Ejemplo n.º 1
0
def test_volume_source_morph_round_trip(
        tmpdir, subject_from, subject_to, lower, upper, dtype, morph_mat,
        monkeypatch):
    """Test volume source estimate morph round-trips well."""
    import nibabel as nib
    from nibabel.processing import resample_from_to
    src = dict()
    if morph_mat:
        # ~1.5 minutes with pos=7. (4157 morphs!) for sample, so only test
        # morph_mat computation mode with a few labels
        label_names = sorted(get_volume_labels_from_aseg(fname_aseg))[1:2]
        if 'sample' in (subject_from, subject_to):
            src['sample'] = setup_volume_source_space(
                'sample', subjects_dir=subjects_dir,
                volume_label=label_names, mri=fname_aseg)
            assert sum(s['nuse'] for s in src['sample']) == 12
        if 'fsaverage' in (subject_from, subject_to):
            src['fsaverage'] = setup_volume_source_space(
                'fsaverage', subjects_dir=subjects_dir,
                volume_label=label_names[:3], mri=fname_aseg_fs)
            assert sum(s['nuse'] for s in src['fsaverage']) == 16
    else:
        assert not morph_mat
        if 'sample' in (subject_from, subject_to):
            src['sample'] = mne.read_source_spaces(fname_vol)
            src['sample'][0]['subject_his_id'] = 'sample'
            assert src['sample'][0]['nuse'] == 4157
        if 'fsaverage' in (subject_from, subject_to):
            # Created to save space with:
            #
            # bem = op.join(op.dirname(mne.__file__), 'data', 'fsaverage',
            #               'fsaverage-inner_skull-bem.fif')
            # src_fsaverage = mne.setup_volume_source_space(
            #     'fsaverage', pos=7., bem=bem, mindist=0,
            #     subjects_dir=subjects_dir, add_interpolator=False)
            # mne.write_source_spaces(fname_fs_vol, src_fsaverage,
            #                         overwrite=True)
            #
            # For speed we do it without the interpolator because it's huge.
            src['fsaverage'] = mne.read_source_spaces(fname_fs_vol)
            src['fsaverage'][0].update(
                vol_dims=np.array([23, 29, 25]), seg_name='brain')
            _add_interpolator(src['fsaverage'])
            assert src['fsaverage'][0]['nuse'] == 6379
    src_to, src_from = src[subject_to], src[subject_from]
    del src
    # No SDR just for speed once everything works
    kwargs = dict(niter_sdr=(), niter_affine=(1,),
                  subjects_dir=subjects_dir, verbose=True)
    morph_from_to = compute_source_morph(
        src=src_from, src_to=src_to, subject_to=subject_to, **kwargs)
    morph_to_from = compute_source_morph(
        src=src_to, src_to=src_from, subject_to=subject_from, **kwargs)
    nuse = sum(s['nuse'] for s in src_from)
    assert nuse > 10
    use = np.linspace(0, nuse - 1, 10).round().astype(int)
    data = np.eye(nuse)[:, use]
    if dtype is complex:
        data = data * 1j
    vertices = [s['vertno'] for s in src_from]
    stc_from = VolSourceEstimate(data, vertices, 0, 1)
    with catch_logging() as log:
        stc_from_rt = morph_to_from.apply(
            morph_from_to.apply(stc_from, verbose='debug'))
    log = log.getvalue()
    assert 'individual volume morph' in log
    maxs = np.argmax(stc_from_rt.data, axis=0)
    src_rr = np.concatenate([s['rr'][s['vertno']] for s in src_from])
    dists = 1000 * np.linalg.norm(src_rr[use] - src_rr[maxs], axis=1)
    mu = np.mean(dists)
    # fsaverage=5.99; 7.97 without additional src_ras_t fix
    # fsaverage=7.97; 25.4 without src_ras_t fix
    assert lower <= mu < upper, f'round-trip distance {mu}'
    # check that pre_affine is close to identity when subject_to==subject_from
    if subject_to == subject_from:
        for morph in (morph_to_from, morph_from_to):
            assert_allclose(
                morph.pre_affine.affine, np.eye(4), atol=1e-2)
    # check that power is more or less preserved (labelizing messes with this)
    if morph_mat:
        if subject_to == 'fsaverage':
            limits = (18, 18.5)
        else:
            limits = (7, 7.5)
    else:
        limits = (1, 1.2)
    stc_from_unit = stc_from.copy().crop(0, 0)
    stc_from_unit._data.fill(1.)
    stc_from_unit_rt = morph_to_from.apply(morph_from_to.apply(stc_from_unit))
    assert_power_preserved(stc_from_unit, stc_from_unit_rt, limits=limits)
    if morph_mat:
        fname = tmpdir.join('temp-morph.h5')
        morph_to_from.save(fname)
        morph_to_from = read_source_morph(fname)
        assert morph_to_from.vol_morph_mat is None
        morph_to_from.compute_vol_morph_mat(verbose=True)
        morph_to_from.save(fname, overwrite=True)
        morph_to_from = read_source_morph(fname)
        assert isinstance(morph_to_from.vol_morph_mat, csr_matrix), 'csr'
        # equivalence (plus automatic calling)
        assert morph_from_to.vol_morph_mat is None
        monkeypatch.setattr(mne.morph, '_VOL_MAT_CHECK_RATIO', 0.)
        with catch_logging() as log:
            with pytest.warns(RuntimeWarning, match=r'calling morph\.compute'):
                stc_from_rt_lin = morph_to_from.apply(
                    morph_from_to.apply(stc_from, verbose='debug'))
        assert isinstance(morph_from_to.vol_morph_mat, csr_matrix), 'csr'
        log = log.getvalue()
        assert 'sparse volume morph matrix' in log
        assert_allclose(stc_from_rt.data, stc_from_rt_lin.data)
        del stc_from_rt_lin
        stc_from_unit_rt_lin = morph_to_from.apply(
            morph_from_to.apply(stc_from_unit))
        assert_allclose(stc_from_unit_rt.data, stc_from_unit_rt_lin.data)
        del stc_from_unit_rt_lin
    del stc_from, stc_from_rt
    # before and after morph, check the proportion of vertices
    # that are inside and outside the brainmask.mgz
    brain = nib.load(op.join(subjects_dir, subject_from, 'mri', 'brain.mgz'))
    mask = _get_img_fdata(brain) > 0
    if subject_from == subject_to == 'sample':
        for stc in [stc_from_unit, stc_from_unit_rt]:
            img = stc.as_volume(src_from, mri_resolution=True)
            img = nib.Nifti1Image(  # abs to convert complex
                np.abs(_get_img_fdata(img)[:, :, :, 0]), img.affine)
            img = _get_img_fdata(resample_from_to(img, brain, order=1))
            assert img.shape == mask.shape
            in_ = img[mask].astype(bool).mean()
            out = img[~mask].astype(bool).mean()
            if morph_mat:
                out_max = 0.001
                in_min, in_max = 0.005, 0.007
            else:
                out_max = 0.02
                in_min, in_max = 0.97, 0.98
            assert out < out_max, f'proportion out of volume {out}'
            assert in_min < in_ < in_max, f'proportion inside volume {in_}'
Ejemplo n.º 2
0
def test_volume_source_morph_round_trip(tmpdir, subject_from, subject_to,
                                        lower, upper):
    """Test volume source estimate morph round-trips well."""
    import nibabel as nib
    from nibabel.processing import resample_from_to
    src = dict()
    if 'sample' in (subject_from, subject_to):
        src['sample'] = mne.read_source_spaces(fname_vol)
        src['sample'][0]['subject_his_id'] = 'sample'
        assert src['sample'][0]['nuse'] == 4157
    if 'fsaverage' in (subject_from, subject_to):
        # Created to save space with:
        #
        # bem = op.join(op.dirname(mne.__file__), 'data', 'fsaverage',
        #               'fsaverage-inner_skull-bem.fif')
        # src_fsaverage = mne.setup_volume_source_space(
        #     'fsaverage', pos=7., bem=bem, mindist=0,
        #     subjects_dir=subjects_dir, add_interpolator=False)
        # mne.write_source_spaces(fname_fs_vol, src_fsaverage, overwrite=True)
        #
        # For speed we do it without the interpolator because it's huge.
        src['fsaverage'] = mne.read_source_spaces(fname_fs_vol)
        src['fsaverage'][0].update(vol_dims=np.array([23, 29, 25]),
                                   seg_name='brain')
        _add_interpolator(src['fsaverage'], True)
        assert src['fsaverage'][0]['nuse'] == 6379
    src_to, src_from = src[subject_to], src[subject_from]
    del src
    # No SDR just for speed once everything works
    kwargs = dict(niter_sdr=(),
                  niter_affine=(1, ),
                  subjects_dir=subjects_dir,
                  verbose=True)
    morph_from_to = compute_source_morph(src=src_from,
                                         src_to=src_to,
                                         subject_to=subject_to,
                                         **kwargs)
    morph_to_from = compute_source_morph(src=src_to,
                                         src_to=src_from,
                                         subject_to=subject_from,
                                         **kwargs)
    use = np.linspace(0, src_from[0]['nuse'] - 1, 10).round().astype(int)
    stc_from = VolSourceEstimate(
        np.eye(src_from[0]['nuse'])[:, use], [src_from[0]['vertno']], 0, 1)
    stc_from_rt = morph_to_from.apply(morph_from_to.apply(stc_from))
    maxs = np.argmax(stc_from_rt.data, axis=0)
    src_rr = src_from[0]['rr'][src_from[0]['vertno']]
    dists = 1000 * np.linalg.norm(src_rr[use] - src_rr[maxs], axis=1)
    mu = np.mean(dists)
    assert lower <= mu < upper  # fsaverage=7.97; 25.4 without src_ras_t fix
    # check that pre_affine is close to identity when subject_to==subject_from
    if subject_to == subject_from:
        for morph in (morph_to_from, morph_from_to):
            assert_allclose(morph.pre_affine.affine, np.eye(4), atol=1e-2)
    # check that power is more or less preserved
    ratio = stc_from.data.size / stc_from_rt.data.size
    limits = ratio * np.array([1, 1.2])
    stc_from.crop(0, 0)._data.fill(1.)
    stc_from_rt = morph_to_from.apply(morph_from_to.apply(stc_from))
    assert_power_preserved(stc_from, stc_from_rt, limits=limits)
    # before and after morph, check the proportion of vertices
    # that are inside and outside the brainmask.mgz
    brain = nib.load(op.join(subjects_dir, subject_from, 'mri', 'brain.mgz'))
    mask = _get_img_fdata(brain) > 0
    if subject_from == subject_to == 'sample':
        for stc in [stc_from, stc_from_rt]:
            img = stc.as_volume(src_from, mri_resolution=True)
            img = nib.Nifti1Image(_get_img_fdata(img)[:, :, :, 0], img.affine)
            img = _get_img_fdata(resample_from_to(img, brain, order=1))
            assert img.shape == mask.shape
            in_ = img[mask].astype(bool).mean()
            out = img[~mask].astype(bool).mean()
            assert 0.97 < in_ < 0.98
            assert out < 0.02