Ejemplo n.º 1
0
    def PytorchEmit(original_framework, architecture_name, architecture_path, weight_path, image_path):
        import torch
        from mmdnn.conversion.pytorch.pytorch_emitter import PytorchEmitter

        # IR to code
        converted_file = original_framework + '_pytorch_' + architecture_name + "_converted"
        converted_file = converted_file.replace('.', '_')
        emitter = PytorchEmitter((architecture_path, weight_path))
        emitter.run(converted_file + '.py', converted_file + '.npy', 'test')
        del emitter
        del PytorchEmitter

        # import converted model
        model_converted = __import__(converted_file).KitModel(converted_file + '.npy')
        model_converted.eval()

        func = TestKit.preprocess_func[original_framework][architecture_name]
        img = func(image_path)
        img = np.transpose(img, (2, 0, 1))
        img = np.expand_dims(img, 0).copy()
        input_data = torch.from_numpy(img)
        input_data = torch.autograd.Variable(input_data, requires_grad = False)

        predict = model_converted(input_data)
        predict = predict.data.numpy()
        converted_predict = np.squeeze(predict)

        del model_converted
        del sys.modules[converted_file]
        del torch
        os.remove(converted_file + '.py')
        os.remove(converted_file + '.npy')

        return converted_predict
    def PytorchEmit(original_framework, architecture_name, architecture_path, weight_path, image_path):
        import torch

        # IR to code
        converted_file = original_framework + '_pytorch_' + architecture_name + "_converted"
        converted_file = converted_file.replace('.', '_')
        emitter = PytorchEmitter((architecture_path, weight_path))
        emitter.run(converted_file + '.py', converted_file + '.npy', 'test')
        del emitter

        # import converted model
        model_converted = __import__(converted_file).KitModel(converted_file + '.npy')
        model_converted.eval()

        func = TestKit.preprocess_func[original_framework][architecture_name]
        img = func(image_path)
        img = np.transpose(img, (2, 0, 1))
        img = np.expand_dims(img, 0).copy()
        input_data = torch.from_numpy(img)
        input_data = torch.autograd.Variable(input_data, requires_grad = False)

        predict = model_converted(input_data)
        predict = predict.data.numpy()
        converted_predict = np.squeeze(predict)

        del model_converted
        del sys.modules[converted_file]
        del torch
        os.remove(converted_file + '.py')
        os.remove(converted_file + '.npy')

        return converted_predict
Ejemplo n.º 3
0
def _convert(args):
    if args.dstFramework == 'caffe':
        from mmdnn.conversion.caffe.caffe_emitter import CaffeEmitter
        if args.IRWeightPath is None:
            emitter = CaffeEmitter(args.IRModelPath)
        else:
            assert args.dstWeightPath
            emitter = CaffeEmitter((args.IRModelPath, args.IRWeightPath))

    elif args.dstFramework == 'keras':
        from mmdnn.conversion.keras.keras2_emitter import Keras2Emitter
        emitter = Keras2Emitter((args.IRModelPath, args.IRWeightPath))

    elif args.dstFramework == 'tensorflow':
        from mmdnn.conversion.tensorflow.tensorflow_emitter import TensorflowEmitter
        if args.IRWeightPath is None:
            # Convert network architecture only
            emitter = TensorflowEmitter(args.IRModelPath)
        else:
            emitter = TensorflowEmitter((args.IRModelPath, args.IRWeightPath))

    elif args.dstFramework == 'cntk':
        from mmdnn.conversion.cntk.cntk_emitter import CntkEmitter
        if args.IRWeightPath is None:
            emitter = CntkEmitter(args.IRModelPath)
        else:
            emitter = CntkEmitter((args.IRModelPath, args.IRWeightPath))

    elif args.dstFramework == 'coreml':
        raise NotImplementedError("CoreML emitter is not finished yet.")

    elif args.dstFramework == 'pytorch':
        if not args.dstWeightPath or not args.IRWeightPath:
            raise ValueError("Need to set a target weight filename.")
        from mmdnn.conversion.pytorch.pytorch_emitter import PytorchEmitter
        emitter = PytorchEmitter((args.IRModelPath, args.IRWeightPath))

    elif args.dstFramework == 'mxnet':
        from mmdnn.conversion.mxnet.mxnet_emitter import MXNetEmitter
        if args.IRWeightPath is None:
            emitter = MXNetEmitter(args.IRModelPath)
        else:
            if args.dstWeightPath is None:
                raise ValueError(
                    "MXNet emitter needs argument [dstWeightPath(dw)], like -dw mxnet_converted-0000.param"
                )
            emitter = MXNetEmitter(
                (args.IRModelPath, args.IRWeightPath, args.dstWeightPath))
    elif args.dstFramework == 'onnx':
        from mmdnn.conversion.onnx.onnx_emitter import OnnxEmitter
        if args.IRWeightPath is None:
            raise NotImplementedError("ONNX emitter needs IR weight file")
        else:
            emitter = OnnxEmitter(args.IRModelPath, args.IRWeightPath)
    else:
        assert False

    emitter.run(args.dstModelPath, args.dstWeightPath, args.phase)

    return 0
Ejemplo n.º 4
0
    def pytorch_emit(original_framework, architecture_name, architecture_path,
                     weight_path, test_input_path):
        from mmdnn.conversion.pytorch.pytorch_emitter import PytorchEmitter

        # IR to code
        converted_file = TestModels.tmpdir + original_framework + '_pytorch_' + architecture_name + "_converted"
        converted_file = converted_file.replace('.', '_')
        emitter = PytorchEmitter((architecture_path, weight_path))
        emitter.run(converted_file + '.py', converted_file + '.npy', 'test')
        del emitter
        del PytorchEmitter

        # import converted model
        import torch
        model_converted = imp.load_source(
            'PytorchModel',
            converted_file + '.py').KitModel(converted_file + '.npy')

        model_converted.eval()

        original_framework = checkfrozen(original_framework)
        if 'rnn' not in architecture_name:
            func = TestKit.preprocess_func[original_framework][
                architecture_name]
            img = func(test_input_path(architecture_name))
            img = np.transpose(img, (2, 0, 1))
            img = np.expand_dims(img, 0).copy()
            input_data = torch.from_numpy(img)
            input_data = torch.autograd.Variable(input_data,
                                                 requires_grad=False)
        else:
            sentence = np.load(test_input_path(architecture_name))
            input_data = torch.from_numpy(sentence)
            input_data = torch.autograd.Variable(input_data,
                                                 requires_grad=False)

        predict = model_converted(input_data)
        predict = predict.data.numpy()
        converted_predict = np.squeeze(predict)

        del model_converted
        del sys.modules['PytorchModel']
        del torch
        os.remove(converted_file + '.py')
        os.remove(converted_file + '.npy')

        return converted_predict
Ejemplo n.º 5
0
def _convert(args):
    if args.dstModelFormat == 'caffe':
        raise NotImplementedError(
            "Destination [Caffe] is not implemented yet.")

    elif args.dstModelFormat == 'keras':
        from mmdnn.conversion.keras.keras2_emitter import Keras2Emitter
        emitter = Keras2Emitter(args.IRModelPath)

    elif args.dstModelFormat == 'tensorflow':
        from mmdnn.conversion.tensorflow.tensorflow_emitter import TensorflowEmitter
        if args.IRWeightPath == None:
            emitter = TensorflowEmitter(args.IRModelPath)
        else:
            emitter = TensorflowEmitter((args.IRModelPath, args.IRWeightPath))

    elif args.dstModelFormat == 'cntk':
        from mmdnn.conversion.cntk.cntk_emitter import CntkEmitter
        if args.IRWeightPath == None:
            emitter = CntkEmitter(args.IRModelPath)
        else:
            emitter = CntkEmitter((args.IRModelPath, args.IRWeightPath))

    elif args.dstModelFormat == 'coreml':
        raise NotImplementedError("CoreML emitter is not finished yet.")
        assert args.IRWeightPath != None
        from mmdnn.conversion.coreml.coreml_emitter import CoreMLEmitter
        emitter = CoreMLEmitter((args.IRModelPath, args.IRWeightPath))
        model = emitter.gen_model()
        print("Saving the CoreML model [{}].".format(args.dstModelPath +
                                                     '.mlmodel'))
        model.save(args.dstModelPath + '.mlmodel')
        print("The converted CoreML model saved as [{}].".format(
            args.dstModelPath + '.mlmodel'))
        return 0

    elif args.dstModelFormat == 'pytorch':
        if not args.dstWeightPath or not args.IRWeightPath:
            raise ValueError("Need to set a target weight filename.")
        from mmdnn.conversion.pytorch.pytorch_emitter import PytorchEmitter
        emitter = PytorchEmitter((args.IRModelPath, args.IRWeightPath))

    elif args.dstModelFormat == 'mxnet':
        from mmdnn.conversion.mxnet.mxnet_emitter import MXNetEmitter
        if args.IRWeightPath == None:
            emitter = MXNetEmitter(args.IRModelPath)
        else:
            emitter = MXNetEmitter((args.IRModelPath, args.IRWeightPath,
                                    args.inputShape, args.dstWeightPath))

    else:
        assert False

    emitter.run(args.dstModelPath, args.dstWeightPath, args.phase)

    return 0
Ejemplo n.º 6
0
def _convert(args):
    if args.framework == 'caffe':
        raise NotImplementedError(
            "Destination [Caffe] is not implemented yet.")

    elif args.framework == 'keras':
        raise NotImplementedError(
            "Destination [Keras] is not implemented yet.")

    elif args.framework == 'tensorflow':
        raise NotImplementedError(
            "Destination [Tensorflow] is not implemented yet.")

    elif args.framework == 'cntk':
        raise NotImplementedError(
            "Destination [Tensorflow] is not implemented yet.")

    elif args.framework == 'coreml':
        from mmdnn.conversion.coreml.coreml_emitter import CoreMLEmitter
        assert args.inputNetwork is not None
        assert args.inputWeight is not None
        emitter = CoreMLEmitter(args.inputNetwork, args.inputWeight)
        model = emitter.gen_model(
            args.inputNames,
            args.outputNames,
            image_input_names=set(args.imageInputNames)
            if args.imageInputNames else None,
            is_bgr=args.isBGR,
            red_bias=args.redBias,
            blue_bias=args.blueBias,
            green_bias=args.greenBias,
            gray_bias=args.grayBias,
            image_scale=args.scale,
            class_labels=args.classInputPath if args.classInputPath else None,
            predicted_feature_name=args.predictedFeatureName)
        """
        from google.protobuf import text_format
        with open(args.output+'.txt', 'w') as f:
            f.write(text_format.MessageToString(model))
        """

        with open(args.output, 'wb') as f:
            model = model.SerializeToString()
            f.write(model)

        return 0

    elif args.framework == 'pytorch':
        if not args.dstWeightPath or not args.IRWeightPath:
            raise ValueError("Need to set a target weight filename.")
        from mmdnn.conversion.pytorch.pytorch_emitter import PytorchEmitter
        emitter = PytorchEmitter((args.IRModelPath, args.IRWeightPath))

    elif args.framework == 'mxnet':
        from mmdnn.conversion.mxnet.mxnet_emitter import MXNetEmitter
        if args.IRWeightPath == None:
            emitter = MXNetEmitter(args.IRModelPath)
        else:
            emitter = MXNetEmitter((args.IRModelPath, args.IRWeightPath,
                                    args.inputShape, args.dstWeightPath))

    else:
        assert False

    emitter.run(args.output)

    return 0