (
            epochs,
            costs,
            accuracies,
            validation_epochs,
            validation_costs,
            validation_accuracies,
        ) = model.train(
            np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3]),
            np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3]),
            np.array([None]),
            np.array([None]),
            trainer,
            measurer,
            None,
            epochs=13,
            validation_gap=4,
            minibatch_size=6,
        )

        self.assertEqual(epochs, 13)
        self.assertEqual(costs, [16.7] * 13)
        self.assertEqual(accuracies, [33.8] * 13)
        self.assertEqual(validation_epochs, 4)
        self.assertEqual(validation_costs, [24.6] * 4)
        self.assertEqual(validation_accuracies, [33.8] * 4)
Ejemplo n.º 9
0
    def test_train_single_epoch_check_trainable(self):
        trainer = SgdTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (1.0, 0.5)

        trainer.train(
            trainable,
            np.array([1, 2, 3]),
            np.array([0.1, 0.2, 0.3]),
            None,
            None,
            None,
            epochs=1,
        )

        self.assertEqual(trainable.update_params.call_count, 1)
        self.assertEqual(trainable.evaluate_validation_set.call_count, 0)
Ejemplo n.º 10
0
    def test_train_with_multiple_minibatches_check_trainable(self):
        trainer = SgdTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (1.2, 70.5)

        trainer.train(
            trainable,
            np.array([1, 2, 3]),
            np.array([0.1, 0.2, 0.3]),
            None,
            None,
            None,
            epochs=5,
            minibatch_size=1,
        )

        self.assertEqual(trainable.update_params.call_count, 15)
        self.assertEqual(trainable.evaluate_validation_set.call_count, 0)
Ejemplo n.º 11
0
def get_trainer(trainer, patience=5):
    if trainer == 'simple':
        return SimpleTrainer()
    elif trainer == 'sgd':
        return SgdTrainer()
    elif trainer == 'early_stop':
        return StaticPatienceDecorator(EarlyStopTrainer(), patience)
    elif trainer == 'sgd_early_stop':
        return StaticPatienceDecorator(SgdEarlyStopTrainer(), patience)
Ejemplo n.º 12
0
    def test_train_with_validation_check_trainable(self):
        trainer = SgdTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (0.09, 100)
        trainable.evaluate_validation_set.return_value = (0.10, 60.0)

        trainer.train(
            trainable,
            np.array([1, 2, 3]),
            np.array([0.1, 0.2, 0.3]),
            np.array([1, 2, 3]),
            np.array([0.1, 0.2, 0.3]),
            None,
            epochs=11,
            validation_gap=5,
        )

        self.assertEqual(trainable.update_params.call_count, 11)
        self.assertEqual(trainable.evaluate_validation_set.call_count, 3)
Ejemplo n.º 13
0
    def test_train_assert_watcher_records_are_empty(self):
        trainer = SgdTrainer()
        trainable = MagicMock()
        train_watcher = _TrainWatcherRecorder()

        trainer.train(
            trainable,
            np.array([None]),
            np.array([None]),
            None,
            None,
            train_watcher,
        )

        self.assertEqual(train_watcher.epochs, [])
        self.assertEqual(train_watcher.costs, [])
        self.assertEqual(train_watcher.accuracies, [])
        self.assertEqual(train_watcher.validation_epochs, [])
        self.assertEqual(train_watcher.validation_costs, [])
        self.assertEqual(train_watcher.validation_accuracies, [])
Ejemplo n.º 14
0
    def test_train_with_minibatches_and_measurer_check_accuracies(self):
        arch = MagicMock()
        arch.update_params.return_value = (
            0.0,
            np.array([
                [11, 0.8, 33.1],
                [20, 21.4, 7.6],
            ]),
        )
        arch.check_cost.return_value = (0.0,
                                        np.array([
                                            [0.2, 0.1, 0],
                                            [0.8, 0.9, 0.2],
                                            [0.0, 2.1, 0.1],
                                            [20, 21.4, 7.6],
                                        ]))
        model = Model(arch)
        trainer = SgdTrainer()

        _, _, accuracies, _, _, validation_accuracies = model.train(
            np.array([None, None, None, None]),
            np.array([
                [16, 0.67, 9],
                [0.3, 0.7, 0.1],
                [0.3, -34, 1],
                [20, 21.4, 7.6],
            ]),
            np.array([]),
            np.array([
                [20, 21.4, 7.6],
                [56, 3, 0],
                [22, 111, 0.2],
                [0.4, 0.1, 0.6],
            ]),
            trainer,
            ProbsMeasurer(),
            None,
            epochs=4,
            validation_gap=1,
            minibatch_size=2,
            seed=0,
        )

        # Remember: Dataset and labels get shuffled, permutation indices:
        # epoch 0: [2, 3, 1, 0]
        # epoch 1: [0, 2, 1, 3]
        # epoch 2: [3, 0, 2, 1]
        # epoch 2: [1, 0, 2, 3]
        self.assertEqual(accuracies, [1 / 2, 1 / 4, 0.5, 0.5])
        self.assertEqual(validation_accuracies, [1 / 4] * 4)
Ejemplo n.º 15
0
    def test_train_single_epoch_check_recorded(self):
        trainer = SgdTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (0.1, 90.5)
        train_watcher = _TrainWatcherRecorder()

        (epochs, validation_epochs) = trainer.train(
            trainable,
            np.array([1, 2, 3]),
            np.array([0.1, 0.2, 0.3]),
            None,
            None,
            train_watcher,
            epochs=1,
        )

        self.assertEqual(epochs, 1)
        self.assertEqual(validation_epochs, 0)
        self.assertEqual(train_watcher.epochs, [0])
        self.assertEqual(train_watcher.costs, [0.1])
        self.assertEqual(train_watcher.accuracies, [90.5])
        self.assertEqual(train_watcher.validation_epochs, [])
        self.assertEqual(train_watcher.validation_costs, [])
        self.assertEqual(train_watcher.validation_accuracies, [])
Ejemplo n.º 16
0
    def test_train_assert_data_is_passed_and_shuffled(self):
        trainer = SgdTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (0.09, 100)

        trainer.train(
            trainable,
            np.array([[1, 2], [2, 3], [3, 4]]),
            np.array([0, 2, 4]),
            None,
            None,
            None,
            epochs=1,
            minibatch_size=2,
            seed=0,
        )

        call_args_list = trainable.update_params.call_args_list
        (first_call, _), (second_call, _) = call_args_list
        self.assertEqual(trainable.update_params.call_count, 2)
        self.assertTrue(np.array_equal(
            first_call[0],
            np.array([[3, 4], [2, 3]]),
        ))
        self.assertTrue(np.array_equal(
            first_call[1],
            np.array([4, 2]),
        ))
        self.assertTrue(np.array_equal(
            second_call[0],
            np.array([[1, 2]]),
        ))
        self.assertTrue(np.array_equal(
            second_call[1],
            np.array([0]),
        ))
Ejemplo n.º 17
0
    def test_train_with_minibathes_assert_recorded_and_returned_are_identical(
            self):
        arch = MagicMock()
        arch.update_params.return_value = (0.1, None)
        arch.check_cost.return_value = (0.66, None)
        model = Model(arch)
        trainer = SgdTrainer()
        measurer = MagicMock()
        measurer.measure.return_value = 90.5
        train_watcher = _TrainWatcherRecorder()

        (
            epochs,
            costs,
            accuracies,
            validation_epochs,
            validation_costs,
            validation_accuracies,
        ) = model.train(
            np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]),
            np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]),
            np.array([None]),
            np.array([None]),
            trainer,
            measurer,
            train_watcher,
            epochs=11,
            validation_gap=1,
            minibatch_size=4,
        )

        self.assertEqual(train_watcher.epochs, list(range(epochs)))
        self.assertEqual(train_watcher.costs, costs)
        self.assertEqual(train_watcher.accuracies, accuracies)
        self.assertEqual(len(train_watcher.validation_epochs),
                         validation_epochs)
        self.assertEqual(train_watcher.validation_costs, validation_costs)
        self.assertEqual(train_watcher.validation_accuracies,
                         validation_accuracies)
Ejemplo n.º 18
0
    def test_train_with_measurer_check_accuracies(self):
        arch = MagicMock()
        arch.update_params.return_value = (
            0.0,
            np.array([
                [10, 7.8, -3.1],
                [2.4, 60, 0.6],
                [11, 9.2, 45.3],
            ]),
        )
        model = Model(arch)
        trainer = SgdTrainer()

        _, _, accuracies, *_ = model.train(
            np.array([None, None, None]),
            np.array([
                [11, 6.4, 0.77],
                [99.9, 99.3, 44.5],
                [10, 1.2, 19.5],
            ]),
            None,
            None,
            trainer,
            ProbsMeasurer(),
            None,
            epochs=5,
            seed=0,
        )

        # Remember: Dataset and labels get shuffled, permutation indices:
        # epoch 0: [2, 1, 0]
        # epoch 1: [2, 0, 1]
        # epoch 2: [0, 2, 1]
        # epoch 3: [2, 0, 1]
        # epoch 4: [2, 1, 0]
        self.assertEqual(accuracies, [0, 0, 1 / 3, 0, 0])