Ejemplo n.º 1
0
def moyenneMMD_MC(methodeMMD,
                  kernel,
                  law_p,
                  law_q,
                  m,
                  n,
                  repeat=100,
                  verbose=1):
    mmd_list = np.zeros(repeat)
    for i in range(repeat):
        if verbose > 0:
            print(i / repeat * 100, '% achevé', end='\r', flush=True)
        X_ = law_p(m)
        Y_ = law_q(n)
        MMD = methodeMMD(kernel)
        MMD.fit(Y_, X_)
        mmd_list[i] = MMD.MMD
    return mmd_list.mean()
Ejemplo n.º 2
0
def moyenneMMD_Bt(methodeMMD,
                  kernel,
                  X,
                  Y,
                  n_boot,
                  m_boot,
                  repeat=100,
                  verbose=1):
    mmd_list = np.zeros(repeat)
    for i in range(repeat):
        if verbose > 0:
            print(i / repeat * 100, '% achevé', end='\r', flush=True)
        X_ = utils.bootstrap(X, m_boot)
        Y_ = utils.bootstrap(Y, n_boot)
        MMD = methodeMMD(kernel)
        MMD.fit(Y_, X_)
        mmd_list[i] = MMD.MMD
    return mmd_list.mean()
Ejemplo n.º 3
0
def sampleMMD_MC(methodeMMD,
                 kernel,
                 law_p,
                 law_q,
                 m,
                 n,
                 finalSampleSize=1000,
                 verbose=1):

    Liste_mmdl = []
    for _ in range(finalSampleSize):
        if verbose > 0:
            print(_ / finalSampleSize * 100, '% achevé', end='\r', flush=True)
        X = law_p(m)
        Y = law_q(n)

        MMD = methodeMMD(kernel)
        MMD.fit(Y, X)
        Liste_mmdl.append(MMD.MMD)

    return np.r_[Liste_mmdl]
Ejemplo n.º 4
0
    # Compute U-statistics and bootstrap intervals
    ksd_stats, _ = ksd_est([kappa_vals])
    ksd_boot_list, ksd_thres_list = ksd_boot([kappa_vals])
    ksd_pvals = ksd_pvalue(ksd_boot_list, ksd_stats)

    ksd_stat = ksd_stats[0]
    ksd_thres = ksd_thres_list[0]
    ksd_pval = ksd_pvals[0]
    ksd_pred = 1 * (ksd_stat > ksd_thres)  # 0 for p, 1 for q

    # ------------------------- Perform MMD test ------------------------- #

    print "Performing MMD test ..."

    mmd = MMD(kernel_fun=wl_kernel)
    mmd_stat, mmd_thres, mmd_pval, _ = mmd.perform_test(samples_p, samples_q)
    mmd_pred = 1 * (mmd_stat > mmd_thres)  # 0 for p, 1 for q

    res = {'n': n, 'param0': [rho0, theta0, tau0], 'param': [rho, theta, tau],
           'true_dist': true_dist,
           'ksd_stat': ksd_stat, 'ksd_thres': ksd_thres,
           'ksd_pval': ksd_pval, 'ksd_pred': ksd_pred,
           'mmd_stat': mmd_stat, 'mmd_thres': mmd_thres,
           'mmd_pval': mmd_pval, 'mmd_pred': mmd_pred}

    pckl_write(res, res_dir + "pow-ergm-n%d-d%d-rho%.3f-theta%.3f-tau%.3f-seed%d.res" %
               (n, d, rho, theta, tau, seed))

    print 'Finished!'