Ejemplo n.º 1
0
def main():
    args = parse_args()

    mmcv.check_file_exist(args.prediction_path)

    cfg = Config.fromfile(args.config)

    # update data root according to MMDET_DATASETS
    update_data_root(cfg)

    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    cfg.data.test.test_mode = True

    cfg.data.test.pop('samples_per_gpu', 0)
    cfg.data.test.pipeline = get_loading_pipeline(cfg.data.train.pipeline)
    dataset = build_dataset(cfg.data.test)
    outputs = mmcv.load(args.prediction_path)

    result_visualizer = ResultVisualizer(args.show, args.wait_time,
                                         args.show_score_thr)
    result_visualizer.evaluate_and_show(dataset,
                                        outputs,
                                        topk=args.topk,
                                        show_dir=args.show_dir)
Ejemplo n.º 2
0
    def _load_semantic_seg_3d(self, results):
        """Private function to load 3D semantic segmentation annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing the semantic segmentation annotations.
        """
        pts_semantic_mask_path = results['ann_info']['pts_semantic_mask_path']

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_semantic_mask_path)
            # add .copy() to fix read-only bug
            pts_semantic_mask = np.frombuffer(mask_bytes,
                                              dtype=self.seg_3d_dtype).copy()
        except ConnectionError:
            mmcv.check_file_exist(pts_semantic_mask_path)
            pts_semantic_mask = np.fromfile(pts_semantic_mask_path,
                                            dtype=np.long)

        results['pts_semantic_mask'] = pts_semantic_mask
        results['pts_seg_fields'].append('pts_semantic_mask')
        return results
Ejemplo n.º 3
0
    def evaluate(self, runner, results):
        tmp_file = osp.join(runner.work_dir, 'temp_0')
        result_files = results2json(self.dataset, results, tmp_file)
        if result_files is None:
            print('Nothing to evaluate.')
            return

        for res_type in self.iou_type:
            if res_type not in ['bbox', 'segm']:
                raise KeyError(
                    'invalid iou_type: {} for evaluation'.format(res_type))
            if res_type == 'segm':
                assert runner.model.module.with_mask
            try:
                mmcv.check_file_exist(result_files[res_type])
            except IndexError:
                print('No prediction found.')
                break
            lvis_eval = LVISEval(
                self.dataset.lvis, result_files[res_type], iou_type=res_type)
            lvis_eval.run()
            lvis_eval.print_results()

            eval_results = lvis_eval.get_results()
            metrics = eval_results.keys()
            for i, metric in enumerate(metrics):
                if metric.find('AP') == -1:
                    continue
                key = 'AP_{}/{}'.format(res_type, metric)
                val = float('{:.3f}'.format(eval_results[metric]))
                runner.log_buffer.output[key] = val
        runner.log_buffer.ready = True
        for res_type in self.iou_type:
            os.remove(result_files[res_type])
Ejemplo n.º 4
0
def main():
    args = parse_args()

    mmcv.check_file_exist(args.prediction_path)

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    cfg.data.test.test_mode = True
    # import modules from string list.
    if cfg.get('custom_imports', None):
        from mmcv.utils import import_modules_from_strings
        import_modules_from_strings(**cfg['custom_imports'])

    cfg.data.test.pop('samples_per_gpu', 0)
    cfg.data.test.pipeline = get_loading_pipeline(cfg.data.train.pipeline)
    dataset = build_dataset(cfg.data.test)
    outputs = mmcv.load(args.prediction_path)

    result_visualizer = ResultVisualizer(args.show, args.wait_time,
                                         args.show_score_thr)
    result_visualizer.evaluate_and_show(dataset,
                                        outputs,
                                        topk=args.topk,
                                        show_dir=args.show_dir)
Ejemplo n.º 5
0
def test_seg_format_results():
    import mmcv
    from os import path as osp

    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetSegDataset(data_root=root_path,
                                        ann_file=ann_file,
                                        test_mode=True)
    results = []
    pred_sem_mask = dict(semantic_mask=torch.tensor([
        13, 5, 1, 2, 6, 2, 13, 1, 14, 2, 0, 0, 5, 5, 3, 0, 1, 14, 0, 0, 0, 18,
        6, 15, 13, 0, 2, 4, 0, 3, 16, 6, 13, 5, 13, 0, 0, 0, 0, 1, 7, 3, 19,
        12, 8, 0, 11, 0, 0, 1, 2, 13, 17, 1, 1, 1, 6, 2, 13, 19, 4, 17, 0, 14,
        1, 7, 2, 1, 7, 2, 0, 5, 17, 5, 0, 0, 3, 6, 5, 11, 1, 13, 13, 2, 3, 1,
        0, 13, 19, 1, 14, 5, 3, 1, 13, 1, 2, 3, 2, 1
    ]).long())
    results.append(pred_sem_mask)
    result_files, tmp_dir = scannet_dataset.format_results(results)

    expected_label = np.array([
        16, 6, 2, 3, 7, 3, 16, 2, 24, 3, 1, 1, 6, 6, 4, 1, 2, 24, 1, 1, 1, 36,
        7, 28, 16, 1, 3, 5, 1, 4, 33, 7, 16, 6, 16, 1, 1, 1, 1, 2, 8, 4, 39,
        14, 9, 1, 12, 1, 1, 2, 3, 16, 34, 2, 2, 2, 7, 3, 16, 39, 5, 34, 1, 24,
        2, 8, 3, 2, 8, 3, 1, 6, 34, 6, 1, 1, 4, 7, 6, 12, 2, 16, 16, 3, 4, 2,
        1, 16, 39, 2, 24, 6, 4, 2, 16, 2, 3, 4, 3, 2
    ])
    expected_txt_path = osp.join(tmp_dir.name, 'results', 'scene0000_00.txt')
    assert np.all(result_files[0]['seg_mask'] == expected_label)
    mmcv.check_file_exist(expected_txt_path)
Ejemplo n.º 6
0
def main():
    parser = ArgumentParser(description='LVIS Evaluation')
    parser.add_argument('config', help='config')
    parser.add_argument('result', help='result file path')
    parser.add_argument(
        '--types',
        type=str,
        nargs='+',
        choices=['proposal_fast', 'proposal', 'bbox', 'segm', 'keypoint'],
        default=['segm'],
        help='result types')
    parser.add_argument(
        '--max_dets',
        type=int,
        default=100,
        help='proposal numbers, only used for recall evaluation')
    args = parser.parse_args()
    cfg = mmcv.Config.fromfile(args.config)
    dataset = build_dataset(cfg.data.test)

    print('loading result file: {}'.format(args.result))
    result_files = dict()
    for eval_type in args.types:
        result_json_path = args.result + '.{}.json'.format(eval_type)
        mmcv.check_file_exist(result_json_path)
        result_files[eval_type] = result_json_path
    lvis_eval(result_files, args.types, dataset.lvis, args.max_dets)
Ejemplo n.º 7
0
def main():
    args = parse_args()

    mmcv.check_file_exist(args.prediction_path)

    cfg = Config.fromfile(args.config)

    # replace the ${key} with the value of cfg.key
    cfg = replace_cfg_vals(cfg)

    # update data root according to MMDET_DATASETS
    update_data_root(cfg)

    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    cfg.data.test.test_mode = True

    cfg.data.test.pop('samples_per_gpu', 0)
    if cfg.data.train.type in ('MultiImageMixDataset', 'ClassBalancedDataset',
                               'RepeatDataset', 'ConcatDataset'):
        cfg.data.test.pipeline = get_loading_pipeline(
            cfg.data.train.dataset.pipeline)
    else:
        cfg.data.test.pipeline = get_loading_pipeline(cfg.data.train.pipeline)

    dataset = build_dataset(cfg.data.test)
    outputs = mmcv.load(args.prediction_path)

    result_visualizer = ResultVisualizer(args.show, args.wait_time,
                                         args.show_score_thr,
                                         args.overlay_gt_pred)
    result_visualizer.evaluate_and_show(dataset,
                                        outputs,
                                        topk=args.topk,
                                        show_dir=args.show_dir)
Ejemplo n.º 8
0
 def _load_points(self, pts_filename):
     if self.file_client is None:
         self.file_client = mmcv.FileClient(**self.file_client_args)
     try:
         pts_bytes = self.file_client.get(pts_filename)
         points = np.frombuffer(pts_bytes, dtype=np.float32)
     except ConnectionError:
         mmcv.check_file_exist(pts_filename)
         if pts_filename.endswith('.npy'):
             points = np.load(pts_filename)
         else:
             points = np.fromfile(pts_filename, dtype=np.float32)
     return points
Ejemplo n.º 9
0
def lvis_eval(result_files, result_types, lvis, max_dets=100):
    if result_files is None:
        print('Nothing to evaluate.')
        return

    for res_type in result_types:
        if res_type not in ['bbox', 'segm']:
            raise KeyError(
                'invalid iou_type: {} for evaluation'.format(res_type))
        try:
            mmcv.check_file_exist(result_files[res_type])
        except IndexError:
            print('No prediction found.')
            break
        lvis_eval = LVISEval(lvis, result_files[res_type], iou_type=res_type)
        lvis_eval.params.max_dets = max_dets
        lvis_eval.run()
        lvis_eval.print_results()

        # Compute per-category AP
        # from https://github.com/facebookresearch/detectron2/blob/03064eb5bafe4a3e5750cc7a16672daf5afe8435/detectron2/evaluation/coco_evaluation.py#L259-L283 # noqa
        if False:
            precisions = lvis_eval.eval['precision']
            catIds = lvis.get_cat_ids()
            # precision has dims (iou, recall, cls, area range, max dets)
            assert len(catIds) == precisions.shape[2]

            results_per_category = []
            for idx, catId in enumerate(catIds):
                # area range index 0: all area ranges
                # max dets index -1: typically 100 per image
                nm = lvis.load_cats([catId])[0]
                precision = precisions[:, :, idx, :]
                precision = precision[precision > -1]
                ap = np.mean(precision) if precision.size else float('nan')
                results_per_category.append(
                    ('{}'.format(nm['name']),
                     '{:0.3f}'.format(float(ap * 100))))

            N_COLS = min(6, len(results_per_category) * 2)
            results_flatten = list(itertools.chain(*results_per_category))
            headers = ['category', 'AP'] * (N_COLS // 2)
            results_2d = itertools.zip_longest(
                *[results_flatten[i::N_COLS] for i in range(N_COLS)])
            table_data = [headers]
            table_data += [result for result in results_2d]
            table = AsciiTable(table_data)
            print(table.table)
            mmcv.dump(results_per_category, 'interp_classwise_ap.pkl')
Ejemplo n.º 10
0
    def _load_points(self, pts_filename):
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
        return points
Ejemplo n.º 11
0
def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import LiDARInstance3DBoxes
    temp_dir = tempfile.mkdtemp()
    data_root, ann_file, classes, pts_prefix,\
        pipeline, modality, split = _generate_kitti_dataset_config()
    kitti_dataset = KittiDataset(data_root,
                                 ann_file,
                                 split=split,
                                 modality=modality,
                                 pipeline=pipeline)
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[46.1218, -4.6496, -0.9275, 0.5316, 1.4442, 1.7450, 1.1749],
             [33.3189, 0.1981, 0.3136, 0.5656, 1.2301, 1.7985, 1.5723],
             [46.1366, -4.6404, -0.9510, 0.5162, 1.6501, 1.7540, 1.3778],
             [33.2646, 0.2297, 0.3446, 0.5746, 1.3365, 1.7947, 1.5430],
             [58.9079, 16.6272, -1.5829, 1.5656, 3.9313, 1.4899, 1.5505]]))
    scores_3d = torch.tensor([0.1815, 0.1663, 0.5792, 0.2194, 0.2780])
    labels_3d = torch.tensor([0, 0, 1, 1, 2])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
    kitti_dataset.show(results, temp_dir)
    pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
    gt_file_path = osp.join(temp_dir, '000000', '000000_gt.ply')
    pred_file_path = osp.join(temp_dir, '000000', '000000_pred.ply')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
Ejemplo n.º 12
0
def test_seg_show():
    import mmcv
    import tempfile
    from os import path as osp

    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path = './tests/data/s3dis'
    ann_file = './tests/data/s3dis/s3dis_infos.pkl'
    s3dis_dataset = S3DISSegDataset(data_root=root_path,
                                    ann_files=ann_file,
                                    scene_idxs=[0])
    result = dict(semantic_mask=torch.tensor([
        2, 2, 1, 2, 2, 5, 1, 0, 1, 1, 9, 12, 3, 0, 2, 0, 2, 0, 8, 2, 0, 2, 0,
        2, 1, 7, 2, 10, 2, 0, 0, 0, 2, 2, 2, 2, 2, 1, 2, 2, 0, 0, 4, 6, 7, 2,
        1, 2, 0, 1, 7, 0, 2, 2, 2, 0, 2, 2, 1, 12, 0, 2, 2, 2, 2, 7, 2, 2, 0,
        2, 6, 2, 12, 6, 2, 12, 2, 1, 6, 1, 2, 6, 8, 2, 10, 1, 10, 0, 6, 9, 4,
        3, 0, 0, 12, 1, 1, 5, 2, 2
    ]).long())
    results = [result]
    s3dis_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, 'Area_1_office_2',
                             'Area_1_office_2_points.obj')
    gt_file_path = osp.join(temp_dir, 'Area_1_office_2',
                            'Area_1_office_2_gt.obj')
    pred_file_path = osp.join(temp_dir, 'Area_1_office_2',
                              'Area_1_office_2_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
Ejemplo n.º 13
0
def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import LiDARInstance3DBoxes
    temp_dir = tempfile.mkdtemp()
    data_root = 'tests/data/kitti'
    ann_file = 'tests/data/kitti/kitti_infos_train.pkl'
    modality = {'use_lidar': True, 'use_camera': False}
    split = 'training'
    file_client_args = dict(backend='disk')
    point_cloud_range = [0, -40, -3, 70.4, 40, 1]
    class_names = ['Pedestrian', 'Cyclist', 'Car']
    pipeline = [
        dict(type='LoadPointsFromFile',
             load_dim=4,
             use_dim=4,
             file_client_args=file_client_args),
        dict(type='MultiScaleFlipAug3D',
             img_scale=(1333, 800),
             pts_scale_ratio=1,
             flip=False,
             transforms=[
                 dict(type='GlobalRotScaleTrans',
                      rot_range=[0, 0],
                      scale_ratio_range=[1., 1.],
                      translation_std=[0, 0, 0]),
                 dict(type='RandomFlip3D'),
                 dict(type='PointsRangeFilter',
                      point_cloud_range=point_cloud_range),
                 dict(type='DefaultFormatBundle3D',
                      class_names=class_names,
                      with_label=False),
                 dict(type='Collect3D', keys=['points'])
             ])
    ]
    kitti_dataset = KittiDataset(data_root,
                                 ann_file,
                                 split=split,
                                 modality=modality,
                                 pipeline=pipeline)
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[46.1218, -4.6496, -0.9275, 0.5316, 1.4442, 1.7450, 1.1749],
             [33.3189, 0.1981, 0.3136, 0.5656, 1.2301, 1.7985, 1.5723],
             [46.1366, -4.6404, -0.9510, 0.5162, 1.6501, 1.7540, 1.3778],
             [33.2646, 0.2297, 0.3446, 0.5746, 1.3365, 1.7947, 1.5430],
             [58.9079, 16.6272, -1.5829, 1.5656, 3.9313, 1.4899, 1.5505]]))
    scores_3d = torch.tensor([0.1815, 0.1663, 0.5792, 0.2194, 0.2780])
    labels_3d = torch.tensor([0, 0, 1, 1, 2])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
    kitti_dataset.show(results, temp_dir)
    pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
    gt_file_path = osp.join(temp_dir, '000000', '000000_gt.ply')
    pred_file_path = osp.join(temp_dir, '000000', '000000_pred.ply')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
Ejemplo n.º 14
0
def test_show():
    root_path = 'tests/data/nuscenes/'
    ann_file = 'tests/data/nuscenes/nus_infos_mono3d.coco.json'
    class_names = [
        'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
        'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
    ]
    eval_pipeline = [
        dict(type='LoadImageFromFileMono3D'),
        dict(type='DefaultFormatBundle3D',
             class_names=class_names,
             with_label=False),
        dict(type='Collect3D', keys=['img'])
    ]
    nus_dataset = NuScenesMonoDataset(data_root=root_path,
                                      ann_file=ann_file,
                                      img_prefix='tests/data/nuscenes/',
                                      test_mode=True,
                                      pipeline=eval_pipeline)
    results = mmcv.load('tests/data/nuscenes/mono3d_sample_results.pkl')
    results = [results[0]]

    # show with eval_pipeline
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    nus_dataset.show(results, temp_dir, show=False)
    file_name = 'n015-2018-07-18-11-07-57+0800__' \
                'CAM_BACK_LEFT__1531883530447423'
    img_file_path = osp.join(temp_dir, file_name, f'{file_name}_img.png')
    gt_file_path = osp.join(temp_dir, file_name, f'{file_name}_gt.png')
    pred_file_path = osp.join(temp_dir, file_name, f'{file_name}_pred.png')
    mmcv.check_file_exist(img_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
Ejemplo n.º 15
0
def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import DepthInstance3DBoxes
    temp_dir = tempfile.mkdtemp()
    root_path = './tests/data/sunrgbd'
    ann_file = './tests/data/sunrgbd/sunrgbd_infos.pkl'
    sunrgbd_dataset = SUNRGBDDataset(root_path, ann_file)
    boxes_3d = DepthInstance3DBoxes(
        torch.tensor(
            [[1.1500, 4.2614, -1.0669, 1.3219, 2.1593, 1.0267, 1.6473],
             [-0.9583, 2.1916, -1.0881, 0.6213, 1.3022, 1.6275, -3.0720],
             [2.5697, 4.8152, -1.1157, 0.5421, 0.7019, 0.7896, 1.6712],
             [0.7283, 2.5448, -1.0356, 0.7691, 0.9056, 0.5771, 1.7121],
             [-0.9860, 3.2413, -1.2349, 0.5110, 0.9940, 1.1245, 0.3295]]))
    scores_3d = torch.tensor(
        [1.5280e-01, 1.6682e-03, 6.2811e-04, 1.2860e-03, 9.4229e-06])
    labels_3d = torch.tensor([0, 0, 0, 0, 0])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
    sunrgbd_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, '000001', '000001_points.obj')
    gt_file_path = osp.join(temp_dir, '000001', '000001_gt.ply')
    pred_file_path = osp.join(temp_dir, '000001', '000001_pred.ply')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
Ejemplo n.º 16
0
def test_seg_show():
    import mmcv
    import tempfile
    from os import path as osp

    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path, ann_file=ann_file, scene_idxs=[0])
    result = dict(
        semantic_mask=torch.tensor([
            13, 5, 1, 2, 6, 2, 13, 1, 14, 2, 0, 0, 5, 5, 3, 0, 1, 14, 0, 0, 0,
            18, 6, 15, 13, 0, 2, 4, 0, 3, 16, 6, 13, 5, 13, 0, 0, 0, 0, 1, 7,
            3, 19, 12, 8, 0, 11, 0, 0, 1, 2, 13, 17, 1, 1, 1, 6, 2, 13, 19, 4,
            17, 0, 14, 1, 7, 2, 1, 7, 2, 0, 5, 17, 5, 0, 0, 3, 6, 5, 11, 1, 13,
            13, 2, 3, 1, 0, 13, 19, 1, 14, 5, 3, 1, 13, 1, 2, 3, 2, 1
        ]).long())
    results = [result]
    scannet_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
Ejemplo n.º 17
0
def test_check_file_exist():
    mmcv.check_file_exist(__file__)
    if sys.version_info > (3, 3):
        with pytest.raises(FileNotFoundError):  # noqa
            mmcv.check_file_exist('no_such_file.txt')
    else:
        with pytest.raises(IOError):
            mmcv.check_file_exist('no_such_file.txt')
Ejemplo n.º 18
0
    def _load_points(self, pts_filename):
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
        if self._file_client is None:
            self._file_client = mmcv.FileClient(**self._file_client_args)
        try:
            pts_bytes = self._file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith(".npy"):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)

        points = points.reshape(-1, self._load_dim)
        points = points[:, self._use_dim]
        attribute_dims = None
        # TODO attributes

        if self.shift_height:
            floor_height = np.percentile(points[:, 2], 0.99)
            height = points[:, 2] - floor_height
            points = np.concatenate([points, np.expand_dims(height, 1)], 1)
            attribute_dims = dict(height=3)

        points_class = get_points_type(self._coord_type)
        points = points_class(points,
                              points_dim=points.shape[-1],
                              attribute_dims=attribute_dims)

        return points
Ejemplo n.º 19
0
 def __init__(self, root_path, split='train'):
     self.root_dir = root_path
     self.split = split
     self.split_dir = osp.join(root_path)
     self.classes = [
         'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
         'bookshelf', 'picture', 'counter', 'desk', 'curtain',
         'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
         'garbagebin'
     ]
     self.cat2label = {cat: self.classes.index(cat) for cat in self.classes}
     self.label2cat = {self.cat2label[t]: t for t in self.cat2label}
     self.cat_ids = np.array(
         [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39])
     self.cat_ids2class = {
         nyu40id: i
         for i, nyu40id in enumerate(list(self.cat_ids))
     }
     assert split in ['train', 'val', 'test']
     split_file = osp.join(self.root_dir, 'meta_data',
                           f'scannetv2_{split}.txt')
     mmcv.check_file_exist(split_file)
     self.sample_id_list = mmcv.list_from_file(split_file)
Ejemplo n.º 20
0
 def __init__(self, root_path, split='train', use_v1=False):
     self.root_dir = root_path
     self.split = split
     self.split_dir = osp.join(root_path, 'sunrgbd_trainval')
     self.classes = [
         'bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
         'night_stand', 'bookshelf', 'bathtub'
     ]
     self.cat2label = {cat: self.classes.index(cat) for cat in self.classes}
     self.label2cat = {
         label: self.classes[label]
         for label in range(len(self.classes))
     }
     assert split in ['train', 'val', 'test']
     split_file = osp.join(self.split_dir, f'{split}_data_idx.txt')
     mmcv.check_file_exist(split_file)
     self.sample_id_list = map(int, mmcv.list_from_file(split_file))
     self.image_dir = osp.join(self.split_dir, 'image')
     self.calib_dir = osp.join(self.split_dir, 'calib')
     self.depth_dir = osp.join(self.split_dir, 'depth')
     if use_v1:
         self.label_dir = osp.join(self.split_dir, 'label_v1')
     else:
         self.label_dir = osp.join(self.split_dir, 'label')
Ejemplo n.º 21
0
    def _load_masks_3d(self, results):
        """Private function to load 3D mask annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D mask annotations.
        """
        pts_instance_mask_path = results['ann_info']['pts_instance_mask_path']

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_instance_mask_path)
            pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int)
        except ConnectionError:
            mmcv.check_file_exist(pts_instance_mask_path)
            pts_instance_mask = np.fromfile(pts_instance_mask_path,
                                            dtype=np.long)

        results['pts_instance_mask'] = pts_instance_mask
        results['pts_mask_fields'].append('pts_instance_mask')
        return results
Ejemplo n.º 22
0
def test_show():
    import mmcv
    from os import path as osp

    from mmdet3d.core.bbox import LiDARInstance3DBoxes
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    class_names = [
        'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
        'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
    ]
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=5,
            use_dim=5,
            file_client_args=dict(backend='disk')),
        dict(
            type='LoadPointsFromMultiSweeps',
            sweeps_num=10,
            file_client_args=dict(backend='disk')),
        dict(
            type='DefaultFormatBundle3D',
            class_names=class_names,
            with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    nus_dataset = NuScenesDataset('tests/data/nuscenes/nus_info.pkl', None,
                                  'tests/data/nuscenes')
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[46.1218, -4.6496, -0.9275, 0.5316, 1.4442, 1.7450, 1.1749],
             [33.3189, 0.1981, 0.3136, 0.5656, 1.2301, 1.7985, 1.5723],
             [46.1366, -4.6404, -0.9510, 0.5162, 1.6501, 1.7540, 1.3778],
             [33.2646, 0.2297, 0.3446, 0.5746, 1.3365, 1.7947, 1.5430],
             [58.9079, 16.6272, -1.5829, 1.5656, 3.9313, 1.4899, 1.5505]]))
    scores_3d = torch.tensor([0.1815, 0.1663, 0.5792, 0.2194, 0.2780])
    labels_3d = torch.tensor([0, 0, 1, 1, 2])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [dict(pts_bbox=result)]
    nus_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    file_name = 'n015-2018-08-02-17-16-37+0800__LIDAR_TOP__1533201470948018'
    pts_file_path = osp.join(temp_dir, file_name, f'{file_name}_points.obj')
    gt_file_path = osp.join(temp_dir, file_name, f'{file_name}_gt.obj')
    pred_file_path = osp.join(temp_dir, file_name, f'{file_name}_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
Ejemplo n.º 23
0
def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import DepthInstance3DBoxes
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetDataset(root_path, ann_file)
    boxes_3d = DepthInstance3DBoxes(
        torch.tensor([[
            -2.4053e+00, 9.2295e-01, 8.0661e-02, 2.4054e+00, 2.1468e+00,
            8.5990e-01, 0.0000e+00
        ],
                      [
                          -1.9341e+00, -2.0741e+00, 3.0698e-03, 3.2206e-01,
                          2.5322e-01, 3.5144e-01, 0.0000e+00
                      ],
                      [
                          -3.6908e+00, 8.0684e-03, 2.6201e-01, 4.1515e-01,
                          7.6489e-01, 5.3585e-01, 0.0000e+00
                      ],
                      [
                          2.6332e+00, 8.5143e-01, -4.9964e-03, 3.0367e-01,
                          1.3448e+00, 1.8329e+00, 0.0000e+00
                      ],
                      [
                          2.0221e-02, 2.6153e+00, 1.5109e-02, 7.3335e-01,
                          1.0429e+00, 1.0251e+00, 0.0000e+00
                      ]]))
    scores_3d = torch.tensor(
        [1.2058e-04, 2.3012e-03, 6.2324e-06, 6.6139e-06, 6.7965e-05])
    labels_3d = torch.tensor([0, 0, 0, 0, 0])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
    scannet_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
Ejemplo n.º 24
0
def test_show():
    import mmcv
    from os import path as osp

    from mmdet3d.core.bbox import LiDARInstance3DBoxes
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path = './tests/data/lyft'
    ann_file = './tests/data/lyft/lyft_infos.pkl'
    class_names = ('car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle',
                   'motorcycle', 'bicycle', 'pedestrian', 'animal')
    eval_pipeline = [
        dict(type='LoadPointsFromFile',
             coord_type='LIDAR',
             load_dim=5,
             use_dim=5,
             file_client_args=dict(backend='disk')),
        dict(type='LoadPointsFromMultiSweeps',
             sweeps_num=10,
             file_client_args=dict(backend='disk')),
        dict(type='DefaultFormatBundle3D',
             class_names=class_names,
             with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    kitti_dataset = LyftDataset(ann_file, None, root_path)
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[46.1218, -4.6496, -0.9275, 0.5316, 1.4442, 1.7450, 1.1749],
             [33.3189, 0.1981, 0.3136, 0.5656, 1.2301, 1.7985, 1.5723],
             [46.1366, -4.6404, -0.9510, 0.5162, 1.6501, 1.7540, 1.3778],
             [33.2646, 0.2297, 0.3446, 0.5746, 1.3365, 1.7947, 1.5430],
             [58.9079, 16.6272, -1.5829, 1.5656, 3.9313, 1.4899, 1.5505]]))
    scores_3d = torch.tensor([0.1815, 0.1663, 0.5792, 0.2194, 0.2780])
    labels_3d = torch.tensor([0, 0, 1, 1, 2])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [dict(pts_bbox=result)]
    kitti_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    file_name = 'host-a017_lidar1_1236118886901125926'
    pts_file_path = osp.join(temp_dir, file_name, f'{file_name}_points.obj')
    gt_file_path = osp.join(temp_dir, file_name, f'{file_name}_gt.obj')
    pred_file_path = osp.join(temp_dir, file_name, f'{file_name}_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
Ejemplo n.º 25
0
def _fill_trainval_infos(nusc,
                         split_names,
                         out_dir,
                         keyword=None,
                         keyword_action=None,
                         subset_name=None,
                         location=None,
                         test=False,
                         max_sweeps=10):
    import tools.data_converter.xmuda_splits as splits
    pkl_dict = {}
    for split_name in split_names:
        pkl_dict[split_name] = []

    for sample in mmcv.track_iter_progress(nusc.sample):
        curr_scene_name = nusc.get(
            'scene', sample['scene_token'])['name']  # 'scene-0061'

        # get if the current scene is in train, val or test
        curr_split = None
        for split_name in split_names:
            if curr_scene_name in getattr(splits, split_name):
                curr_split = split_name
                break
        if curr_split is None:
            continue

        if subset_name == 'night':
            if curr_split == 'train':
                if curr_scene_name in splits.val_night:
                    curr_split = 'val'
        if subset_name == 'singapore':
            if curr_split == 'train':
                if curr_scene_name in splits.val_singapore:
                    curr_split = 'val'

        # filter for day/night
        if keyword:
            scene_description = nusc.get("scene",
                                         sample["scene_token"])["description"]
            if keyword.lower() in scene_description.lower():
                if keyword_action == 'exclude':
                    # skip sample
                    continue
            else:
                if keyword_action == 'filter':
                    # skip sample
                    continue

        if location:
            scene = nusc.get("scene", sample["scene_token"])
            if location not in nusc.get("log", scene['log_token'])['location']:
                continue

        lidar_token = sample['data']['LIDAR_TOP']
        cam_token = sample['data']['CAM_FRONT']
        sd_rec = nusc.get('sample_data', sample['data']['LIDAR_TOP'])
        cs_record = nusc.get('calibrated_sensor',
                             sd_rec['calibrated_sensor_token'])
        pose_record = nusc.get('ego_pose', sd_rec['ego_pose_token'])
        lidar_path, boxes_lidar, _ = nusc.get_sample_data(lidar_token)
        _, boxes_cam, _ = nusc.get_sample_data(cam_token)
        lidarseg = nusc.get('lidarseg', lidar_token)
        lidarseg_path = os.path.join(nusc.dataroot, lidarseg['filename'])

        mmcv.check_file_exist(lidar_path)

        info = {
            'lidar_path': lidar_path,
            'lidarseg_path': lidarseg_path,
            'token': sample['token'],
            'sweeps': [],
            'cams': dict(),
            'lidar2ego_translation': cs_record['translation'],
            'lidar2ego_rotation': cs_record['rotation'],
            'ego2global_translation': pose_record['translation'],
            'ego2global_rotation': pose_record['rotation'],
            'timestamp': sample['timestamp'],
        }

        l2e_r = info['lidar2ego_rotation']
        l2e_t = info['lidar2ego_translation']
        e2g_r = info['ego2global_rotation']
        e2g_t = info['ego2global_translation']
        l2e_r_mat = Quaternion(l2e_r).rotation_matrix
        e2g_r_mat = Quaternion(e2g_r).rotation_matrix

        # obtain 6 image's information per frame
        camera_types = [
            'CAM_FRONT',
            'CAM_FRONT_RIGHT',
            'CAM_FRONT_LEFT',
            'CAM_BACK',
            'CAM_BACK_LEFT',
            'CAM_BACK_RIGHT',
        ]
        for cam in camera_types:
            cam_token = sample['data'][cam]
            cam_path, _, cam_intrinsic = nusc.get_sample_data(cam_token)
            cam_info = obtain_sensor2top(nusc, cam_token, l2e_t, l2e_r_mat,
                                         e2g_t, e2g_r_mat, cam)
            cam_info.update(cam_intrinsic=cam_intrinsic)
            info['cams'].update({cam: cam_info})

        # obtain sweeps for a single key-frame
        sd_rec = nusc.get('sample_data', sample['data']['LIDAR_TOP'])
        sweeps = []
        while len(sweeps) < max_sweeps:
            if not sd_rec['prev'] == '':
                sweep = obtain_sensor2top(nusc, sd_rec['prev'], l2e_t,
                                          l2e_r_mat, e2g_t, e2g_r_mat, 'lidar')
                sweeps.append(sweep)
                sd_rec = nusc.get('sample_data', sd_rec['prev'])
            else:
                break
        info['sweeps'] = sweeps
        # obtain annotation
        if not test:
            # full range
            # annotations = [
            #     nusc.get('sample_annotation', token)
            #     for token in sample['anns']
            # ]

            # inside camera
            valid_box_tokens = [box.token for box in boxes_cam]
            boxes_lidar_filter = [
                box for box in boxes_lidar if box.token in valid_box_tokens
            ]
            annotations = [
                nusc.get('sample_annotation', token)
                for token in valid_box_tokens
            ]

            locs = np.array([b.center
                             for b in boxes_lidar_filter]).reshape(-1, 3)
            dims = np.array([b.wlh for b in boxes_lidar_filter]).reshape(-1, 3)
            rots = np.array([
                b.orientation.yaw_pitch_roll[0] for b in boxes_lidar_filter
            ]).reshape(-1, 1)
            # velocity = np.array(
            #    [nusc.box_velocity(token)[:2] for token in sample['anns']])
            velocity = np.array(
                [nusc.box_velocity(token)[:2] for token in valid_box_tokens])
            valid_flag = np.array(
                [(anno['num_lidar_pts'] + anno['num_radar_pts']) > 0
                 for anno in annotations],
                dtype=bool).reshape(-1)
            # convert velo from global to lidar
            for i in range(len(boxes_lidar_filter)):
                velo = np.array([*velocity[i], 0.0])
                velo = velo @ np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(
                    l2e_r_mat).T
                velocity[i] = velo[:2]

            names = [b.name for b in boxes_lidar_filter]
            for i in range(len(names)):
                if names[i] in NuScenesDataset.NameMapping:
                    names[i] = NuScenesDataset.NameMapping[names[i]]
            names = np.array(names)
            # we need to convert rot to SECOND format.
            gt_boxes = np.concatenate([locs, dims, -rots - np.pi / 2], axis=1)
            assert len(gt_boxes) == len(
                annotations), f'{len(gt_boxes)}, {len(annotations)}'
            info['gt_boxes'] = gt_boxes
            info['gt_names'] = names
            info['gt_velocity'] = velocity.reshape(-1, 2)
            info['num_lidar_pts'] = np.array(
                [a['num_lidar_pts'] for a in annotations])
            info['num_radar_pts'] = np.array(
                [a['num_radar_pts'] for a in annotations])
            info['valid_flag'] = valid_flag

        pkl_dict[curr_split].append(info)

    save_dir = osp.join(out_dir, 'mmda_xmuda_split')
    os.makedirs(save_dir, exist_ok=True)
    for split_name in split_names:
        metadata = split_name + '_' + subset_name
        # save_path = osp.join(save_dir, '{}{}.pkl'.format(split_name, '_' + subset_name if subset_name else ''))
        save_path = osp.join(save_dir, '{}.pkl'.format(metadata))
        res = dict(infos=pkl_dict[split_name], metadata=metadata)
        mmcv.dump(res, save_path)
        print('Wrote preprocessed data to ' + save_path)
Ejemplo n.º 26
0
def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import DepthInstance3DBoxes
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetDataset(root_path, ann_file)
    boxes_3d = DepthInstance3DBoxes(
        torch.tensor([[
            -2.4053e+00, 9.2295e-01, 8.0661e-02, 2.4054e+00, 2.1468e+00,
            8.5990e-01, 0.0000e+00
        ],
                      [
                          -1.9341e+00, -2.0741e+00, 3.0698e-03, 3.2206e-01,
                          2.5322e-01, 3.5144e-01, 0.0000e+00
                      ],
                      [
                          -3.6908e+00, 8.0684e-03, 2.6201e-01, 4.1515e-01,
                          7.6489e-01, 5.3585e-01, 0.0000e+00
                      ],
                      [
                          2.6332e+00, 8.5143e-01, -4.9964e-03, 3.0367e-01,
                          1.3448e+00, 1.8329e+00, 0.0000e+00
                      ],
                      [
                          2.0221e-02, 2.6153e+00, 1.5109e-02, 7.3335e-01,
                          1.0429e+00, 1.0251e+00, 0.0000e+00
                      ]]))
    scores_3d = torch.tensor(
        [1.2058e-04, 2.3012e-03, 6.2324e-06, 6.6139e-06, 6.7965e-05])
    labels_3d = torch.tensor([0, 0, 0, 0, 0])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
    scannet_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()

    # show function with pipeline
    class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                   'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'garbagebin')
    eval_pipeline = [
        dict(type='LoadPointsFromFile',
             coord_type='DEPTH',
             shift_height=False,
             load_dim=6,
             use_dim=[0, 1, 2]),
        dict(type='DefaultFormatBundle3D',
             class_names=class_names,
             with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    scannet_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
Ejemplo n.º 27
0
def test_seg_show():
    import mmcv
    import tempfile
    from os import path as osp

    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetSegDataset(data_root=root_path,
                                        ann_file=ann_file,
                                        scene_idxs=[0])
    result = dict(semantic_mask=torch.tensor([
        13, 5, 1, 2, 6, 2, 13, 1, 14, 2, 0, 0, 5, 5, 3, 0, 1, 14, 0, 0, 0, 18,
        6, 15, 13, 0, 2, 4, 0, 3, 16, 6, 13, 5, 13, 0, 0, 0, 0, 1, 7, 3, 19,
        12, 8, 0, 11, 0, 0, 1, 2, 13, 17, 1, 1, 1, 6, 2, 13, 19, 4, 17, 0, 14,
        1, 7, 2, 1, 7, 2, 0, 5, 17, 5, 0, 0, 3, 6, 5, 11, 1, 13, 13, 2, 3, 1,
        0, 13, 19, 1, 14, 5, 3, 1, 13, 1, 2, 3, 2, 1
    ]).long())
    results = [result]
    scannet_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
    # test show with pipeline
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
                   'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'otherfurniture')
    eval_pipeline = [
        dict(type='LoadPointsFromFile',
             coord_type='DEPTH',
             shift_height=False,
             use_color=True,
             load_dim=6,
             use_dim=[0, 1, 2, 3, 4, 5]),
        dict(type='LoadAnnotations3D',
             with_bbox_3d=False,
             with_label_3d=False,
             with_mask_3d=False,
             with_seg_3d=True),
        dict(type='PointSegClassMapping',
             valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24,
                            28, 33, 34, 36, 39)),
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
    ]
    scannet_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
Ejemplo n.º 28
0
def _fill_trainval_infos(nusc,
                         train_scenes,
                         val_scenes,
                         test=False,
                         max_sweeps=10):
    """Generate the train/val infos from the raw data.

    Args:
        nusc (:obj:`NuScenes`): Dataset class in the nuScenes dataset.
        train_scenes (list[str]): Basic information of training scenes.
        val_scenes (list[str]): Basic information of validation scenes.
        test (bool): Whether use the test mode. In the test mode, no
            annotations can be accessed. Default: False.
        max_sweeps (int): Max number of sweeps. Default: 10.

    Returns:
        tuple[list[dict]]: Information of training set and validation set
            that will be saved to the info file.
    """
    train_nusc_infos = []
    val_nusc_infos = []

    for sample in mmcv.track_iter_progress(nusc.sample):
        lidar_token = sample['data']['LIDAR_TOP']
        cam_token = sample['data']['CAM_FRONT']
        sd_rec = nusc.get('sample_data', sample['data']['LIDAR_TOP'])
        cs_record = nusc.get('calibrated_sensor',
                             sd_rec['calibrated_sensor_token'])
        pose_record = nusc.get('ego_pose', sd_rec['ego_pose_token'])
        lidar_path, boxes_lidar, _ = nusc.get_sample_data(lidar_token)
        _, boxes_cam, _ = nusc.get_sample_data(cam_token)
        lidarseg = nusc.get('lidarseg', lidar_token)
        lidarseg_path = os.path.join(nusc.dataroot, lidarseg['filename'])

        mmcv.check_file_exist(lidar_path)

        info = {
            'lidar_path': lidar_path,
            'lidarseg_path': lidarseg_path,
            'token': sample['token'],
            'sweeps': [],
            'cams': dict(),
            'lidar2ego_translation': cs_record['translation'],
            'lidar2ego_rotation': cs_record['rotation'],
            'ego2global_translation': pose_record['translation'],
            'ego2global_rotation': pose_record['rotation'],
            'timestamp': sample['timestamp'],
        }

        l2e_r = info['lidar2ego_rotation']
        l2e_t = info['lidar2ego_translation']
        e2g_r = info['ego2global_rotation']
        e2g_t = info['ego2global_translation']
        l2e_r_mat = Quaternion(l2e_r).rotation_matrix
        e2g_r_mat = Quaternion(e2g_r).rotation_matrix

        # obtain 6 image's information per frame
        camera_types = [
            'CAM_FRONT',
            'CAM_FRONT_RIGHT',
            'CAM_FRONT_LEFT',
            'CAM_BACK',
            'CAM_BACK_LEFT',
            'CAM_BACK_RIGHT',
        ]
        for cam in camera_types:
            cam_token = sample['data'][cam]
            cam_path, _, cam_intrinsic = nusc.get_sample_data(cam_token)
            cam_info = obtain_sensor2top(nusc, cam_token, l2e_t, l2e_r_mat,
                                         e2g_t, e2g_r_mat, cam)
            cam_info.update(cam_intrinsic=cam_intrinsic)
            info['cams'].update({cam: cam_info})

        # obtain sweeps for a single key-frame
        sd_rec = nusc.get('sample_data', sample['data']['LIDAR_TOP'])
        sweeps = []
        while len(sweeps) < max_sweeps:
            if not sd_rec['prev'] == '':
                sweep = obtain_sensor2top(nusc, sd_rec['prev'], l2e_t,
                                          l2e_r_mat, e2g_t, e2g_r_mat, 'lidar')
                sweeps.append(sweep)
                sd_rec = nusc.get('sample_data', sd_rec['prev'])
            else:
                break
        info['sweeps'] = sweeps
        # obtain annotation
        if not test:
            # full range
            # annotations = [
            #     nusc.get('sample_annotation', token)
            #     for token in sample['anns']
            # ]

            # inside camera
            valid_box_tokens = [box.token for box in boxes_cam]
            boxes_lidar_filter = [
                box for box in boxes_lidar if box.token in valid_box_tokens
            ]
            annotations = [
                nusc.get('sample_annotation', token)
                for token in valid_box_tokens
            ]

            locs = np.array([b.center
                             for b in boxes_lidar_filter]).reshape(-1, 3)
            dims = np.array([b.wlh for b in boxes_lidar_filter]).reshape(-1, 3)
            rots = np.array([
                b.orientation.yaw_pitch_roll[0] for b in boxes_lidar_filter
            ]).reshape(-1, 1)
            # velocity = np.array(
            #    [nusc.box_velocity(token)[:2] for token in sample['anns']])
            velocity = np.array(
                [nusc.box_velocity(token)[:2] for token in valid_box_tokens])
            valid_flag = np.array(
                [(anno['num_lidar_pts'] + anno['num_radar_pts']) > 0
                 for anno in annotations],
                dtype=bool).reshape(-1)
            # convert velo from global to lidar
            for i in range(len(boxes_lidar_filter)):
                velo = np.array([*velocity[i], 0.0])
                velo = velo @ np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(
                    l2e_r_mat).T
                velocity[i] = velo[:2]

            names = [b.name for b in boxes_lidar_filter]
            for i in range(len(names)):
                if names[i] in NuScenesDataset.NameMapping:
                    names[i] = NuScenesDataset.NameMapping[names[i]]
            names = np.array(names)
            # we need to convert rot to SECOND format.
            gt_boxes = np.concatenate([locs, dims, -rots - np.pi / 2], axis=1)
            assert len(gt_boxes) == len(
                annotations), f'{len(gt_boxes)}, {len(annotations)}'
            info['gt_boxes'] = gt_boxes
            info['gt_names'] = names
            info['gt_velocity'] = velocity.reshape(-1, 2)
            info['num_lidar_pts'] = np.array(
                [a['num_lidar_pts'] for a in annotations])
            info['num_radar_pts'] = np.array(
                [a['num_radar_pts'] for a in annotations])
            info['valid_flag'] = valid_flag

        if sample['scene_token'] in train_scenes:
            train_nusc_infos.append(info)
        else:
            val_nusc_infos.append(info)

    return train_nusc_infos, val_nusc_infos
Ejemplo n.º 29
0
def test_check_file_exist():
    mmcv.check_file_exist(__file__)
    with pytest.raises(FileNotFoundError):
        mmcv.check_file_exist('no_such_file.txt')
def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import DepthInstance3DBoxes
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path, ann_file, class_names, pipelines, modality = \
        _generate_sunrgbd_dataset_config()
    sunrgbd_dataset = SUNRGBDDataset(root_path,
                                     ann_file,
                                     pipelines,
                                     modality=modality)
    boxes_3d = DepthInstance3DBoxes(
        torch.tensor(
            [[1.1500, 4.2614, -1.0669, 1.3219, 2.1593, 1.0267, 1.6473],
             [-0.9583, 2.1916, -1.0881, 0.6213, 1.3022, 1.6275, -3.0720],
             [2.5697, 4.8152, -1.1157, 0.5421, 0.7019, 0.7896, 1.6712],
             [0.7283, 2.5448, -1.0356, 0.7691, 0.9056, 0.5771, 1.7121],
             [-0.9860, 3.2413, -1.2349, 0.5110, 0.9940, 1.1245, 0.3295]]))
    scores_3d = torch.tensor(
        [1.5280e-01, 1.6682e-03, 6.2811e-04, 1.2860e-03, 9.4229e-06])
    labels_3d = torch.tensor([0, 0, 0, 0, 0])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
    sunrgbd_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, '000001', '000001_points.obj')
    gt_file_path = osp.join(temp_dir, '000001', '000001_gt.obj')
    pred_file_path = osp.join(temp_dir, '000001', '000001_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()

    # test show with pipeline
    eval_pipeline = [
        dict(type='LoadPointsFromFile',
             coord_type='DEPTH',
             shift_height=True,
             load_dim=6,
             use_dim=[0, 1, 2]),
        dict(type='DefaultFormatBundle3D',
             class_names=class_names,
             with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    sunrgbd_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, '000001', '000001_points.obj')
    gt_file_path = osp.join(temp_dir, '000001', '000001_gt.obj')
    pred_file_path = osp.join(temp_dir, '000001', '000001_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()

    # test multi-modality show
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path, ann_file, class_names, multi_modality_pipelines, modality = \
        _generate_sunrgbd_multi_modality_dataset_config()
    sunrgbd_dataset = SUNRGBDDataset(root_path,
                                     ann_file,
                                     multi_modality_pipelines,
                                     modality=modality)
    sunrgbd_dataset.show(results, temp_dir, False, multi_modality_pipelines)
    pts_file_path = osp.join(temp_dir, '000001', '000001_points.obj')
    gt_file_path = osp.join(temp_dir, '000001', '000001_gt.obj')
    pred_file_path = osp.join(temp_dir, '000001', '000001_pred.obj')
    img_file_path = osp.join(temp_dir, '000001', '000001_img.png')
    img_pred_path = osp.join(temp_dir, '000001', '000001_pred.png')
    img_gt_file = osp.join(temp_dir, '000001', '000001_gt.png')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    mmcv.check_file_exist(img_file_path)
    mmcv.check_file_exist(img_pred_path)
    mmcv.check_file_exist(img_gt_file)
    tmp_dir.cleanup()

    # test multi-modality show with pipeline
    eval_pipeline = [
        dict(type='LoadImageFromFile'),
        dict(type='LoadPointsFromFile',
             coord_type='DEPTH',
             shift_height=True,
             load_dim=6,
             use_dim=[0, 1, 2]),
        dict(type='DefaultFormatBundle3D',
             class_names=class_names,
             with_label=False),
        dict(type='Collect3D', keys=['points', 'img'])
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    sunrgbd_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, '000001', '000001_points.obj')
    gt_file_path = osp.join(temp_dir, '000001', '000001_gt.obj')
    pred_file_path = osp.join(temp_dir, '000001', '000001_pred.obj')
    img_file_path = osp.join(temp_dir, '000001', '000001_img.png')
    img_pred_path = osp.join(temp_dir, '000001', '000001_pred.png')
    img_gt_file = osp.join(temp_dir, '000001', '000001_gt.png')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    mmcv.check_file_exist(img_file_path)
    mmcv.check_file_exist(img_pred_path)
    mmcv.check_file_exist(img_gt_file)
    tmp_dir.cleanup()