def test_io_stc(): """Test IO for STC files """ stc = read_stc(fname) write_stc(op.join(tempdir, "tmp.stc"), stc['tmin'], stc['tstep'], stc['vertices'], stc['data']) stc2 = read_stc(op.join(tempdir, "tmp.stc")) assert_array_almost_equal(stc['data'], stc2['data']) assert_array_almost_equal(stc['tmin'], stc2['tmin']) assert_array_almost_equal(stc['vertices'], stc2['vertices']) assert_array_almost_equal(stc['tstep'], stc2['tstep'])
def test_io_stc(): """Test IO for STC files """ stc = mne.read_stc(fname) mne.write_stc("tmp.stc", stc['tmin'], stc['tstep'], stc['vertices'], stc['data']) stc2 = mne.read_stc("tmp.stc") assert_array_almost_equal(stc['data'], stc2['data']) assert_array_almost_equal(stc['tmin'], stc2['tmin']) assert_array_almost_equal(stc['vertices'], stc2['vertices']) assert_array_almost_equal(stc['tstep'], stc2['tstep'])
lambda2 = 1.0 / snr ** 2 dSPM = True # Load data evoked = Evoked(fname_evoked, setno=setno, baseline=(None, 0)) forward = mne.read_forward_solution(fname_fwd) noise_cov = mne.Covariance(fname_cov) # Compute whitener from noise covariance matrix whitener = noise_cov.get_whitener(evoked.info, mag_reg=0.1, grad_reg=0.1, eeg_reg=0.1, pca=True) # Compute inverse solution stc, K, W = mne.minimum_norm(evoked, forward, whitener, orientation="loose", method="dspm", snr=3, loose=0.2) # Save result in stc files lh_vertices = stc["inv"]["src"][0]["vertno"] rh_vertices = stc["inv"]["src"][1]["vertno"] lh_data = stc["sol"][: len(lh_vertices)] rh_data = stc["sol"][-len(rh_vertices) :] mne.write_stc("mne_dSPM_inverse-lh.stc", tmin=stc["tmin"], tstep=stc["tstep"], vertices=lh_vertices, data=lh_data) mne.write_stc("mne_dSPM_inverse-rh.stc", tmin=stc["tmin"], tstep=stc["tstep"], vertices=rh_vertices, data=rh_data) ############################################################################### # View activation time-series times = stc["tmin"] + stc["tstep"] * np.arange(stc["sol"].shape[1]) pl.close("all") pl.plot(1e3 * times, stc["sol"][::100, :].T) pl.xlabel("time (ms)") pl.ylabel("dSPM value") pl.show()
setno = 0 snr = 3.0 lambda2 = 1.0 / snr ** 2 dSPM = True # Load data evoked = Evoked(fname_evoked, setno=setno, baseline=(None, 0)) inverse_operator = mne.read_inverse_operator(fname_inv) # Compute inverse solution res = mne.apply_inverse(evoked, inverse_operator, lambda2, dSPM) # Save result in stc files lh_vertices = res['inv']['src'][0]['vertno'] rh_vertices = res['inv']['src'][1]['vertno'] lh_data = res['sol'][:len(lh_vertices)] rh_data = res['sol'][-len(rh_vertices):] mne.write_stc('mne_dSPM_inverse-lh.stc', tmin=res['tmin'], tstep=res['tstep'], vertices=lh_vertices, data=lh_data) mne.write_stc('mne_dSPM_inverse-rh.stc', tmin=res['tmin'], tstep=res['tstep'], vertices=rh_vertices, data=rh_data) ############################################################################### # View activation time-series times = res['tmin'] + res['tstep'] * np.arange(lh_data.shape[1]) pl.plot(1e3 * times, res['sol'][::100, :].T) pl.xlabel('time (ms)') pl.ylabel('dSPM value') pl.show()