def main(args): main_time = Timer() dataset = mnist.get_dataset(args.dataset) mnist.gen_model(args.model, args.loss) print('step, worker, samples, time, learnrate, learnrate, batchsize, trainaccuracy, testaccuracy, validation') sgdr(dataset, args.popsize, args.epochs, args.learnrate, args.epochmult, args.epochmin, args.opt, args.workerid) print('# total time %3.1f' % main_time.elapsed())
def main(args): main_time = Timer() dataset = mnist.get_dataset(args.dataset) mnist.gen_model(args.model, args.loss) print( 'step, worker, samples, time, loops, learnrate, batchsize, trainaccuracy, testaccuracy, validation' ) workers = build_workers(args.popsize, [hp.resample_learnrate], [hp.perturb_learnrate]) train_workers(dataset, workers, args.epochs, args.steps, args.cutoff, args.opt) print('# total time %3.1f' % main_time.elapsed())
def main(args): main_time = Timer() dataset = mnist.get_dataset(args.dataset) mnist.gen_model(args.model, args.loss) print( 'step, worker, samples, time, loops, learnrate, batchsize, trainaccuracy, testaccuracy, validation' ) search_grid_epochs(dataset, args.steps, args.learnrate, args.opt, args.workerid) #search_grid(dataset, args.popsize, args.train_time, args.steps) #multi_random(dataset, args.popsize, args.train_time, args.steps) print('# total time %3.1f' % main_time.elapsed())
def feed_dict(): dataset = mnist.get_dataset('fashion') x, y_, train_step, learning_rate, accuracy = mnist.gen_model('conv_dropout_model', 'softmax') with tf.Session() as sess: print("feed_dict") sess.run(tf.global_variables_initializer()) datasize = len(dataset.train.labels) // 4 for batch_size in list(range(100, 3000, 100)): # [1, 2, 4, 8, 16, 32, 64] + epoch_time = Timer() iterations = datasize // batch_size for _ in range(iterations): batch_xs, batch_ys = dataset.train.next_batch(batch_size) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) split = epoch_time.split() print('%d, %d, %3.1fs, %d/s' % (batch_size, iterations, split, datasize // split))