def getPrediction2(stock_name): stock_data = getStockData(stock_name) if not stock_data[0]: print("Sorry, the stock you requested is not in our database.") print("Please enter another stock.") return [] roc = mm.getRateOfChange(stock_data) # array if not roc: roc = [0] stoch_os = mm.getStochasticOscillator(stock_data) # array asi = mm.getASI(stock_data) # array curPrice = mm.getCurPrice(stock_data[4]) data = [] for i in stock_data[4]: data = [i] + data arima_prediction = mm.getARIMA(data) # double fourier_prediction = mm.getFourier(data) prediction = mm.aggregatePrediction(roc, stoch_os, asi, curPrice, arima_prediction, fourier_prediction) data.append(prediction[0]) #graph_data(stock_data[0], data, stock_name) return [ roc[0], stoch_os[0], asi[0], curPrice, arima_prediction, fourier_prediction[0], prediction[0], prediction[1], stock_name ]
def getOutputtedPrediction(stock_name): stock_data = techController.getStockData(stock_name) num_predictions = 36 # HAS TO be at most as much as num_predictions in Fourier Model lastCloses = [] for i in range(num_predictions): stock_data[0].pop(0) stock_data[1].pop(0) lastCloses.append(stock_data[4].pop(0)) currentClose = stock_data[4][0] stock_data[2].pop(0) stock_data[3].pop(0) roc = mm.getRateOfChange(stock_data) # array stoch_os = mm.getStochasticOscillator(stock_data) # array asi = mm.getASI(stock_data) # array data = [] for i in stock_data[4]: data = [i] + data arima_prediction = mm.getARIMA(data) # double fourier_predictions = mm.getFourier(data) prediction = mm.aggregatePrediction( roc, stoch_os, asi,currentClose, arima_prediction, fourier_predictions) print(prediction) return [prediction[0], prediction[1], arima_prediction, fourier_predictions,lastCloses]
def getPrediction(stock_name): stock_data = getStockData(stock_name) roc = mm.getRateOfChange(stock_data) #array stoch_os = mm.getStochasticOscillator(stock_data) #array asi = mm.getASI(stock_data) #array data = [] for i in stock_data[4]: data = [i] + data arima_prediction = mm.getARIMA(data) #double fourier_prediction = mm.getFourier(data) prediction = mm.aggregatePrediction(roc, stoch_os, asi, arima_prediction, fourier_prediction) data.append(prediction) graph_data(stock_data[0], data, stock_name) return
def getOutputtedPrediction(stock_name): stock_data = techController.getStockData(stock_name) lastTime = stock_data[0].pop() lastOpen = stock_data[1].pop() lastClose = stock_data[4].pop() lastHigh = stock_data[2].pop() lastLow = stock_data[3].pop() roc = mm.getRateOfChange(stock_data) # array stoch_os = mm.getStochasticOscillator(stock_data) # array asi = mm.getASI(stock_data) # array arima_prediction = mm.getARIMA(stock_data[4]) # double fourier_prediction = mm.getFourier(stock_data[4])[0] prediction = mm.aggregatePrediction(roc, stoch_os, asi, arima_prediction, fourier_prediction) return [prediction, arima_prediction, fourier_prediction, lastClose]