Ejemplo n.º 1
0
    def get_trainer(self):
        # 数据大小
        datadim = 3 * 32 * 32

        # 获得图片对于的信息标签
        lbl = paddle.layer.data(name="label",
                                type=paddle.data_type.integer_value(10))

        # 获取全连接层,也就是分类器
        out = mobile_net(datadim, 10, 1.0)

        # 获得损失函数
        cost = paddle.layer.classification_cost(input=out, label=lbl)

        # 使用之前保存好的参数文件获得参数
        # parameters = self.get_parameters(parameters_path="../model/mobile_net.tar.gz")
        # 使用损失函数生成参数
        parameters = self.get_parameters(cost=cost)

        '''
        定义优化方法
        learning_rate 迭代的速度
        momentum 跟前面动量优化的比例
        regularzation 正则化,防止过拟合
        '''
        momentum_optimizer = paddle.optimizer.Momentum(
            momentum=0.9,
            regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
            learning_rate=0.1 / 128.0,
            learning_rate_decay_a=0.1,
            learning_rate_decay_b=50000 * 100,
            learning_rate_schedule="discexp")

        '''
        创建训练器
        cost 分类器
        parameters 训练参数,可以通过创建,也可以使用之前训练好的参数
        update_equation 优化方法
        '''
        trainer = paddle.trainer.SGD(cost=cost,
                                     parameters=parameters,
                                     update_equation=momentum_optimizer)
        return trainer
Ejemplo n.º 2
0
# coding=utf-8
from paddle.utils.merge_model import merge_v2_model

# 导入神经网络
from mobilenet import mobile_net
from vgg import vgg_bn_drop

if __name__ == "__main__":
    # 图像的大小
    img_size = 3 * 32 * 32
    # 总分类数
    class_dim = 10
    net = mobile_net(img_size, class_dim)
    param_file = '../model/mobile_net.tar.gz'
    output_file = '../model/mobile_net.paddle'
    merge_v2_model(net, param_file, output_file)
Ejemplo n.º 3
0
def train_parallel_exe(args,
                       learning_rate,
                       batch_size,
                       num_passes,
                       init_model=None,
                       pretrained_model=None,
                       model_save_dir='model',
                       parallel=True,
                       use_nccl=True,
                       lr_strategy=None,
                       layers=50):
    class_dim = 1000
    image_shape = [3, 224, 224]

    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    if args.model is 'se_resnext':
        out = SE_ResNeXt(input=image, class_dim=class_dim, layers=layers)
    else:
        out = mobile_net(img=image, class_dim=class_dim)

    cost = fluid.layers.cross_entropy(input=out, label=label)
    acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
    acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
    avg_cost = fluid.layers.mean(x=cost)

    test_program = fluid.default_main_program().clone(for_test=True)

    if "piecewise_decay" in lr_strategy:
        bd = lr_strategy["piecewise_decay"]["bd"]
        lr = lr_strategy["piecewise_decay"]["lr"]
        optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.piecewise_decay(boundaries=bd,
                                                       values=lr),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
    elif "cosine_decay" in lr_strategy:
        step_each_epoch = lr_strategy["cosine_decay"]["step_each_epoch"]
        epochs = lr_strategy["cosine_decay"]["epochs"]
        optimizer = fluid.optimizer.Momentum(
            learning_rate=cosine_decay(learning_rate=learning_rate,
                                       step_each_epoch=step_each_epoch,
                                       epochs=epochs),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
    else:
        optimizer = fluid.optimizer.Momentum(
            learning_rate=learning_rate,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))

    opts = optimizer.minimize(avg_cost)

    if args.with_mem_opt:
        fluid.memory_optimize(fluid.default_main_program())

    place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    fluid.default_startup_program.random_seed = 1000
    exe.run(fluid.default_startup_program())

    if init_model is not None:
        fluid.io.load_persistables(exe, init_model)

    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

        fluid.io.load_vars(exe, pretrained_model, predicate=if_exist)

    train_reader = paddle.batch(flowers.train(), batch_size=batch_size)
    test_reader = paddle.batch(flowers.test(), batch_size=batch_size)
    feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

    train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name)
    test_exe = fluid.ParallelExecutor(use_cuda=True,
                                      main_program=test_program,
                                      share_vars_from=train_exe)

    fetch_list = [avg_cost.name, acc_top1.name, acc_top5.name]
    train_speed = []
    for pass_id in range(num_passes):
        train_info = [[], [], []]
        test_info = [[], [], []]
        pass_time = 0
        pass_num = 0
        pass_speed = 0.0
        for batch_id, data in enumerate(train_reader()):
            t1 = time.time()
            loss, acc1, acc5 = train_exe.run(fetch_list,
                                             feed=feeder.feed(data))
            t2 = time.time()
            period = t2 - t1
            pass_time += period
            pass_num += len(data)
            loss = np.mean(np.array(loss))
            acc1 = np.mean(np.array(acc1))
            acc5 = np.mean(np.array(acc5))
            train_info[0].append(loss)
            train_info[1].append(acc1)
            train_info[2].append(acc5)
            if batch_id % 10 == 0:
                print("Pass {0}, trainbatch {1}, loss {2}, \
                       acc1 {3}, acc5 {4} time {5}"
                                                   .format(pass_id, \
                       batch_id, loss, acc1, acc5, \
                       "%2.2f sec" % period))
                sys.stdout.flush()

        train_loss = np.array(train_info[0]).mean()
        train_acc1 = np.array(train_info[1]).mean()
        train_acc5 = np.array(train_info[2]).mean()
        pass_speed = pass_num / pass_time
        train_speed.append(pass_speed)
        if pass_id == num_passes - 1:
            train_acc_top1_kpi.add_record(train_acc1)
            train_acc_top5_kpi.add_record(train_acc5)
            train_cost_kpi.add_record(train_loss)
            mean_pass_speed = np.array(pass_speed).mean()
            train_speed_kpi.add_record(mean_pass_speed)
        for data in test_reader():
            t1 = time.time()
            loss, acc1, acc5 = test_exe.run(fetch_list, feed=feeder.feed(data))
            t2 = time.time()
            period = t2 - t1
            loss = np.mean(np.array(loss))
            acc1 = np.mean(np.array(acc1))
            acc5 = np.mean(np.array(acc5))
            test_info[0].append(loss)
            test_info[1].append(acc1)
            test_info[2].append(acc5)
            if batch_id % 10 == 0:
                print("Pass {0},testbatch {1},loss {2}, \
                       acc1 {3},acc5 {4},time {5}"
                                                  .format(pass_id, \
                       batch_id, loss, acc1, acc5, \
                       "%2.2f sec" % period))
                sys.stdout.flush()

        test_loss = np.array(test_info[0]).mean()
        test_acc1 = np.array(test_info[1]).mean()
        test_acc5 = np.array(test_info[2]).mean()

        print("End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3}, \
               test_loss {4}, test_acc1 {5}, test_acc5 {6}, pass_time {7}, train_speed {8}"
                                                           .format(pass_id, \
              train_loss, train_acc1, train_acc5, test_loss, test_acc1, \
              test_acc5, pass_time, pass_num / pass_time))
        sys.stdout.flush()
    train_acc_top1_kpi.persist()
    train_acc_top5_kpi.persist()
    train_cost_kpi.persist()
    train_speed_kpi.persist()
Ejemplo n.º 4
0
def main():
    datadim = 3 * 224 * 224
    classdim = 102

    # PaddlePaddle init
    paddle.init(use_gpu=True, trainer_count=1, gpu_id=1)

    momentum_optimizer = paddle.optimizer.Momentum(
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0005 * BATCH),
        learning_rate=0.005 / BATCH,
        #learning_rate_decay_a=0.1,
        #learning_rate_decay_b=50000 * 50,
        learning_rate_schedule='constant')

    image = paddle.layer.data(name="image",
                              type=paddle.data_type.dense_vector(datadim))

    net = mobile_net(image)
    # option 2. vgg
    #net = vgg_bn_drop(image)

    out = paddle.layer.fc(input=net,
                          size=classdim,
                          act=paddle.activation.Softmax())
    '''
    out = paddle.layer.img_conv(
                         input=net,
                         filter_size=1,
                         num_filters=classdim,
                         stride=1,
                         act=paddle.activation.Linear())
    '''

    lbl = paddle.layer.data(name="label",
                            type=paddle.data_type.integer_value(classdim))
    cost = paddle.layer.classification_cost(input=out, label=lbl)

    # Create parameters
    parameters = paddle.parameters.create(cost)
    with gzip.open('Paddle_mobilenet.tar.gz', 'r') as f:
        fparameters = paddle.parameters.Parameters.from_tar(f)
    for param_name in fparameters.names():
        if param_name in parameters.names():
            parameters.set(param_name, fparameters.get(param_name))

    # End batch and end pass event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 50 == 0:
                print "\nPass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
            else:
                sys.stdout.write('.')
                sys.stdout.flush()
        if isinstance(event, paddle.event.EndPass):
            # save parameters
            with gzip.open('mobilenet_params_pass_%d.tar.gz' % event.pass_id,
                           'w') as f:
                parameters.to_tar(f)

            result = trainer.test(reader=paddle.batch(
                paddle.dataset.flowers.test(), batch_size=10),
                                  feeding={
                                      'image': 0,
                                      'label': 1
                                  })
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

    # Create trainer
    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=momentum_optimizer)
    trainer.train(reader=paddle.batch(paddle.reader.shuffle(
        paddle.dataset.flowers.train(), buf_size=50000),
                                      batch_size=BATCH),
                  num_passes=200,
                  event_handler=event_handler,
                  feeding={
                      'image': 0,
                      'label': 1
                  })
Ejemplo n.º 5
0
def train_parallel_do(args,
                      learning_rate,
                      batch_size,
                      num_passes,
                      init_model=None,
                      pretrained_model=None,
                      model_save_dir='model',
                      parallel=True,
                      use_nccl=True,
                      lr_strategy=None,
                      layers=50):
    class_dim = 1000
    image_shape = [3, 224, 224]
    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    if parallel:
        places = fluid.layers.device.get_places()
        pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)

        with pd.do():
            image_ = pd.read_input(image)
            label_ = pd.read_input(label)
            if args.model is 'se_resnext':
                out = SE_ResNeXt(input=image_,
                                 class_dim=class_dim,
                                 layers=layers)
            else:
                out = mobile_net(img=image_, class_dim=class_dim)

            cost = fluid.layers.cross_entropy(input=out, label=label_)
            avg_cost = fluid.layers.mean(x=cost)
            acc_top1 = fluid.layers.accuracy(input=out, label=label_, k=1)
            acc_top5 = fluid.layers.accuracy(input=out, label=label_, k=5)
            pd.write_output(avg_cost)
            pd.write_output(acc_top1)
            pd.write_output(acc_top5)

        avg_cost, acc_top1, acc_top5 = pd()
        avg_cost = fluid.layers.mean(x=avg_cost)
        acc_top1 = fluid.layers.mean(x=acc_top1)
        acc_top5 = fluid.layers.mean(x=acc_top5)
    else:
        if args.model is 'se_resnext':
            out = SE_ResNeXt(input=image, class_dim=class_dim, layers=layers)
        else:
            out = mobile_net(img=image, class_dim=class_dim)

        cost = fluid.layers.cross_entropy(input=out, label=label)
        avg_cost = fluid.layers.mean(x=cost)
        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

    inference_program = fluid.default_main_program().clone(for_test=True)

    if "piecewise_decay" in lr_strategy:
        bd = lr_strategy["piecewise_decay"]["bd"]
        lr = lr_strategy["piecewise_decay"]["lr"]
        optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.piecewise_decay(boundaries=bd,
                                                       values=lr),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
    elif "cosine_decay" in lr_strategy:
        step_each_epoch = lr_strategy["cosine_decay"]["step_each_epoch"]
        epochs = lr_strategy["cosine_decay"]["epochs"]
        optimizer = fluid.optimizer.Momentum(
            learning_rate=cosine_decay(learning_rate=learning_rate,
                                       step_each_epoch=step_each_epoch,
                                       epochs=epochs),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
    else:
        optimizer = fluid.optimizer.Momentum(
            learning_rate=learning_rate,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))

    opts = optimizer.minimize(avg_cost)
    if args.with_mem_opt:
        fluid.memory_optimize(fluid.default_main_program())

    place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if init_model is not None:
        fluid.io.load_persistables(exe, init_model)

    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

        fluid.io.load_vars(exe, pretrained_model, predicate=if_exist)

    train_reader = paddle.batch(reader.train(), batch_size=batch_size)
    test_reader = paddle.batch(reader.test(), batch_size=batch_size)
    feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

    for pass_id in range(num_passes):
        train_info = [[], [], []]
        test_info = [[], [], []]
        for batch_id, data in enumerate(train_reader()):
            t1 = time.time()
            loss, acc1, acc5 = exe.run(
                fluid.default_main_program(),
                feed=feeder.feed(data),
                fetch_list=[avg_cost, acc_top1, acc_top5])
            t2 = time.time()
            period = t2 - t1
            train_info[0].append(loss[0])
            train_info[1].append(acc1[0])
            train_info[2].append(acc5[0])
            if batch_id % 10 == 0:
                print("Pass {0}, trainbatch {1}, loss {2}, \
                       acc1 {3}, acc5 {4} time {5}"
                                                   .format(pass_id, \
                       batch_id, loss[0], acc1[0], acc5[0], \
                       "%2.2f sec" % period))
                sys.stdout.flush()

        train_loss = np.array(train_info[0]).mean()
        train_acc1 = np.array(train_info[1]).mean()
        train_acc5 = np.array(train_info[2]).mean()
        for data in test_reader():
            t1 = time.time()
            loss, acc1, acc5 = exe.run(
                inference_program,
                feed=feeder.feed(data),
                fetch_list=[avg_cost, acc_top1, acc_top5])
            t2 = time.time()
            period = t2 - t1
            test_info[0].append(loss[0])
            test_info[1].append(acc1[0])
            test_info[2].append(acc5[0])
            if batch_id % 10 == 0:
                print("Pass {0},testbatch {1},loss {2}, \
                       acc1 {3},acc5 {4},time {5}"
                                                  .format(pass_id, \
                       batch_id, loss[0], acc1[0], acc5[0], \
                       "%2.2f sec" % period))
                sys.stdout.flush()

        test_loss = np.array(test_info[0]).mean()
        test_acc1 = np.array(test_info[1]).mean()
        test_acc5 = np.array(test_info[2]).mean()

        print("End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3}, \
               test_loss {4}, test_acc1 {5}, test_acc5 {6}"
                                                           .format(pass_id, \
              train_loss, train_acc1, train_acc5, test_loss, test_acc1, \
              test_acc5))
        sys.stdout.flush()

        model_path = os.path.join(model_save_dir + '/' + args.model,
                                  str(pass_id))
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        fluid.io.save_persistables(exe, model_path)
Ejemplo n.º 6
0
import cv2
import numpy as np
from keras.applications.resnet50 import decode_predictions

from mobilenet import mobile_net, preprocess_input

# Set up model
mobilenet = mobile_net(input_size=(224, 224, 3), include_top=True)
mobilenet.load_weights(
    '../../weights/feature_extractors/mobilenet_1_0_224_tf.h5')
mobilenet.summary()


def predict_one_example():
    # Prepare data input
    img_path = '../../test_imgs/cat.jpg'
    img = cv2.imread(img_path)
    img = cv2.resize(img, (224, 224))
    x = preprocess_input(img)
    x = np.expand_dims(x, axis=0)
    preds = mobilenet.predict(x)
    print('Predicted:', decode_predictions(preds, top=3)[0])


# Measure performance
import timeit

performance = timeit.repeat('predict_one_example()',
                            "from __main__ import predict_one_example",
                            number=1,
                            repeat=50)
Ejemplo n.º 7
0
    lab = np.argsort(-probs)
    # 返回概率最大的值和其对应的概率值
    return lab[0][0], probs[0][(lab[0][0])]


if __name__ == '__main__':
    # 开始预测
    paddle.init(use_gpu=False, trainer_count=1)

    # VGG模型
    # out = vgg_bn_drop(3 * 32 * 32, 10)
    # with gzip.open("../model/vgg16.tar.gz", 'r') as f:
    #     parameters = paddle.parameters.Parameters.from_tar(f)

    # MobileNet模型
    out = mobile_net(3 * 32 * 32, 10)
    with gzip.open("../model/mobile_net.tar.gz", 'r') as f:
        parameters = paddle.parameters.Parameters.from_tar(f)

    image_path = "../images/truck1.png"
    # 总开始预测时间
    start_time = int(round(time.time() * 1000))
    for i in range(10):
        result, probability = to_prediction(image_path=image_path,
                                            out=out,
                                            parameters=parameters)
        print '预测结果为:%d,可信度为:%f' % (result, probability)

    # 总的预测时间
    end_time = int(round(time.time() * 1000))
    # 打印平均预测时间