Ejemplo n.º 1
0
def main():
    args = parse_args()

    if len(args.config_file) > 0:
        print('Configration file is loaded from {}'.format(args.config_file))
        cfg.merge_from_file(args.config_file)
    
    if len(args.output_dirname) == 0:
        dt_now = datetime.datetime.now()
        output_dirname = os.path.join('output', str(dt_now.date()) + '_' + str(dt_now.time()))
    else:
        output_dirname = args.output_dirname
    cfg.OUTPUT_DIR = output_dirname
    cfg.freeze()

    print('output dirname: {}'.format(cfg.OUTPUT_DIR))

    torch.manual_seed(cfg.SEED)
    np.random.seed(cfg.SEED)

    if torch.cuda.is_available():
        torch.backends.cudnn.benchmark = True
        # torch.backends.cudnn.deterministic = True
        torch.cuda.manual_seed(cfg.SEED)
    else:
        raise Exception('GPU not found.')

    if not args.debug:
        os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
        if not len(args.config_file) == 0:
            shutil.copy2(args.config_file, os.path.join(cfg.OUTPUT_DIR, 'config.yaml'))

    train(args, cfg)
Ejemplo n.º 2
0
def main():
    parser = argparse.ArgumentParser(
        description='Perceptual Extreme Super Resolution for NTIRE2020')
    parser.add_argument('--config_file', type=str, default='', metavar='FILE')
    parser.add_argument('--output_dirname', type=str, default='test')
    parser.add_argument('--num_workers', type=int, default=8)
    parser.add_argument('--trained_model',
                        type=str,
                        default='weights/iteration_400000.pth')
    parser.add_argument('--num_gpus', type=int, default=4)
    parser.add_argument('--center_crop', type=str2bool, default=False)
    parser.add_argument('--ensemble', type=str2bool, default=False)
    parser.add_argument('--small', type=str2bool, default=False)

    args = parser.parse_args()

    cuda = torch.cuda.is_available()
    if cuda:
        torch.backends.cudnn.benchmark = True
        torch.backends.cudnn.deterministic = True

    if len(args.config_file) > 0:
        print('Loaded configration file {}'.format(args.config_file))
        cfg.merge_from_file(args.config_file)

    cfg.freeze()

    test(args, cfg)
Ejemplo n.º 3
0
def main():
    args = parse_args()

    if len(args.config_file) > 0:
        print('Configuration file is loaded from {}'.format(args.config_file))
        cfg.merge_from_file(args.config_file)

    output_dirname = os.path.join('output', "images",
                                  os.path.splitext(args.trained_model)[0])
    os.makedirs(output_dirname, exist_ok=True)
    cfg.OUTPUT_DIRNAME = output_dirname
    cfg.freeze()

    print('OUTPUT DIRNAME: {}'.format(cfg.OUTPUT_DIR))

    torch.manual_seed(cfg.SEED)
    np.random.seed(cfg.SEED)

    if torch.cuda.is_available():
        torch.backends.cudnn.benchmark = True
        # torch.backends.cudnn.deterministic = True
        torch.cuda.manual_seed(cfg.SEED)
    else:
        raise Exception('GPU not found')

    test(args, cfg)
Ejemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser(description="SSD Demo.")
    parser.add_argument(
        "--config-file",
        default="",
        metavar="FILE",
        help="path to config file",
        type=str,
    )
    parser.add_argument("--ckpt",
                        type=str,
                        default=None,
                        help="Trained weights.")
    parser.add_argument("--score_threshold", type=float, default=0.7)
    parser.add_argument("--images_dir",
                        default='demo',
                        type=str,
                        help='Specify a image dir to do prediction.')
    parser.add_argument("--output_dir",
                        default='demo/result',
                        type=str,
                        help='Specify a image dir to save predicted images.')
    parser.add_argument(
        "--dataset_type",
        default="voc",
        type=str,
        help='Specify dataset type. Currently support voc and coco.')

    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )
    args = parser.parse_args()
    print(args)

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    print("Loaded configuration file {}".format(args.config_file))
    with open(args.config_file, "r") as cf:
        config_str = "\n" + cf.read()
        print(config_str)
    print("Running with config:\n{}".format(cfg))

    run_demo(cfg=cfg,
             ckpt=args.ckpt,
             score_threshold=args.score_threshold,
             images_dir=args.images_dir,
             output_dir=args.output_dir,
             dataset_type=args.dataset_type)
Ejemplo n.º 5
0
def main():
    parser = argparse.ArgumentParser(
        description='Perceptual Extreme Super-Resolution for NTIRE2020')
    parser.add_argument('-c',
                        '--config_file',
                        type=str,
                        default='',
                        metavar='FILE',
                        help='path to config file')
    parser.add_argument('-m',
                        '--mixed_precision',
                        type=str2bool,
                        default=False,
                        help='')
    parser.add_argument('-t', '--tensorboard', type=str2bool, default=True)
    parser.add_argument('-nw', '--num_workers', type=int, default=24, help='')
    parser.add_argument('-ls', '--log_step', type=int, default=50, help='')
    parser.add_argument('-ss', '--save_step', type=int, default=1000, help='')
    parser.add_argument('-es', '--eval_step', type=int, default=1000, help='')
    parser.add_argument('-o',
                        '--output_dirname',
                        type=str,
                        default='',
                        help='')
    parser.add_argument('-r', '--resume_iter', type=int, default=0, help='')
    parser.add_argument('-p',
                        '--pretrain',
                        type=str2bool,
                        default=False,
                        help='')
    parser.add_argument('-s',
                        '--sync_batchnorm',
                        type=str2bool,
                        default=False,
                        help='')
    parser.add_argument('-l',
                        '--load_model_path',
                        type=str,
                        default='',
                        help='')

    args = parser.parse_args()

    # load configration file
    if len(args.config_file) > 0:
        print('Loaded configration file {}'.format(args.config_file))
        cfg.merge_from_file(args.config_file)

    # define output folder name for save log
    if len(args.output_dirname) == 0:
        dt_now = datetime.datetime.now()
        output_dirname = str(dt_now.date()) + '_' + str(dt_now.time())
    else:
        output_dirname = args.output_dirname

    cfg.OUTPUT_DIR = os.path.join(cfg.OUTPUT_DIR, output_dirname)
    cfg.freeze()

    # save configration
    if not os.path.exists(cfg.OUTPUT_DIR):
        os.makedirs(cfg.OUTPUT_DIR)

    if len(args.config_file) > 0:
        shutil.copy(args.config_file, cfg.OUTPUT_DIR)
    argsfile_path = os.path.join(cfg.OUTPUT_DIR, "args.txt")
    save_args(args, argsfile_path)

    # setting for cuda
    torch.manual_seed(cfg.SEED)
    cuda = torch.cuda.is_available()
    if cuda:
        torch.backends.cudnn.benchmark = True
        torch.backends.cudnn.deterministic = True
        torch.cuda.manual_seed(cfg.SEED)

    print('Running with config:\n{}'.format(cfg))

    # train model
    train(args, cfg)
Ejemplo n.º 6
0
def main():
    parser = argparse.ArgumentParser(
        description='SSD Evaluation on VOC and COCO dataset.')
    parser.add_argument(
        "--config-file",
        default="",
        metavar="FILE",
        help="path to config file",
        type=str,
    )
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument(
        "--ckpt",
        help=
        "The path to the checkpoint for test, default is the latest checkpoint.",
        default=None,
        type=str,
    )

    parser.add_argument("--output_dir",
                        default="eval_results",
                        type=str,
                        help="The directory to store evaluation results.")

    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )
    args = parser.parse_args()

    num_gpus = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    distributed = num_gpus > 1

    if torch.cuda.is_available():
        # This flag allows you to enable the inbuilt cudnn auto-tuner to
        # find the best algorithm to use for your hardware.
        torch.backends.cudnn.benchmark = True
    if distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl",
                                             init_method="env://")
        synchronize()

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    # evaluation(cfg, ckpt=args.ckpt, distributed=distributed)

    logger = setup_logger("SSD", dist_util.get_rank(), cfg.OUTPUT_DIR)
    logger.info("Using {} GPUs".format(num_gpus))
    logger.info(args)

    logger.info("Loaded configuration file {}".format(args.config_file))
    with open(args.config_file, "r") as cf:
        config_str = "\n" + cf.read()
        logger.info(config_str)
    logger.info("Running with config:\n{}".format(cfg))
    evaluation(cfg, ckpt=args.ckpt, distributed=distributed)
Ejemplo n.º 7
0
def main():
    parser = argparse.ArgumentParser(
        description='Single Shot MultiBox Detector Training With PyTorch')
    parser.add_argument(
        "--config-file",
        default="",
        metavar="FILE",
        help="path to config file",
        type=str,
    )
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument('--log_step',
                        default=10,
                        type=int,
                        help='Print logs every log_step')
    parser.add_argument('--save_step',
                        default=2500,
                        type=int,
                        help='Save checkpoint every save_step')
    parser.add_argument(
        '--eval_step',
        default=2500,
        type=int,
        help='Evaluate dataset every eval_step, disabled when eval_step < 0')
    parser.add_argument('--use_tensorboard', default=True, type=str2bool)
    parser.add_argument('--sr',
                        dest='sr',
                        action='store_true',
                        help='train with channel sparsity regularization')
    parser.add_argument('--finetune',
                        dest='finetune',
                        action='store_true',
                        help='train with channel sparsity regularization')
    parser.add_argument('--s',
                        type=float,
                        default=0.0001,
                        help='scale sparse rate (default: 0.0001)')
    parser.add_argument(
        "--skip-test",
        dest="skip_test",
        help="Do not test the final model",
        action="store_true",
    )
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )
    args = parser.parse_args()
    num_gpus = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    args.distributed = num_gpus > 1
    args.num_gpus = num_gpus

    if torch.cuda.is_available():
        # This flag allows you to enable the inbuilt cudnn auto-tuner to
        # find the best algorithm to use for your hardware.
        torch.backends.cudnn.benchmark = True
    if args.distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl",
                                             init_method="env://")
        synchronize()

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    if cfg.OUTPUT_DIR:
        mkdir(cfg.OUTPUT_DIR)

    logger = setup_logger("SSD", dist_util.get_rank(), cfg.OUTPUT_DIR)
    logger.info("Using {} GPUs".format(num_gpus))
    logger.info(args)

    logger.info("Loaded configuration file {}".format(args.config_file))
    with open(args.config_file, "r") as cf:
        config_str = "\n" + cf.read()
        logger.info(config_str)
    logger.info("Running with config:\n{}".format(cfg))

    model = train(cfg, args)

    if not args.skip_test:
        logger.info('Start evaluating...')
        torch.cuda.empty_cache()  # speed up evaluating after training finished
        do_evaluation(cfg, model, distributed=args.distributed)
Ejemplo n.º 8
0
def main():
    parser = argparse.ArgumentParser(
        description='Single Shot MultiBox Detector Training With PyTorch')
    parser.add_argument(
        "--config-file",
        default="",
        metavar="FILE",
        help="path to config file",
        type=str,
    )
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument('--log_step',
                        default=10,
                        type=int,
                        help='Print logs every log_step')
    parser.add_argument('--save_step',
                        default=1,
                        type=int,
                        help='Save checkpoint every save_step')
    parser.add_argument(
        '--eval_step',
        default=1,
        type=int,
        help='Evaluate dataset every eval_step, disabled when eval_step < 0')
    parser.add_argument('--use_tensorboard', default=True, type=str2bool)
    parser.add_argument(
        '--pruner',
        default='SlimmingPruner',
        type=str,
        choices=['AutoSlimPruner', 'SlimmingPruner', 'l1normPruner'],
        help='architecture to use')
    parser.add_argument('--pruneratio',
                        default=0.4,
                        type=float,
                        help='architecture to use')
    parser.add_argument('--sr',
                        dest='sr',
                        action='store_true',
                        help='train with channel sparsity regularization')
    parser.add_argument('--s',
                        type=float,
                        default=0.0001,
                        help='scale sparse rate (default: 0.0001)')
    parser.add_argument(
        "--skip-test",
        dest="skip_test",
        help="Do not test the final model",
        action="store_true",
    )
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )
    args = parser.parse_args()
    num_gpus = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    args.distributed = num_gpus > 1
    args.num_gpus = num_gpus

    if torch.cuda.is_available():
        # This flag allows you to enable the inbuilt cudnn auto-tuner to
        # find the best algorithm to use for your hardware.
        torch.backends.cudnn.benchmark = True
    if args.distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl",
                                             init_method="env://")
        synchronize()

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    logger = setup_logger("SSD", dist_util.get_rank(), cfg.OUTPUT_DIR)
    logger.info("Using {} GPUs".format(num_gpus))
    logger.info(args)

    logger.info("Loaded configuration file {}".format(args.config_file))
    with open(args.config_file, "r") as cf:
        config_str = "\n" + cf.read()
        logger.info(config_str)
    logger.info("Running with config:\n{}".format(cfg))

    ######
    ##  prune
    ###########
    model = build_detection_model(cfg)
    newmodel = build_detection_model(cfg)
    checkpointer = CheckPointer(model, save_dir=cfg.OUTPUT_DIR)
    _ = checkpointer.load()

    model.eval()
    newmodel.eval()

    if args.pruner == 'l1normPruner':
        kwargs = {'pruneratio': args.pruneratio}
    elif args.pruner == 'SlimmingPruner':
        kwargs = {'pruneratio': args.pruneratio}
    elif args.pruner == 'AutoSlimPruner':
        kwargs = {'prunestep': 16, 'constrain': 200e6}
    pruner = prune.__dict__[args.pruner](model=model,
                                         newmodel=newmodel,
                                         args=args,
                                         **kwargs)

    pruner.prune()
    ##---------count op
    input = torch.randn(1, 3, 320, 320)

    flops, params = profile(model, inputs=(input, ), verbose=False)
    flops, params = clever_format([flops, params], "%.3f")
    flopsnew, paramsnew = profile(newmodel, inputs=(input, ), verbose=False)
    flopsnew, paramsnew = clever_format([flopsnew, paramsnew], "%.3f")
    logger.info("flops:{}->{}, params: {}->{}".format(flops, flopsnew, params,
                                                      paramsnew))
    save_path = os.path.join(cfg.OUTPUT_DIR, "pruned_model.pth")
    torch.save(newmodel, save_path)