def extract(node): attrs = get_mxnet_layer_attrs(node.symbol_dict) axis = attrs.int("axis", 1) num_outputs = attrs.int("num_outputs", 0) node_attrs = {'axis': axis, 'num_split': num_outputs} # update the attributes of the node Split.update_node_stat(node, node_attrs) return __class__.enabled
def split_data(self, data: Node): """ Split data node into two part along 0 axis """ assert len(data.shape) == 3 assert data.shape[0] == 2 output_data = [ Op._create_data_node( data.graph, name=data.name + '/SplittedBiLSTM/{}'.format(['forward', 'reverse'][i])) for i in [0, 1] ] split_op = Split( data.graph, dict(name=data.name + '/DecomposedBiLSTM_0', axis=0, num_split=2)) return split_op.create_node_with_data([data], data_nodes=output_data)
def replace_op(self, graph: Graph, node: Node): ss_node = Split(graph, attrs={ 'name': 'Split_eltwise_' + node.name, 'num_split': node['num_inputs'] }).create_node() inp = node.get_inputs() in_node = inp[0][0] edge_attrs = inp[0][1] graph.add_edge(in_node, ss_node.id, **edge_attrs) if ss_node.num_split == 2: eltwise_node = Eltwise(graph, attrs={ 'name': 'Eltwise_' + node.name, 'operation': node['operation'] }).create_node() elif ss_node.num_split > 2: eltwise_node = EltwiseN(graph, attrs={ 'name': 'Eltwise_' + node.name, 'operation': node['operation'] }).create_node() else: raise Error('Error on replacing Kaldi eltwise') for i in range(ss_node.num_split): ss_node.add_output_port(i) ss_node.out_port(i).get_connection().set_destination( eltwise_node.in_port(i)) return [eltwise_node.id]
def replace_op(self, graph: Graph, node: Node): input_node = node.in_node() memory_pair_input = unique_id('id') memory_pair_output = unique_id('id') # Input -> FullyConnected fc_layer_after_input_attrs = { 'name': 'input_fullyconnected', 'num_output': node.gifo_x_weights_shape[0], 'bias_term': True } embed_input(fc_layer_after_input_attrs, 1, 'weights', node.gifo_x_weights) embed_input(fc_layer_after_input_attrs, 2, 'biases', node.gifo_biases) fc_layer_after_input = InnerProduct( graph, fc_layer_after_input_attrs).create_node([input_node]) prev_lstm_output = Memory( graph, { 'name': 'prev_memory_output', 'id': memory_pair_input, 'index': 1, 'size': 2, 'shape': np.array([node.gifo_r_weights_shape[1]], dtype=np.int64) }).create_node() # *Memory(output) -> FullyConnected fc_layer_from_prev_state_attrs = { 'name': 'prev_memory_output_fullyconnected', 'num_output': node.gifo_r_weights_shape[0], 'bias_term': False } embed_input(fc_layer_from_prev_state_attrs, 1, 'weights', node.gifo_r_weights) fc_layer_from_prev_state = InnerProduct( graph, fc_layer_from_prev_state_attrs).create_node([prev_lstm_output]) # Memory -> FullyConnected \ # *Eltwise(sum) # Input -> FullyConnected / join_input_prev_state_sum = Add(graph, { 'name': 'join_input_eltwise', }).create_node([fc_layer_from_prev_state, fc_layer_after_input]) # *Eltwise(sum) -> Split # it is split into 4 nodes: Act, Eltw*3 # the following order is mandatory # ___Tanh # / # Split ---(2)Eltwise(sum) # |\ # | \__(3)Eltwise(sum) # |____(4)Eltwise(sum) split_joined_input = Split( graph, { 'name': 'join_input_split', 'axis': 1, 'num_split': 4, 'out_ports_count': 4, }).create_node([join_input_prev_state_sum]) prev_lstm_state = Memory( graph, { 'name': 'prev_memory_state', 'id': memory_pair_output, 'index': 1, 'size': 2, 'shape': np.array([node.input_gate_weights.shape[0]], dtype=np.int64) }).create_node() # *Memory(state) -> *ScaleShift(input) state_input_scaleshift_attrs = { 'name': 'input_scaleshift', 'bias_term': False } embed_input(state_input_scaleshift_attrs, 1, 'weights', node.input_gate_weights) state_input_scaleshift = ScaleShiftOp( graph, state_input_scaleshift_attrs).create_node([prev_lstm_state]) # *Memory(state) -> *ScaleShift(forget) state_forget_scaleshift_attrs = { 'name': 'forget_scaleshift', 'bias_term': False } embed_input(state_forget_scaleshift_attrs, 1, 'weights', node.forget_gate_weights) state_forget_scaleshift = ScaleShiftOp( graph, state_forget_scaleshift_attrs).create_node([prev_lstm_state]) # Split \ # (2)Eltwise(sum) # Memory(state) -> *ScaleShift(input) / join_prev_lstm_input_joined_input_sum = Add( graph, { 'name': 'join_prev_lstm_input_joined_input_eltwise', }).create_node([(split_joined_input, 1), state_input_scaleshift]) # Split \ # (3)Eltwise(sum) # Memory(state) -> *ScaleShift(forget) / join_prev_lstm_input_joined_forget_sum = Add( graph, { 'name': 'join_prev_lstm_input_joined_forget_sum', }).create_node([(split_joined_input, 2), state_forget_scaleshift]) # Split -> Tanh remember_tahn = Tanh(graph, { 'name': 'remember_tahnv' }).create_node([(split_joined_input, 0)]) # Split -> (2)Eltwise(sum) -> *Sigmoid remember_sigmoid = Sigmoid(graph, { 'name': 'remember_sigmoid' }).create_node([join_prev_lstm_input_joined_input_sum]) # Split -> (3)Eltwise(sum) -> **Sigmoid forget_sigmoid = Sigmoid(graph, { 'name': 'forget_sigmoid' }).create_node([join_prev_lstm_input_joined_forget_sum]) # *Memory(state) \ # (6)Eltwise(mul) # Split -> (3)Eltwise(sum) -> **Sigmoid / join_forget_prev_state_mul = Mul(graph, { 'name': 'join_forget_prev_state_mul', }).create_node([forget_sigmoid, prev_lstm_state]) # Split -> Tahn \ # (5)Eltwise(mul) # Split -> (2)Eltwise(sum) -> *Sigmoid / join_remember_candidates_mul = Mul( graph, { 'name': 'join_remember_candidates_mul', }).create_node([remember_tahn, remember_sigmoid]) # (5)Eltwise(mul) \ # (7)Eltwise(sum) # (6)Eltwise(mul) / join_forget_remember_sum = Add(graph, { 'name': 'join_forget_remember_sum', }).create_node( [join_forget_prev_state_mul, join_remember_candidates_mul]) # (7)Eltwise(sum) -> Clamp join_forget_clamp = Clamp( graph, { 'name': 'join_forget_clamp', 'max': node.clip_value, 'min': -node.clip_value }).create_node([join_forget_remember_sum]) # # Clamp -> (2)Memory(state) next_lstm_state = Memory( graph, { 'name': 'next_lstm_state', 'id': memory_pair_output, 'index': 0, 'size': 2, 'shape': np.array([node.input_gate_weights.shape[0]], dtype=np.int64) }).create_node([join_forget_clamp]) Result(graph, { 'name': 'next_lstm_state_out' }).create_node([next_lstm_state]) # Clamp -> (2)Tahn state_filtered_tahn = Tanh(graph, { 'name': 'state_filtered_tahn' }).create_node([join_forget_clamp]) # Clamp -> (2)ScaleShift clamp_scaleshift_attrs = { 'name': 'clamp_scaleshift', 'bias_term': False } embed_input(clamp_scaleshift_attrs, 1, 'weights', node.output_gate_weights) clamp_scaleshift = ScaleShiftOp( graph, clamp_scaleshift_attrs).create_node([join_forget_clamp]) # Split \ # (4)Eltwise(sum) # Clamp -> (2)ScaleShift / join_next_lstm_input_joined_input_sum = Add( graph, { 'name': 'join_next_lstm_input_joined_input_sum', }).create_node([(split_joined_input, 3), clamp_scaleshift]) # (4)Eltwise(sum) -> (3)Sigmoid output_sigmoid = Sigmoid(graph, { 'name': 'output_sigmoid' }).create_node([join_next_lstm_input_joined_input_sum]) # (4)Eltwise(sum) -> (3)Sigmoid \ # (5)Eltwise(mul) # Clamp -> (2)Tahn / joined_output_mul = Mul(graph, { 'name': 'joined_output_mul' }).create_node([state_filtered_tahn, output_sigmoid]) # (5)Eltwise(mul) -> (3)FullyConnected fc_output_attrs = { 'name': 'FullyConnected', 'num_output': node.projection_weights_shape[0], 'bias_term': False } embed_input(fc_output_attrs, 1, 'weights', node.projection_weights) fc_output = InnerProduct(graph, fc_output_attrs).create_node( [joined_output_mul]) # / (2)Memory(output) # (3)FullyConnected # \ Output (any next node) (edge created automatically after replacement) next_lstm_output = Memory( graph, { 'name': 'next_lstm_output', 'id': memory_pair_input, 'index': 0, 'size': 2, 'shape': np.array([node.gifo_r_weights_shape[1]], dtype=np.int64) }).create_node([fc_output]) Result(graph, { 'name': 'next_lstm_output_out' }).create_node([next_lstm_output]) return [fc_output.id]
def replace_op(self, graph: Graph, node: Node): # split input to (i_part, f_part, c_part, o_part, ct_1) split_node = Split(graph, {'name': graph.unique_id(prefix='Split_lstm_input_'), 'num_split': 5}).create_node() node.in_port(0).get_connection().set_destination(split_node.in_port(0)) for i in range(5): split_node.add_output_port(i) # i_t = Sigmoid(i_part + w_ic*ct_1) i_scale_attrs = {'name': graph.unique_id(prefix='i_scaleshift'), 'bias_term': False} i_scale = ScaleShiftOp(graph, i_scale_attrs).create_node() input_as_const(i_scale, i_scale_attrs, 1, 'weights', node.i_weights) split_node.out_port(4).connect(i_scale.in_port(0)) sum_i_c = Eltwise(graph, {'name': graph.unique_id(prefix='sum_i_c_'), 'operation': 'sum'}).create_node() split_node.out_port(0).connect(sum_i_c.in_port(0)) i_scale.out_port(0).connect(sum_i_c.in_port(1)) i_sigmoid = Sigmoid(graph, {'name': 'i_sigmoid'}).create_node() sum_i_c.out_port(0).connect(i_sigmoid.in_port(0)) # f_t = Sigmoid(f_part + w_fc*ct_1) f_scale_attrs = {'name': graph.unique_id(prefix='f_scaleshift'), 'bias_term': False} f_scale = ScaleShiftOp(graph, f_scale_attrs).create_node() input_as_const(f_scale, f_scale_attrs, 1, 'weights', node.f_weights) split_node.out_port(4).connect(f_scale.in_port(0)) sum_f_c = Eltwise(graph, {'name': graph.unique_id(prefix='sum_f_c_'), 'operation': 'sum'}).create_node() split_node.out_port(1).connect(sum_f_c.in_port(0)) f_scale.out_port(0).connect(sum_f_c.in_port(1)) f_sigmoid = Sigmoid(graph, {'name': 'f_sigmoid'}).create_node() sum_f_c.out_port(0).connect(f_sigmoid.in_port(0)) # c_t = f_t*ct_1 + i_t * tanh(c_part) c_tanh = Tanh(graph, {'name': 'c_tanh'}).create_node() split_node.out_port(2).connect(c_tanh.in_port(0)) prod_i_c_tanh = Eltwise(graph, {'name': graph.unique_id(prefix='prod_i_c_tanh_'), 'operation': 'mul'}).create_node() i_sigmoid.out_port(0).connect(prod_i_c_tanh.in_port(0)) c_tanh.out_port(0).connect(prod_i_c_tanh.in_port(1)) prod_f_ct_1 = Eltwise(graph, {'name': graph.unique_id(prefix='prod_f_ct_1_'), 'operation': 'mul'}).create_node() f_sigmoid.out_port(0).connect(prod_f_ct_1.in_port(0)) split_node.out_port(4).connect(prod_f_ct_1.in_port(1)) sum_f_i = Eltwise(graph, {'name': graph.unique_id(prefix='sum_f_i_'), 'operation': 'sum'}).create_node() prod_f_ct_1.out_port(0).connect(sum_f_i.in_port(0)) prod_i_c_tanh.out_port(0).connect(sum_f_i.in_port(1)) # o_t = Sigmoid(o_part + w_oc*c_t) o_scale_attrs = {'name': graph.unique_id(prefix='o_scaleshift'), 'bias_term': False} o_scale = ScaleShiftOp(graph, o_scale_attrs).create_node() input_as_const(o_scale, o_scale_attrs, 1, 'weights', node.o_weights) sum_f_i.out_port(0).connect(o_scale.in_port(0)) sum_o_c = Eltwise(graph, {'name': graph.unique_id(prefix='sum_o_c_'), 'operation': 'sum'}).create_node() split_node.out_port(3).connect(sum_o_c.in_port(0)) o_scale.out_port(0).connect(sum_o_c.in_port(1)) o_sigmoid = Sigmoid(graph, {'name': 'o_sigmoid'}).create_node() sum_o_c.out_port(0).connect(o_sigmoid.in_port(0)) # m_t = o_t * Tanh(c_t) c_t_tanh = Tanh(graph, {'name': 'c_t_tanh'}).create_node() sum_f_i.out_port(0).connect(c_t_tanh.in_port(0)) prod_o_c_t_tanh = Eltwise(graph, {'name': graph.unique_id(prefix='prod_o_c_t_tanh_'), 'operation': 'mul'}).create_node() o_sigmoid.out_port(0).connect(prod_o_c_t_tanh.in_port(0)) c_t_tanh.out_port(0).connect(prod_o_c_t_tanh.in_port(1)) # add concat to create 1 output concat = Concat(graph, {'name': graph.unique_id(prefix='Concat_c_m')}).create_node() concat.add_sequence_of_ports('in', range(2)) sum_f_i.out_port(0).connect(concat.in_port(0)) prod_o_c_t_tanh.out_port(0).connect(concat.in_port(1)) return [concat.id]