Ejemplo n.º 1
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    cfg.data.videos_per_gpu = 1

    net = build_recognizer(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    net.eval()
    load_checkpoint(net, args.checkpoint, force_matching=True)

    input_time_size = cfg.input_clip_length
    input_image_size = (tuple(cfg.input_img_size) if isinstance(
        cfg.input_img_size, (list, tuple)) else
                        (cfg.input_img_size, cfg.input_img_size))
    input_size = (3, input_time_size) + input_image_size

    output_path = args.output_name
    if not output_path.endswith('.onnx'):
        output_path = '{}.onnx'.format(output_path)

    base_output_dir = dirname(output_path)
    if not exists(base_output_dir):
        makedirs(base_output_dir)

    if hasattr(net, 'forward_inference'):
        net.forward = net.forward_inference

    convert_to_onnx(net, input_size, args.output_name, check=args.check)
Ejemplo n.º 2
0
def main():
    parser = ArgumentParser()
    parser.add_argument('config', help='Config file path')
    parser.add_argument('--load_from',
                        help='the checkpoint file to init weights from')
    parser.add_argument('--load2d_from',
                        help='the checkpoint file to init 2D weights from')
    parser.add_argument('--update_config',
                        nargs='+',
                        action=ExtendedDictAction,
                        help='arguments in dict')
    args = parser.parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    if args.update_config is not None:
        cfg.merge_from_dict(args.update_config)
    cfg = update_config(cfg, args)

    net = build_recognizer(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    net.eval()

    if cfg.load_from:
        logger = get_root_logger(log_level=cfg.log_level)
        load_checkpoint(net,
                        cfg.load_from,
                        strict=False,
                        logger=logger,
                        show_converted=True,
                        force_matching=True)

    conv_layers = collect_conv_layers(net)
    show_stat(conv_layers)
Ejemplo n.º 3
0
def main(args):
    cfg = mmcv.Config.fromfile(args.config)
    if args.update_config is not None:
        cfg.merge_from_dict(args.update_config)
    cfg.data.videos_per_gpu = 1

    if cfg.get('seed'):
        print(f'Set random seed to {cfg.seed}')
        set_random_seed(cfg.seed)

    class_maps = None
    if cfg.get('classes'):
        class_maps = {0: {k: v for k, v in enumerate(sorted(cfg.classes))}}

    model = build_recognizer(cfg.model,
                             train_cfg=None,
                             test_cfg=cfg.test_cfg,
                             class_maps=class_maps)

    model.eval()

    load_checkpoint(model, args.checkpoint, force_matching=True)
    if hasattr(model, 'forward_inference'):
        model.forward = model.forward_inference

    input_time_size = cfg.input_clip_length
    input_image_size = (tuple(cfg.input_img_size) if isinstance(
        cfg.input_img_size, (list, tuple)) else
                        (cfg.input_img_size, cfg.input_img_size))
    input_size = (3, input_time_size) + input_image_size

    onnx_model_path = join(args.output_dir,
                           splitext(basename(args.config))[0] + '.onnx')
    base_output_dir = dirname(onnx_model_path)
    if not exists(base_output_dir):
        makedirs(base_output_dir)

    convert_to_onnx(model,
                    input_size,
                    onnx_model_path,
                    opset=args.opset,
                    check=True)

    if args.target == 'openvino':
        input_shape = (1, ) + input_size
        export_to_openvino(cfg, onnx_model_path, args.output_dir, input_shape,
                           args.input_format)

    meta = {'model_classes': model.CLASSES[0]}
    with open(args.meta_info, 'w') as output_meta_stream:
        json.dump(meta, output_meta_stream)
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    cfg.data.videos_per_gpu = 1
    cfg.model.type += '_Inference'
    cfg.model.backbone.type += '_Inference'
    cfg.model.backbone.inference = True
    cfg.model.cls_head.type += '_Inference'

    if args.num_classes is not None and args.num_classes > 0:
        cfg.num_test_classes = args.num_classes
        cfg.model.cls_head.num_classes = args.num_classes

    net = build_recognizer(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    net.eval()
    load_checkpoint(net, args.checkpoint, force_matching=True)

    time_length = cfg.data.test.out_length if hasattr(cfg.data.test, 'out_length') else cfg.data.test.new_length
    input_size = (3, time_length) + cfg.data.test.input_size

    convert_to_onnx(net, input_size, args.output_name, check=args.check)
Ejemplo n.º 5
0
def main():
    parser = ArgumentParser()
    parser.add_argument('--config',
                        type=str,
                        required=True,
                        help='Test config file path')
    parser.add_argument('--checkpoint',
                        type=str,
                        required=True,
                        help='Checkpoint file')
    parser.add_argument('--data_dir',
                        type=str,
                        required=True,
                        help='The dir with dataset')
    parser.add_argument('--out_dir',
                        type=str,
                        required=True,
                        help='Output directory')
    parser.add_argument('--dataset',
                        type=str,
                        required=True,
                        help='Dataset name')
    parser.add_argument('--gpus',
                        default=1,
                        type=int,
                        help='GPU number used for annotating')
    parser.add_argument('--proc_per_gpu',
                        default=2,
                        type=int,
                        help='Number of processes per GPU')
    parser.add_argument('--mode',
                        choices=['train', 'val', 'test'],
                        default='train')
    args = parser.parse_args()

    assert exists(args.config)
    assert exists(args.checkpoint)
    assert exists(args.data_dir)

    cfg = Config.fromfile(args.config)
    cfg = update_config(cfg, args, trg_name=args.dataset)
    cfg = propagate_root_dir(cfg, args.data_dir)

    dataset = build_dataset(cfg.data, args.mode, dict(test_mode=True))
    data_pipeline = Compose(dataset.pipeline.transforms[1:])
    print('{} dataset:\n'.format(args.mode) + str(dataset))

    tasks = prepare_tasks(dataset, cfg.input_clip_length)
    print('Prepared tasks: {}'.format(sum([len(v) for v in tasks.values()])))

    if not exists(args.out_dir):
        makedirs(args.out_dir)

    model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    load_checkpoint(model, args.checkpoint, strict=False)

    batch_size = 4 * cfg.data.videos_per_gpu
    if args.gpus == 1:
        model = MMDataParallel(model, device_ids=[0])
        model.eval()

        process_tasks(tasks, dataset, model, args.out_dir, batch_size,
                      cfg.input_clip_length, data_pipeline)
    else:
        raise NotImplementedError
Ejemplo n.º 6
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    if args.num_classes is not None and args.num_classes > 0:
        cfg.num_test_classes = args.num_classes
    if args.data_dir is not None:
        cfg = update_data_paths(cfg, args.data_dir)

    assert args.mode in cfg.data
    data_cfg = getattr(cfg.data, args.mode)
    data_cfg.test_mode = True

    dataset = obj_from_dict(data_cfg, datasets, dict(test_mode=True))
    if args.gpus == 1:
        model = build_recognizer(cfg.model,
                                 train_cfg=None,
                                 test_cfg=cfg.test_cfg)
        load_checkpoint(model, args.checkpoint, strict=False)
        model = MMDataParallel(model, device_ids=[0])

        data_loader = build_dataloader(
            dataset,
            imgs_per_gpu=1,
            workers_per_gpu=cfg.data.workers_per_gpu,
            num_gpus=1,
            dist=False,
            shuffle=False)
        outputs = single_test(model, data_loader)
    else:
        model_args = cfg.model.copy()
        model_args.update(train_cfg=None, test_cfg=cfg.test_cfg)
        model_type = getattr(recognizers, model_args.pop('type'))
        outputs = parallel_test(model_type,
                                model_args,
                                args.checkpoint,
                                dataset,
                                _data_func,
                                range(args.gpus),
                                workers_per_gpu=args.proc_per_gpu)

    gt_labels = []
    for i in range(len(dataset)):
        ann = dataset.get_ann_info(i)
        gt_labels.append(ann['label'])

    results = np.array([res.cpu().numpy().mean(axis=0) for res in outputs],
                       dtype=np.float32)

    if cfg.data.num_test_classes is not None and cfg.data.num_test_classes > 0:
        results = results[:, :cfg.data.num_test_classes]

    top1_value = mean_top_k_accuracy(results, gt_labels, k=1)
    top5_value = mean_top_k_accuracy(results, gt_labels, k=5)

    print("\nMean Top-1 Accuracy = {:.03f}%".format(top1_value * 100))
    print("Mean Top-5 Accuracy = {:.03f}%".format(top5_value * 100))

    map_value = mean_average_precision(results, gt_labels)
    print("mAP = {:.03f}%".format(map_value * 100))

    invalid_ids = invalid_filtered(results, gt_labels)
    print('\nNum invalid classes: {} / {}'.format(len(invalid_ids),
                                                  cfg.data.num_test_classes))

    num_invalid_samples = sum([len(ids) for ids in invalid_ids.values()])
    print('Num invalid samples: {} / {}'.format(num_invalid_samples,
                                                len(gt_labels)))
Ejemplo n.º 7
0
def main(args):
    cfg = mmcv.Config.fromfile(args.config)
    if args.update_config is not None:
        cfg.merge_from_dict(args.update_config)
    cfg.data.videos_per_gpu = 1

    if cfg.get('seed'):
        print(f'Set random seed to {cfg.seed}')
        set_random_seed(cfg.seed)

    class_maps = None
    if cfg.get('classes'):
        class_maps = {0: {k: v for k, v in enumerate(sorted(cfg.classes))}}

    model = build_recognizer(
        cfg.model,
        train_cfg=None,
        test_cfg=cfg.test_cfg,
        class_maps=class_maps
    )

    model.eval()

    load_checkpoint(model, args.checkpoint, force_matching=True)
    if hasattr(model, 'forward_inference'):
        model.forward = model.forward_inference

    input_time_size = cfg.input_clip_length
    input_image_size = (tuple(cfg.input_img_size)
                        if isinstance(cfg.input_img_size, (list, tuple))
                        else (cfg.input_img_size, cfg.input_img_size))
    input_size = (3, input_time_size) + input_image_size

    # BEGIN nncf part
    was_model_compressed = is_checkpoint_nncf(args.checkpoint)
    cfg_contains_nncf = cfg.get('nncf_config')

    if cfg_contains_nncf and not was_model_compressed:
        raise RuntimeError('Trying to make export with NNCF compression '
                           'a model snapshot that was NOT trained with NNCF')

    if was_model_compressed and not cfg_contains_nncf:
        # reading NNCF config from checkpoint
        nncf_part = get_nncf_config_from_meta(args.checkpoint)
        for k, v, in nncf_part.items():
            cfg[k] = v

    if cfg.get('nncf_config'):
        if torch.cuda.is_available():
            model.cuda()
        check_nncf_is_enabled()
        cfg.load_from = args.checkpoint
        cfg.resume_from = None
        compression_ctrl, model = wrap_nncf_model(model, cfg, None, get_fake_input, export=True)
        compression_ctrl.prepare_for_export()
    # END nncf part

    onnx_model_path = join(args.output_dir, splitext(basename(args.config))[0] + '.onnx')
    base_output_dir = dirname(onnx_model_path)
    if not exists(base_output_dir):
        makedirs(base_output_dir)

    convert_to_onnx(model, input_size, onnx_model_path, opset=args.opset, check=True)

    if args.target == 'openvino':
        input_shape = (1,) + input_size
        export_to_openvino(cfg, onnx_model_path, args.output_dir, input_shape, args.input_format)

    meta = {'model_classes': model.CLASSES[0]}
    with open(args.meta_info, 'w') as output_meta_stream:
        json.dump(meta, output_meta_stream)
Ejemplo n.º 8
0
def main():
    parser = ArgumentParser()
    parser.add_argument('--config', '-c', type=str, required=True)
    parser.add_argument('--checkpoint', '-w', type=str, required=True)
    parser.add_argument('--dataset_name', '-n', type=str, required=True)
    parser.add_argument('--data_dir', '-d', type=str, required=True)
    parser.add_argument('--predictions', '-p', type=str, required=True)
    parser.add_argument('--movements', '-m', type=str, required=True)
    parser.add_argument('--keypoints', '-k', type=str, required=True)
    parser.add_argument('--out_annotation', '-o', type=str, required=True)
    args = parser.parse_args()

    assert exists(args.config)
    assert exists(args.weights)
    assert exists(args.data_dir)
    assert exists(args.predictions)
    assert exists(args.movements)
    assert exists(args.keypoints)
    assert args.dataset_name is not None and args.dataset_name != ''
    assert args.out_annotation is not None and args.out_annotation != ''

    cfg = Config.fromfile(args.config)
    cfg = update_config(cfg, args, trg_name=args.dataset_name)
    cfg = propagate_root_dir(cfg, args.data_dir)

    dataset = build_dataset(cfg.data, 'train', dict(test_mode=True))
    data_pipeline = Compose(dataset.pipeline.transforms[1:])
    print('{} dataset:\n'.format(args.mode) + str(dataset))

    model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    load_checkpoint(model, args.checkpoint, strict=False)
    model = MMDataParallel(model, device_ids=[0])
    model.eval()

    annotation_path = join(args.data_dir, cfg.data.train.sources[0],
                           cfg.data.train.ann_file)
    records = load_annotation(annotation_path)
    predictions = load_distributed_data(args.predictions,
                                        parse_predictions_file, 'txt')
    movements = load_distributed_data(args.movements, parse_movements_file,
                                      'txt')
    hand_kpts = load_distributed_data(args.keypoints, parse_kpts_file, 'json')
    print('Loaded records: {}'.format(len(records)))

    invalid_stat = dict()
    all_candidates = []

    ignore_candidates = get_ignore_candidates(records, IGNORE_LABELS)
    all_candidates += ignore_candidates

    static_candidates, static_invalids = get_regular_candidates(
        records,
        predictions,
        movements,
        hand_kpts,
        cfg.data.output.length,
        False,
        STATIC_LABELS,
        NEGATIVE_LABEL,
        NO_MOTION_LABEL,
        min_score=0.9,
        min_length=4,
        max_distance=1)
    all_candidates += static_candidates
    invalid_stat = update_stat(invalid_stat, static_invalids)
    print('Static candidates: {}'.format(len(static_candidates)))

    if len(invalid_stat) > 0:
        print('Ignored records after static analysis:')
        for ignore_label, ignore_values in invalid_stat.items():
            print('   - {}: {}'.format(ignore_label.replace('_', ' '),
                                       len(ignore_values)))

    dynamic_candidates, dynamic_invalids = get_regular_candidates(
        records,
        predictions,
        movements,
        hand_kpts,
        cfg.data.output.length,
        True,
        DYNAMIC_LABELS,
        NEGATIVE_LABEL,
        NO_MOTION_LABEL,
        min_score=0.9,
        min_length=4,
        max_distance=1)
    all_candidates += dynamic_candidates
    invalid_stat = update_stat(invalid_stat, dynamic_invalids)
    print('Dynamic candidates: {}'.format(len(dynamic_candidates)))

    if len(invalid_stat) > 0:
        print('Ignored records after dynamic analysis:')
        for ignore_label, ignore_values in invalid_stat.items():
            print('   - {}: {}'.format(ignore_label.replace('_', ' '),
                                       len(ignore_values)))

    fixed_records, fix_stat = find_best_match(all_candidates, model, dataset,
                                              NEGATIVE_LABEL)
    invalid_stat = update_stat(invalid_stat, fix_stat)
    print('Final records: {}'.format(len(fixed_records)))

    if len(invalid_stat) > 0:
        print('Final ignored records:')
        for ignore_label, ignore_values in invalid_stat.items():
            print('   - {}: {}'.format(ignore_label.replace('_', ' '),
                                       len(ignore_values)))
            for ignored_record in ignore_values:
                print('      - {}'.format(ignored_record.path))

    dump_records(fixed_records, args.out_annotation)
    print('Fixed annotation has been stored at: {}'.format(
        args.out_annotation))