Ejemplo n.º 1
0
    def _get_target_single(self,
                           flat_anchors,
                           valid_flags,
                           num_level_anchors,
                           gt_bboxes,
                           gt_bboxes_ignore,
                           gt_labels,
                           img_meta,
                           label_channels=1,
                           unmap_outputs=True):
        """Compute regression, classification targets for anchors in a single
        image.

        Args:
            flat_anchors (Tensor): Multi-level anchors of the image, which are
                concatenated into a single tensor of shape (num_anchors ,4)
            valid_flags (Tensor): Multi level valid flags of the image,
                which are concatenated into a single tensor of
                    shape (num_anchors,).
            num_level_anchors Tensor): Number of anchors of each scale level.
            gt_bboxes (Tensor): Ground truth bboxes of the image,
                shape (num_gts, 4).
            gt_bboxes_ignore (Tensor): Ground truth bboxes to be
                ignored, shape (num_ignored_gts, 4).
            gt_labels (Tensor): Ground truth labels of each box,
                shape (num_gts,).
            img_meta (dict): Meta info of the image.
            label_channels (int): Channel of label.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.

        Returns:
            tuple: N is the number of total anchors in the image.
                labels (Tensor): Labels of all anchors in the image with shape
                    (N,).
                label_weights (Tensor): Label weights of all anchor in the
                    image with shape (N,).
                bbox_targets (Tensor): BBox targets of all anchors in the
                    image with shape (N, 4).
                bbox_weights (Tensor): BBox weights of all anchors in the
                    image with shape (N, 4)
                pos_inds (Tensor): Indices of postive anchor with shape
                    (num_pos,).
                neg_inds (Tensor): Indices of negative anchor with shape
                    (num_neg,).
        """
        # pad_shape属性是图片没有经过collate函数右下pad后的图片size,也就是datalayer吐出的图片shape
        # inside_flags会改变总anchor数目
        inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
                                           img_meta['img_shape'][:2],
                                           self.train_cfg.allowed_border)
        if not inside_flags.any():
            return (None, ) * 7
        # assign gt and sample anchors
        # 要小心这个步骤,可能anchors变少了
        anchors = flat_anchors[inside_flags, :]

        # 调试anchor
        # imgs = []
        # count = 0
        # 由于anchors可能变少了,故num_level_anchors参数遍历是不对的
        # for num_level in num_level_anchors:
        #     an = flat_anchors[count:count + num_level]
        #     count += num_level
        #     img = show_pos_anchor(img_meta, an, gt_bboxes, is_show=False)
        #     imgs.append(img)
        # cv_core.show_img(imgs)

        num_level_anchors_inside = self.get_num_level_anchors_inside(
            num_level_anchors, inside_flags)
        assign_result = self.assigner.assign(anchors, num_level_anchors_inside,
                                             gt_bboxes, gt_bboxes_ignore,
                                             gt_labels)

        sampling_result = self.sampler.sample(assign_result, anchors,
                                              gt_bboxes)

        # 正样本可视化
        if self.debug:
            gt_inds = assign_result.gt_inds  # 0 1 -1 正负忽略样本标志
            index = gt_inds > 0
            gt_inds = gt_inds[index]
            print('单张图片中正样本anchor个数', len(gt_inds))
            imgs = []
            count = 0
            for num_level in num_level_anchors_inside:  # 注意要用num_level_anchors_inside,而不是num_level_anchors
                gt_inds = assign_result.gt_inds[count:count + num_level]
                anchor = anchors[count:count + num_level]
                count += num_level
                index = gt_inds > 0
                gt_anchor = anchor[index]
                img = show_pos_anchor(img_meta,
                                      gt_anchor,
                                      gt_bboxes,
                                      is_show=False)
                imgs.append(img)
            cv_core.show_img(imgs)

        num_valid_anchors = anchors.shape[0]
        bbox_targets = torch.zeros_like(anchors)
        bbox_weights = torch.zeros_like(anchors)
        labels = anchors.new_full((num_valid_anchors, ),
                                  self.num_classes,
                                  dtype=torch.long)
        label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            pos_bbox_targets = self.bbox_coder.encode(
                sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            if gt_labels is None:
                # Only rpn gives gt_labels as None
                # Foreground is the first class since v2.5.0
                labels[pos_inds] = 0
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]
            if self.train_cfg.pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg.pos_weight
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        # map up to original set of anchors
        if unmap_outputs:
            num_total_anchors = flat_anchors.size(0)
            anchors = unmap(anchors, num_total_anchors, inside_flags)
            labels = unmap(labels,
                           num_total_anchors,
                           inside_flags,
                           fill=self.num_classes)
            label_weights = unmap(label_weights, num_total_anchors,
                                  inside_flags)
            bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
            bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)

        return (anchors, labels, label_weights, bbox_targets, bbox_weights,
                pos_inds, neg_inds)
Ejemplo n.º 2
0
    def _ga_shape_target_single(self,
                                flat_approxs,
                                inside_flags,
                                flat_squares,
                                gt_bboxes,
                                gt_bboxes_ignore,
                                img_meta,
                                unmap_outputs=True):
        """Compute guided anchoring targets.

        This function returns sampled anchors and gt bboxes directly
        rather than calculates regression targets.

        Args:
            flat_approxs (Tensor): flat approxs of a single image,
                shape (n, 4)
            inside_flags (Tensor): inside flags of a single image,
                shape (n, ).
            flat_squares (Tensor): flat squares of a single image,
                shape (approxs_per_octave * n, 4)
            gt_bboxes (Tensor): Ground truth bboxes of a single image.
            img_meta (dict): Meta info of a single image.
            approxs_per_octave (int): number of approxs per octave
            cfg (dict): RPN train configs.
            unmap_outputs (bool): unmap outputs or not.

        Returns:
            tuple
        """
        if not inside_flags.any():
            return (None, ) * 5
        # assign gt and sample anchors
        expand_inside_flags = inside_flags[:, None].expand(
            -1, self.approxs_per_octave).reshape(-1)
        approxs = flat_approxs[expand_inside_flags, :]
        squares = flat_squares[inside_flags, :]

        # 利用approxs和gt bbox,对shape分支进行重新正负样本分配
        assign_result = self.ga_assigner.assign(approxs, squares,
                                                self.approxs_per_octave,
                                                gt_bboxes, gt_bboxes_ignore)
        # 随机采用有两个目的:随机采样正样本,但是最大目的其实是将assign_result和squares绑定
        # squares相当于anchor
        sampling_result = self.ga_sampler.sample(assign_result, squares,
                                                 gt_bboxes)

        bbox_anchors = torch.zeros_like(squares)
        bbox_gts = torch.zeros_like(squares)
        bbox_weights = torch.zeros_like(squares)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            # 这里可以发现,shape分支的预测target其实是squares和gt bbox的编码后结果
            bbox_anchors[
                pos_inds, :] = sampling_result.pos_bboxes  # 就是对应的squares
            bbox_gts[pos_inds, :] = sampling_result.pos_gt_bboxes
            bbox_weights[pos_inds, :] = 1.0

        # map up to original set of anchors
        if unmap_outputs:
            num_total_anchors = flat_squares.size(0)
            bbox_anchors = unmap(bbox_anchors, num_total_anchors, inside_flags)
            bbox_gts = unmap(bbox_gts, num_total_anchors, inside_flags)
            bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)

        return (bbox_anchors, bbox_gts, bbox_weights, pos_inds, neg_inds)
    def _point_target_single(self,
                             flat_proposals,
                             valid_flags,
                             gt_bboxes,
                             gt_bboxes_ignore,
                             gt_labels,
                             label_channels=1,
                             stage='init',
                             unmap_outputs=True):
        inside_flags = valid_flags
        if not inside_flags.any():
            return (None, ) * 7
        # assign gt and sample proposals
        proposals = flat_proposals[inside_flags, :]

        if stage == 'init':  # 初始训练
            assigner = self.init_assigner
            pos_weight = self.train_cfg.init.pos_weight
        else:  # refine训练
            assigner = self.refine_assigner
            pos_weight = self.train_cfg.refine.pos_weight
        # proposals实际上是point坐标,不是anchor坐标
        # 得到特征图上面每个点应该负责哪个gt bbox
        assign_result = assigner.assign(proposals, gt_bboxes, gt_bboxes_ignore,
                                        None if self.sampling else gt_labels)
        # 伪随机
        sampling_result = self.sampler.sample(assign_result, proposals,
                                              gt_bboxes)

        num_valid_proposals = proposals.shape[0]
        bbox_gt = proposals.new_zeros([num_valid_proposals, 4])
        pos_proposals = torch.zeros_like(proposals)
        proposals_weights = proposals.new_zeros([num_valid_proposals, 4])
        labels = proposals.new_full((num_valid_proposals, ),
                                    self.num_classes,
                                    dtype=torch.long)
        label_weights = proposals.new_zeros(num_valid_proposals,
                                            dtype=torch.float)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            pos_gt_bboxes = sampling_result.pos_gt_bboxes
            bbox_gt[pos_inds, :] = pos_gt_bboxes
            pos_proposals[pos_inds, :] = proposals[pos_inds, :]
            proposals_weights[pos_inds, :] = 1.0
            if gt_labels is None:
                # Only rpn gives gt_labels as None
                # Foreground is the first class
                labels[pos_inds] = 0
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]
            if pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = pos_weight
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        # map up to original set of proposals
        if unmap_outputs:
            num_total_proposals = flat_proposals.size(0)
            labels = unmap(labels, num_total_proposals, inside_flags)
            label_weights = unmap(label_weights, num_total_proposals,
                                  inside_flags)
            bbox_gt = unmap(bbox_gt, num_total_proposals, inside_flags)
            pos_proposals = unmap(pos_proposals, num_total_proposals,
                                  inside_flags)
            proposals_weights = unmap(proposals_weights, num_total_proposals,
                                      inside_flags)

        return (labels, label_weights, bbox_gt, pos_proposals,
                proposals_weights, pos_inds, neg_inds)
Ejemplo n.º 4
0
    def _get_targets_single(self,
                            flat_anchors,
                            valid_flags,
                            gt_bboxes,
                            gt_bboxes_ignore,
                            gt_labels,
                            img_meta,
                            label_channels=1,
                            unmap_outputs=True,
                            num_level_anchors=None):
        """Compute regression and classification targets for anchors in a
        single image.

        Args:
            flat_anchors (Tensor): Multi-level anchors of the image, which are
                concatenated into a single tensor of shape (num_anchors ,4)
            valid_flags (Tensor): Multi level valid flags of the image,
                which are concatenated into a single tensor of
                    shape (num_anchors,).
            gt_bboxes (Tensor): Ground truth bboxes of the image,
                shape (num_gts, 4).
            img_meta (dict): Meta info of the image.
            gt_bboxes_ignore (Tensor): Ground truth bboxes to be
                ignored, shape (num_ignored_gts, 4).
            img_meta (dict): Meta info of the image.
            gt_labels (Tensor): Ground truth labels of each box,
                shape (num_gts,).
            label_channels (int): Channel of label.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.

        Returns:
            tuple:
                labels_list (list[Tensor]): Labels of each level
                label_weights_list (list[Tensor]): Label weights of each level
                bbox_targets_list (list[Tensor]): BBox targets of each level
                bbox_weights_list (list[Tensor]): BBox weights of each level
                num_total_pos (int): Number of positive samples in all images
                num_total_neg (int): Number of negative samples in all images
        """
        # # 默认self.train_cfg.allowed_border=-1 也就是仅仅看valid_flags就可以,功能重复
        inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
                                           img_meta['img_shape'][:2],
                                           self.train_cfg.allowed_border)
        if not inside_flags.any():
            return (None,) * 7
        # assign gt and sample anchors
        anchors = flat_anchors[inside_flags, :]

        # 核心类,基于anchor和gt bbox,进行正负样本anchor分配
        assign_result = self.assigner.assign(
            anchors, gt_bboxes, gt_bboxes_ignore,
            None if self.sampling else gt_labels)

        if self.debug:
            # 统计下正样本个数
            print('----anchor分配正负样本后,正样本anchor可视化,白色bbox是gt----')
            gt_inds = assign_result.gt_inds  # 0 1 -1 正负忽略样本标志
            index = gt_inds > 0
            gt_inds = gt_inds[index]
            gt_anchors = anchors[index]
            print('单张图片中正样本anchor个数', len(gt_inds))
            if num_level_anchors is None:  # 不分层显示
                show_pos_anchor(img_meta, gt_anchors, gt_bboxes)
            else:
                imgs = []
                count = 0
                for num_level in num_level_anchors:
                    gt_inds = assign_result.gt_inds[count:count + num_level]
                    anchor = anchors[count:count + num_level]
                    count += num_level
                    index = gt_inds > 0
                    gt_anchor = anchor[index]
                    img = show_pos_anchor(img_meta, gt_anchor, gt_bboxes, is_show=False)
                    imgs.append(img)
                print('从大特征图到小特征图顺序显示')
                cv_core.show_img(imgs)

        # 正负样本采样,默认是伪随机,也就是相当于没有
        sampling_result = self.sampler.sample(assign_result, anchors,
                                              gt_bboxes)

        num_valid_anchors = anchors.shape[0]  # 这里计算的仅仅是有效区域anchor
        bbox_targets = torch.zeros_like(anchors)
        bbox_weights = torch.zeros_like(anchors)
        labels = anchors.new_full((num_valid_anchors,),
                                  self.background_label,
                                  dtype=torch.long)
        # 正负样本区域权重为1,其余位置全部设置为0
        label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            # 是否需要对gt进行编码,主要是区分l1 loss和iou类 loss
            # l1 loss需要编解码,iou loss不需要
            if not self.reg_decoded_bbox:
                pos_bbox_targets = self.bbox_coder.encode(
                    sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
            else:
                pos_bbox_targets = sampling_result.pos_gt_bboxes
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            if gt_labels is None:
                # only rpn gives gt_labels as None, this time FG is 1
                labels[pos_inds] = 1
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]  # labels里面存储的,0-num_class表示正样本对应的class,num_class表示背景
            if self.train_cfg.pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg.pos_weight
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        # 为了方便计算,还原到最原始anchor个数,这个操作也非常关键,特别是label_weights和bbox_weights
        # map up to original set of anchors
        if unmap_outputs:
            num_total_anchors = flat_anchors.size(0)
            labels = unmap(
                labels,
                num_total_anchors,
                inside_flags,
                fill=self.background_label)  # fill bg label
            label_weights = unmap(label_weights, num_total_anchors,
                                  inside_flags)
            bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
            bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)

        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds, sampling_result)
Ejemplo n.º 5
0
    def _get_target_single(self,
                           flat_anchors,
                           valid_flags,
                           num_level_anchors,
                           gt_bboxes,
                           gt_bboxes_ignore,
                           gt_labels,
                           img_meta,
                           label_channels=1,
                           unmap_outputs=True):
        """Compute regression, classification targets for anchors in a single
        image.

        Args:
            flat_anchors (Tensor): Multi-level anchors of the image, which are
                concatenated into a single tensor of shape (num_anchors, 4)
            valid_flags (Tensor): Multi level valid flags of the image,
                which are concatenated into a single tensor of
                    shape (num_anchors,).
            num_level_anchors Tensor): Number of anchors of each scale level.
            gt_bboxes (Tensor): Ground truth bboxes of the image,
                shape (num_gts, 4).
            gt_bboxes_ignore (Tensor): Ground truth bboxes to be
                ignored, shape (num_ignored_gts, 4).
            gt_labels (Tensor): Ground truth labels of each box,
                shape (num_gts,).
            img_meta (dict): Meta info of the image.
            label_channels (int): Channel of label.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.

        Returns:
            tuple: N is the number of total anchors in the image.
                anchors (Tensor): All anchors in the image with shape (N, 4).
                labels (Tensor): Labels of all anchors in the image with shape
                    (N,).
                label_weights (Tensor): Label weights of all anchor in the
                    image with shape (N,).
                bbox_targets (Tensor): BBox targets of all anchors in the
                    image with shape (N, 4).
                bbox_weights (Tensor): BBox weights of all anchors in the
                    image with shape (N, 4).
                pos_inds (Tensor): Indices of postive anchor with shape
                    (num_pos,).
                neg_inds (Tensor): Indices of negative anchor with shape
                    (num_neg,).
        """
        inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
                                           img_meta['img_shape'][:2],
                                           self.train_cfg.allowed_border)
        if not inside_flags.any():
            return (None,) * 7
        # assign gt and sample anchors
        anchors = flat_anchors[inside_flags, :]

        num_level_anchors_inside = self.get_num_level_anchors_inside(
            num_level_anchors, inside_flags)
        assign_result = self.assigner.assign(anchors, num_level_anchors_inside,
                                             gt_bboxes, gt_bboxes_ignore,
                                             gt_labels)

        sampling_result = self.sampler.sample(assign_result, anchors,
                                              gt_bboxes)

        num_valid_anchors = anchors.shape[0]
        bbox_targets = torch.zeros_like(anchors)
        bbox_weights = torch.zeros_like(anchors)
        labels = anchors.new_full((num_valid_anchors,),
                                  self.num_classes,
                                  dtype=torch.long)
        label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            pos_bbox_targets = sampling_result.pos_gt_bboxes
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            if gt_labels is None:
                # Only rpn gives gt_labels as None
                # Foreground is the first class
                labels[pos_inds] = 0
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]
            if self.train_cfg.pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg.pos_weight
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        # map up to original set of anchors
        if unmap_outputs:
            num_total_anchors = flat_anchors.size(0)
            anchors = unmap(anchors, num_total_anchors, inside_flags)
            labels = unmap(
                labels, num_total_anchors, inside_flags, fill=self.num_classes)
            label_weights = unmap(label_weights, num_total_anchors,
                                  inside_flags)
            bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
            bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)

        return (anchors, labels, label_weights, bbox_targets, bbox_weights,
                pos_inds, neg_inds)
    def _get_target_single(self,
                           flat_approxs,
                           inside_flags,
                           flat_squares,
                           gt_bboxes,
                           gt_bboxes_ignore,
                           gt_labels,
                           img_meta,
                           label_channels=None,
                           sampling=True,
                           unmap_outputs=True):
        """Compute regression and classification targets for anchors in a
        single image.

        Args:
            flat_approxs (Tensor): flat approxs of a single image,
                shape (n, 4)
            inside_flags (Tensor): inside flags of a single image,
                shape (n, ).
            flat_squares (Tensor): flat squares of a single image,
                shape (approxs_per_octave * n, 4)
            gt_bboxes (Tensor): Ground truth bboxes of a single image, \
                shape (num_gts, 4).
            gt_bboxes_ignore (Tensor): Ground truth bboxes to be
                ignored, shape (num_ignored_gts, 4).
            gt_labels (Tensor): Ground truth labels of each box,
                shape (num_gts,).
            img_meta (dict): Meta info of the image.
            label_channels (int): Channel of label.
            sampling (bool): Sample Anchors or not.
            unmap_outputs (bool): unmap outputs or not.

        Returns:
            tuple:

                - labels_list (Tensor): Labels in a single image
                - label_weights (Tensor): Label weights in a single image
                - bbox_cls_targets (Tensor): BBox cls targets in a single image
                - bbox_cls_weights (Tensor): BBox cls weights in a single image
                - bbox_reg_targets (Tensor): BBox reg targets in a single image
                - bbox_reg_weights (Tensor): BBox reg weights in a single image
                - num_total_pos (int): Number of positive samples \
                    in a single image
                - num_total_neg (int): Number of negative samples \
                    in a single image
        """
        if not inside_flags.any():
            return (None, ) * 8
        # assign gt and sample anchors
        expand_inside_flags = inside_flags[:, None].expand(
            -1, self.approxs_per_octave).reshape(-1)
        approxs = flat_approxs[expand_inside_flags, :]
        squares = flat_squares[inside_flags, :]

        # 近似anchor正负样本分配策略
        assign_result = self.assigner.assign(approxs, squares,
                                             self.approxs_per_octave,
                                             gt_bboxes, gt_bboxes_ignore)
        # 伪随机,实际上就是将每个正样本分配位置和squares、gt_bboxes绑定
        sampling_result = self.sampler.sample(assign_result, squares,
                                              gt_bboxes)

        num_valid_squares = squares.shape[0]
        # 第一步桶分类targets
        bbox_cls_targets = squares.new_zeros(
            (num_valid_squares, self.side_num * 4))
        bbox_cls_weights = squares.new_zeros(
            (num_valid_squares, self.side_num * 4))
        # 第二步精细回归targets
        bbox_reg_targets = squares.new_zeros(
            (num_valid_squares, self.side_num * 4))
        bbox_reg_weights = squares.new_zeros(
            (num_valid_squares, self.side_num * 4))
        # 每个特征图位置所负责的gt bbox值
        labels = squares.new_full((num_valid_squares, ),
                                  self.num_classes,
                                  dtype=torch.long)
        label_weights = squares.new_zeros(num_valid_squares, dtype=torch.float)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            # pos_bboxes是squares,pos_gt_bboxes是gt bbox,本算法核心
            (pos_bbox_reg_targets, pos_bbox_reg_weights, pos_bbox_cls_targets,
             pos_bbox_cls_weights) = self.bbox_coder.encode(
                 sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)

            # 注意pos_bbox_reg_targets,其输出是(n,28)
            # 28表示4x7,假设任何一条gt bbox的边,其都可以算出相对每个桶的offset
            # 对于任何一个anchor,由前面的近似anchor分配策略,可以知道哪些anchor是正样本,负责预测对应gt bbox
            # 在确定了anchor和gt bbox的对应关系后,假设分成7个桶,那么这7个桶里面也有正负样本定义规则
            # 对于pos_bbox_reg_targets,是gt bbox所落在的桶和邻居桶都算正样本,其余几个桶忽略掉即可
            # 对于pos_bbox_reg_weights的7个位置有n个是0
            # pos_bbox_reg_targets里面的任意7个数都表示7个桶中心坐标相对同一个gt bbox边的offset,也就是我们的学习值
            bbox_cls_targets[pos_inds, :] = pos_bbox_cls_targets
            bbox_reg_targets[pos_inds, :] = pos_bbox_reg_targets
            bbox_cls_weights[pos_inds, :] = pos_bbox_cls_weights
            bbox_reg_weights[pos_inds, :] = pos_bbox_reg_weights
            if gt_labels is None:
                # Only rpn gives gt_labels as None
                # Foreground is the first class
                labels[pos_inds] = 0
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]
            if self.train_cfg.pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg.pos_weight
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        # map up to original set of anchors
        if unmap_outputs:
            num_total_anchors = flat_squares.size(0)
            labels = unmap(labels,
                           num_total_anchors,
                           inside_flags,
                           fill=self.num_classes)
            label_weights = unmap(label_weights, num_total_anchors,
                                  inside_flags)
            bbox_cls_targets = unmap(bbox_cls_targets, num_total_anchors,
                                     inside_flags)
            bbox_cls_weights = unmap(bbox_cls_weights, num_total_anchors,
                                     inside_flags)
            bbox_reg_targets = unmap(bbox_reg_targets, num_total_anchors,
                                     inside_flags)
            bbox_reg_weights = unmap(bbox_reg_weights, num_total_anchors,
                                     inside_flags)
        return (labels, label_weights, bbox_cls_targets, bbox_cls_weights,
                bbox_reg_targets, bbox_reg_weights, pos_inds, neg_inds)
Ejemplo n.º 7
0
    def _get_targets_single(self,
                            flat_anchors,
                            valid_flags,
                            gt_bboxes,
                            gt_bboxes_ignore,
                            gt_labels,
                            img_meta,
                            label_channels=1,
                            unmap_outputs=True):
        """Compute regression and classification targets for anchors in a
        single image.

        Args:
            flat_anchors (Tensor): Multi-level anchors of the image, which are
                concatenated into a single tensor of shape (num_anchors ,4)
            valid_flags (Tensor): Multi level valid flags of the image,
                which are concatenated into a single tensor of
                    shape (num_anchors,).
            gt_bboxes (Tensor): Ground truth bboxes of the image,
                shape (num_gts, 4).
            img_meta (dict): Meta info of the image.
            gt_bboxes_ignore (Tensor): Ground truth bboxes to be
                ignored, shape (num_ignored_gts, 4).
            img_meta (dict): Meta info of the image.
            gt_labels (Tensor): Ground truth labels of each box,
                shape (num_gts,).
            label_channels (int): Channel of label.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.

        Returns:
            tuple:
                labels_list (list[Tensor]): Labels of each level
                label_weights_list (list[Tensor]): Label weights of each level
                bbox_targets_list (list[Tensor]): BBox targets of each level
                bbox_weights_list (list[Tensor]): BBox weights of each level
                num_total_pos (int): Number of positive samples in all images
                num_total_neg (int): Number of negative samples in all images
        """
        inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
                                           img_meta['img_shape'][:2],
                                           self.train_cfg.allowed_border)
        if not inside_flags.any():
            return (None, ) * 7
        # assign gt and sample anchors
        anchors = flat_anchors[inside_flags, :]

        assign_result = self.assigner.assign(
            anchors, gt_bboxes, gt_bboxes_ignore,
            None if self.sampling else gt_labels)
        sampling_result = self.sampler.sample(assign_result, anchors,
                                              gt_bboxes)

        num_valid_anchors = anchors.shape[0]
        bbox_targets = torch.zeros_like(anchors)
        bbox_weights = torch.zeros_like(anchors)
        labels = anchors.new_full((num_valid_anchors, ),
                                  self.background_label,
                                  dtype=torch.long)
        label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            if not self.reg_decoded_bbox:
                pos_bbox_targets = self.bbox_coder.encode(
                    sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
            else:
                pos_bbox_targets = sampling_result.pos_gt_bboxes
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            if gt_labels is None:
                # only rpn gives gt_labels as None, this time FG is 1
                labels[pos_inds] = 1
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]
            if self.train_cfg.pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg.pos_weight
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        # map up to original set of anchors
        if unmap_outputs:
            num_total_anchors = flat_anchors.size(0)
            labels = unmap(labels,
                           num_total_anchors,
                           inside_flags,
                           fill=self.background_label)  # fill bg label
            label_weights = unmap(label_weights, num_total_anchors,
                                  inside_flags)
            bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
            bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)

        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds, sampling_result)