Ejemplo n.º 1
0
def load_filter_choice(vessel):
    # If nothing selected. Prevents loading empty filter options
    if vessel is not None:
        # Load Vessel Data
        if vessel not in dfs:
            dfs[vessel] = SQL().get_vessel(vessel=vessel)

        # Populate Options
        options = [{
            'label': i[0],
            'value': i[0]
        } for i in SQL().get_filter_options()]
        return generate_vessel_filter(options=options)
Ejemplo n.º 2
0
def generate_table_container(contents=[]):
    children = [
        html.Div([
            html.H4('Database Tables',
                    className='header-title panel-left table-col-3'),
            html.H4('Status',
                    className='header-title panel-right table-col-3'),
            html.H4('Details',
                    className='header-title panel-left table-col-3'),
            html.H4('Action',
                    className='header-title panel-right table-col-1'),
        ],
                 className='table-heading overflow-auto item-element-margin')
    ]

    status = "In Database"
    for item in contents:
        detail = 'Rows: {}'.format(SQL().get_table_rows(item))
        children.append(
            generate_row(row_name='{}'.format(item),
                         row_id='{}'.format(contents.index(item) + 1),
                         status=status,
                         details=detail,
                         ucode=False))

    return \
        html.Div(
            id='database-tables',
            children=children,
            className='item-wrapper'
        )
Ejemplo n.º 3
0
def load_vessel_df(vessels, table):
    if vessels is not None:
        for vessel in vessels:
            if vessel == "All":
                continue
            if vessel not in dfs:
                dfs[vessel] = SQL().get_vessel(table=table, vessel=vessel)
Ejemplo n.º 4
0
def update_filter(value, db_table):
    options = [{
        'label': label2,
        'value': value2
    } for label2, value2 in SQL().get_attributes('{}'.format(
        db_table)).items()]
    return generate_axis_parameters(value, options)
Ejemplo n.º 5
0
def get_specification(dump, vessel, option, input_value):
    # TODO: Account for multiple specifications
    # Prepare data for specification
    option_type = SQL().get_column_datatypes(column=option, singular=True)
    if option_type == 'varchar':
        comparison = "=="

    # Assemble specifications
    conditions = [(option, comparison, input_value)]

    df = dfs[vessel].get_filtered(conditions=conditions)
    return df.to_json()
Ejemplo n.º 6
0
def load_vessel_field(series, db_table):
    if series is not None or series != u'None' or db_table is not None or db_table != u'None':
        vessels_in_series = SQL().get_vessel_from_series(series=series,
                                                         db_table=db_table)
        if vessels_in_series is not None:
            vesselsInSeries = [{
                'label': i,
                'value': i
            } for i in vessels_in_series]
            vesselsInSeries.append({'value': 'All', 'label': 'All'})
            print("HELLO{}".format(vesselsInSeries))
            return vesselsInSeries
    return
Ejemplo n.º 7
0
def load_series_field(dump):
    return [{
        'label': series,
        'value': series
    } for series in SQL().get_all_series()]
Ejemplo n.º 8
0
def load_vessel_choice(dump):
    return [{'label': i, 'value': i} for i in SQL().get_vessels()]
    def start_menu(self) -> None:
        incorrect_input = True
        while incorrect_input:
            self.my_view.print_menu()
            user_input = self.my_view.get_user_menu_option()

            # Press 1 to load your text file
            if user_input == "1":
                self.data = FileHandler.read_file()
                if self.data == FileNotFoundError:
                    self.my_view.file_not_found_message()
                else:
                    self.my_view.file_loaded_message()

            # Press 2 to write from plantuml text to python code
            elif user_input == "2":
                if self.data is not "":
                    self.find_all()
                    directory_name = FileHandler.choose_directory()
                    if directory_name == TypeError:
                        self.my_view.file_not_found_message()
                    elif directory_name == "":
                        self.my_view.exit_file_directory()
                    elif directory_name == Exception:
                        self.my_view.generic_error_message()
                    else:
                        self.write_all(directory_name)
                else:
                    self.my_view.file_not_loaded_warning()

            # Press 3 to start command line interpreter
            elif user_input == "3":
                self.command_line_interpreter()

            # Press 4 to write file to data base
            elif user_input == "4":
                if self.data is not "":
                    error_message = SQL.connect_to_db("assignment1")
                    if error_message == PermissionError:
                        self.my_view.user_has_no_file_permission()
                    elif error_message == FileNotFoundError:
                        self.my_view.file_not_found_message()
                    elif error_message == Exception:
                        self.my_view.generic_error_message()
                    else:
                        SQL.c.execute("""DROP TABLE if exists class;""")
                        SQL.create_class_table()
                        classes = self.get_class_names()
                        SQL.insert_data_into_table(classes)
                        self.my_view.database_connected_message()
                else:
                    self.my_view.file_not_loaded_warning()

            # Press 5 to print PEP8 class file to screen from database
            elif user_input == "5":
                if self.data is not "":
                    sql_database_table = SQL.fetch_all_class_data()
                    if sql_database_table == PermissionError:
                        self.my_view.user_has_no_file_permission()
                    elif sql_database_table == FileNotFoundError:
                        self.my_view.file_not_found_message()
                    elif sql_database_table == TypeError:
                        self.my_view.file_not_loaded_warning()
                    elif sql_database_table == AttributeError:
                        self.my_view.file_not_loaded_warning()
                    elif sql_database_table == Exception:
                        self.my_view.generic_error_message()
                    else:
                        self.my_view.read_database_file(sql_database_table)
                else:
                    self.my_view.file_not_loaded_warning()

            # Press 6 to load text file, convert data to PEP8 python format then convert file to pickle
            # format in same directory
            elif user_input == "6":
                self.data = FileHandler.read_file()
                if self.data == FileNotFoundError:
                    self.my_view.file_not_found_message()
                else:
                    self.my_view.file_loaded_message()
                    self.prep_pep8()
                    pickle_status = Pickler.pickle_file(self.pep8_content)
                    if pickle_status == PermissionError:
                        self.my_view.user_has_no_file_permission()
                    elif pickle_status == FileNotFoundError:
                        self.my_view.file_not_found_message()
                    elif pickle_status == Exception:
                        self.my_view.generic_error_message()
                    else:
                        self.my_view.pickle_success_message()

            # Press 7 to load data from pickle file
            elif user_input == "7":
                if self.data is not "":
                    pickle_content = Pickler.unpickle_file()
                    if pickle_content == PermissionError:
                        self.my_view.user_has_no_file_permission()
                    elif pickle_content == FileNotFoundError:
                        self.my_view.file_not_found_message()
                    elif pickle_content == Exception:
                        self.my_view.generic_error_message()
                    else:
                        self.my_view.print_my_pickle_content(pickle_content)
                        self.my_view.file_loaded_message()
                else:
                    self.my_view.file_not_loaded_warning()

            # Exit
            elif user_input == "8":
                incorrect_input = False
                self.my_view.exit_program()

            else:
                self.my_view.user_has_wrong_input()
Ejemplo n.º 10
0
def get_option_type(option):
    if option is None:
        return None
    return SQL().get_column_datatypes(column=option, singular=True)
Ejemplo n.º 11
0
def __upload_content(table_name, content):
    return SQL().excel_to_sql(table_name=table_name,
                              excel_file=__parse_excel(content))
Ejemplo n.º 12
0
import pandas as pd

from config.important_attributes import attributes
from model.database import SQL
from model.dataframe import *
from controller.graph_components.regression import GraphMode

sql = SQL()
db_tables = sql.get_table_names()

row = {
    u'namespace': u'dash_html_components',
    u'type': u'Div',
    u'props': {
        u'className':
        u'item-wrapper',
        u'n_clicks_timestamp':
        1532117798075L,
        u'n_clicks':
        1,
        u'children': [{
            u'namespace': u'dash_html_components',
            u'type': u'Div',
            u'props': {
                u'className':
                u'table-heading overflow-auto item-element-margin',
                u'children': [{
                    u'namespace': u'dash_html_components',
                    u'type': u'H4',
                    u'props': {
                        u'className': u'header-title panel-left table-col-3',
Ejemplo n.º 13
0
def load_series_field(dump):
    return [{
        'label': table,
        'value': table
    } for table in SQL().get_table_names()]
Ejemplo n.º 14
0
 def delete_button(click, container):
     if click is not None and click != u'None':
         table = container[0]['props']['children']
         SQL().delete_table(table)
     return
Ejemplo n.º 15
0
def load_table_container(dump):
    return generate_table_container(SQL().get_table_names())
Ejemplo n.º 16
0
def test(dummy):
    test_sql = SQL()
    df = test_sql.get_table("testtable")
    return generate_table(df)
Ejemplo n.º 17
0
def load_filter_specification(option):
    # If nothing selected. Prevents loading empty filter options
    if option is not None:
        option_type = SQL().get_column_datatypes(column=option, singular=True)
        return generate_filter_input(option_type)
Ejemplo n.º 18
0
 def load_filter(dump):
     return [{'label': i, 'value': i} for i in SQL().get_column_names()]
Ejemplo n.º 19
0
def obtain_data(dummy):
    sql = SQL()
    dff = sql.get_table(table_name)
    return dff.to_json()
Ejemplo n.º 20
0
def update_graph(filtered_df_json, value, settings, graph_mode, clusters,
                 threshold, graphName, xLabel, yLabel, zLabel, extraMin,
                 extraMax, seriesInput, dbTableInput, figure, vessels,
                 *filter_settings):
    if figure is not None:
        figure['data'] = []
        minSet = []
        gformula = ""
        gsols = 0.0
        gr_squared = 0.0
        valuesOrigin = ""
        # Populate with 2D Data when X and Y set TODO: Remove hardcode + Account for 3D
        if value[1] is None or value[2] is None:
            figure['data'] = []
        else:
            # Create the dataset for the vessels selected
            # Get specifications
            specifications = []
            for i in range(1, len(filter_settings), 3):
                specifications.append(
                    get_condition(filter_settings[i], filter_settings[i + 1],
                                  filter_settings[i + 2]))
            # Cleanup and prepare conditions
            conditions = []
            for specification in specifications:
                for condition in specification:
                    conditions.append(condition)

            # Obtain filtered df
            df = []
            singleLineAll = False
            secondAll = False
            for vessel in filter_settings[0]:
                if vessel == "All" and 'multiline' not in settings:
                    df = SQL().get_df_from_series(dbTableInput, seriesInput)
                    singleLineAll = True
                    break
                elif vessel == "All":
                    secondAll = True
                    continue
                df.append(dfs[vessel].get_filtered(conditions=conditions))

            if len(df) == 0 and secondAll:
                singleLineAll = True
                df = SQL().get_df_from_series(dbTableInput, seriesInput)

            if singleLineAll:
                dfsDF = df
            else:
                dfsDF = pd.concat(df)

            # Remove any NaN values
            print("THIS IS VALUE: {}".format(value))
            if value[0] == "2D":
                dfsDF = dfsDF.dropna(subset=[value[1], value[2]])
            else:
                dfsDF = dfsDF.dropna(subset=[value[1], value[2], value[3]])

            if threshold != "None":
                # Remove outliers NOTE: Adjust the threshold to modify how strictly filtered the data will be. So far tested 1, 1.5, 3. Strict ~ Lax
                mean = np.mean(dfsDF[value[1]])
                stdio = np.std(dfsDF[value[1]])
                print "Mean: " + str(mean) + " Std: " + str(stdio)
                dfsDF = dfsDF[np.abs(dfsDF[value[1]] - mean) <= (threshold *
                                                                 stdio)]

                mean = np.mean(dfsDF[value[2]])
                stdio = np.std(dfsDF[value[2]])
                print "Mean: " + str(mean) + " Std: " + str(stdio)
                dfsDF = dfsDF[np.abs(dfsDF[value[2]] - mean) <= (threshold *
                                                                 stdio)]

                if value[0] == "3D":
                    mean = np.mean(dfsDF[value[3]])
                    stdio = np.std(dfsDF[value[3]])
                    print "Mean: " + str(mean) + " Std: " + str(stdio)
                    dfsDF = dfsDF[np.abs(dfsDF[value[3]] -
                                         mean) <= (threshold * stdio)]

            # unqVessels = dfsDF['Vessel'].unique().tolist()
            unqVessels = filter_settings[0]
            print unqVessels

            # Set axis labels if any
            if xLabel == "":
                xName = value[1]
            else:
                xName = xLabel
            if yLabel == "":
                yName = value[2]
            else:
                yName = yLabel
            if graphName == "":
                if value[0] == "2D":
                    gName = value[1] + " vs " + value[2]
                else:
                    gName = value[1] + " vs " + value[2] + " vs " + value[3]
            else:
                gName = graphName

            # Multiline Logic
            if 'multiline' in settings:
                counter = 0
                benchmark = 0
                annotation = []
                sfList = SQL().get_vessel_codes()
                for vessel in unqVessels:
                    global valuesOrigin
                    valuesOrigin = vessel
                    print list(dfsDF)
                    if vessel == "All":
                        vesselRow = SQL().get_df_from_series(
                            dbTableInput, seriesInput)
                        if value[0] == "2D":
                            vesselRow = vesselRow.dropna(
                                subset=[value[1], value[2]])
                        else:
                            vesselRow = vesselRow.dropna(
                                subset=[value[1], value[2], value[3]])
                    else:
                        vesselRow = dfsDF.loc[dfsDF['Vessel'] == vessel]

                    # Clustering & Hover Data Generation
                    hoverData = []
                    if 'clustering' in settings:
                        vesselRow = k_means(value, vesselRow, clusters)
                        vesselRow['Vessel'] = pd.Series(vessel,
                                                        index=vesselRow.index)
                        hoverData = np.c_[vesselRow[value[1]],
                                          vesselRow[value[2]]]
                    else:
                        # Generate the Hover Data
                        # Iterate each row from db
                        for key, value1 in vesselRow.iterrows():
                            placeholderText = ""
                            # Iterate each column in the row
                            for index, row in value1.items():
                                # Compare the value in important_attributes
                                for col in full_attributes:
                                    if col == index:
                                        if isinstance(row, float):
                                            placeholderText += "<b>" + index + "</b>: " + str(
                                                round(row, 3)) + "<br>"
                                        else:
                                            placeholderText += "<b>" + index + "</b>: " + str(
                                                row) + "<br>"
                                        break
                            hoverData.append(placeholderText)
                    if 'datapoints' in settings:
                        if value[0] == "2D":
                            scatterPoints = go.Scatter(
                                x=vesselRow[value[1].encode('utf8')],
                                y=vesselRow[value[2].encode('utf8')],
                                name=vessel + " Marker",
                                mode='markers',
                                marker=go.Marker(color=colorList[counter]),
                                text=hoverData,
                            )
                        else:
                            scatterPoints = go.Scatter3d(
                                x=vesselRow[value[1].encode('utf8')],
                                y=vesselRow[value[2].encode('utf8')],
                                z=vesselRow[value[3].encode('utf8')],
                                name=vessel + " Marker",
                                mode='markers',
                                marker=go.Marker(color=colorList[counter]),
                                text=hoverData,
                            )
                        figure['data'].append(scatterPoints)
                    if 'regression' in settings:
                        if value[0] == "2D":
                            line_data, r_squared, sols, formula = regression(
                                vesselRow[value[1].encode('utf8')],
                                vesselRow[value[2].encode('utf8')], graph_mode,
                                extraMin, extraMax)

                            # tmpLst = []
                            # tmpLst.append(r_squared)
                            # tmpLst.append(sols)
                            # tmpLst.append(formula)
                            # gformula[vessel] = tmpLst
                            # gformula[vessel] = [r_squared, sols, formula]
                            global gr_squared, gsols, gformula
                            gr_squared = r_squared
                            gsols = sols
                            gformula = formula

                            eqString, supScript = generateEquationString(
                                formula)

                            bestFit = go.Scatter(
                                x=line_data['x'],
                                y=line_data['y'],
                                name=vessel + ' Line',
                                mode='lines',
                                marker=go.Marker(color=colorList[counter]),
                            )
                            figure['data'].append(bestFit)

                            if benchmark == 0:
                                benchmark = max(line_data['y'])

                            if vessel == "All":
                                vslCde = "All"
                            else:
                                vslCde = sfList[vessel]

                            annotation.append(
                                go.Annotation(x=min(line_data['x']) + 10,
                                              y=benchmark -
                                              counter * benchmark * 0.1,
                                              text=vslCde + ": " +
                                              eqString.format(*supScript),
                                              showarrow=False))
                            layout2d = go.Layout(
                                title=gName,
                                plot_bgcolor='rgb(229, 229, 229)',
                                xaxis=go.XAxis(
                                    title=xName,
                                    zerolinecolor='rgb(255,255,255)',
                                    gridcolor='rgb(255,255,255)'),
                                yaxis=dict(title=yName,
                                           zerolinecolor='rgb(255,255,255)',
                                           gridcolor='rgb(255,255,255)'),
                                annotations=annotation,
                                # yaxis2=dict(title='Percentage', gridcolor='blue', overlaying='y', side='right', range=[100,0]),
                            )
                            figure['layout'] = layout2d
                        else:
                            surfacePlot, surfaceLayout = plot_3d(
                                vesselRow[value[1].encode('utf8')],
                                vesselRow[value[2].encode('utf8')],
                                vesselRow[value[3].encode('utf8')], value[1],
                                value[2], value[3])
                            figure['data'].append(surfacePlot)
                            figure['layout'] = surfaceLayout
                    counter += 1
            else:  # If no multiline
                # Clustering & Hover Data Generation
                hoverData = []
                if 'clustering' in settings:
                    dfsDF = k_means(value, dfsDF, clusters)
                    hoverData = np.c_[dfsDF[value[1]], dfsDF[value[2]]]
                else:
                    # Generate the Hover Data
                    # Iterate each row from db
                    for key, value1 in dfsDF.iterrows():
                        placeholderText = ""
                        # Iterate each column in the row
                        for index, row in value1.items():
                            # Compare the value in important_attributes
                            for col in full_attributes:
                                if col == index:
                                    if isinstance(row, float):
                                        placeholderText += "<b>" + index + "</b>: " + str(
                                            round(row, 3)) + "<br>"
                                    else:
                                        placeholderText += "<b>" + index + "</b>: " + str(
                                            row) + "<br>"
                                    break
                        hoverData.append(placeholderText)

                if value[0] == "2D":
                    # Add scatter from data set if 'datapoints' toggled
                    if len(figure['data']) < 1:
                        figure['data'].append({})
                    if 'datapoints' in settings:
                        figure['data'][0] = go.Scatter(
                            x=dfsDF[value[1].encode('utf8')],
                            y=dfsDF[value[2].encode('utf8')],
                            name='Data Marker',
                            mode='markers',
                            text=hoverData,
                        )
                    else:
                        figure['data'][0] = None

                    # Add Line/Curve if 'regression' toggled
                    if len(figure['data']) < 2:
                        figure['data'].append({})
                    if 'regression' in settings:
                        line_data, r_squared, sols, formula = regression(
                            dfsDF[value[1].encode('utf8')],
                            dfsDF[value[2].encode('utf8')], graph_mode,
                            extraMin, extraMax)
                        print "R-Squared: " + str(r_squared)
                        print "Sum of Least Squares: " + str(sols)
                        print "A Formula: "
                        print formula
                        # global gr_squared, gsols, gformula
                        gr_squared = r_squared
                        gsols = sols
                        gformula = formula

                        eqString, supScript = generateEquationString(formula)

                        figure['data'][1] = go.Scatter(
                            x=line_data['x'],
                            y=line_data['y'],
                            name='Line',
                            mode='lines',
                        )
                        annotation = go.Annotation(x=min(line_data['x']) + 10,
                                                   y=max(line_data['y']),
                                                   text="y=" +
                                                   eqString.format(*supScript),
                                                   showarrow=False)

                        layout2d = go.Layout(
                            title=gName,
                            plot_bgcolor='rgb(229, 229, 229)',
                            xaxis=go.XAxis(title=xName,
                                           zerolinecolor='rgb(255,255,255)',
                                           gridcolor='rgb(255,255,255)'),
                            yaxis=dict(title=yName,
                                       zerolinecolor='rgb(255,255,255)',
                                       gridcolor='rgb(255,255,255)'),
                            annotations=[annotation],
                            # yaxis2=dict(title='Percentage', gridcolor='blue', overlaying='y', side='right', range=[100,0]),
                        )
                        figure['layout'] = layout2d
                    else:
                        figure['data'][1] = None
                else:
                    # 3D
                    # Add scatter from data set if 'datapoints' toggled
                    if len(figure['data']) < 1:
                        figure['data'].append({})
                    if 'datapoints' in settings:
                        figure['data'][0] = go.Scatter3d(
                            x=dfsDF[value[1].encode('utf8')],
                            y=dfsDF[value[2].encode('utf8')],
                            z=dfsDF[value[3].encode('utf8')],
                            name='Data Marker',
                            mode='markers',
                            text=hoverData,
                        )
                    else:
                        figure['data'][0] = None

                    # Add Line/Curve if 'regression' toggled
                    if len(figure['data']) < 2:
                        figure['data'].append({})
                    if 'regression' in settings:
                        surfacePlot, surfaceLayout, minimumSet = plot_3d(
                            dfsDF[value[1].encode('utf8')],
                            dfsDF[value[2].encode('utf8')],
                            dfsDF[value[3].encode('utf8')], value[1], value[2],
                            value[3])
                        figure['data'][1] = surfacePlot
                        figure['layout'] = surfaceLayout
                        minSet = minimumSet
                        print "MINSET"
                        print minSet
                    else:
                        figure['data'][1] = None

                    figure['layout']['scene']['xaxis']['title'] = xName
                    figure['layout']['scene']['yaxis']['title'] = yName
                    figure['layout']['scene']['zaxis']['title'] = zName
                    figure['layout']['title'] = gName

        # Clean figure data
        figure['data'] = [i for i in figure['data'] if i is not None]
        return figure
    return default_figure
Ejemplo n.º 21
0
    0,  # 2. Sea State
    0,  # 3. Swell
    10,  # 4. Speed
    14,  # 5. RPM
    34,  # 6. Trim
    0,  # 7. Power
]


# Display column names with index no.
def get_names(names):
    for name in names:
        print "{}. {}".format(names.index(name), name)


sql = SQL()

# # Read Attributes
# get_names(attributes)

# Get database tables
db_tables = sql.get_table_names()
# get_names(db_tables)

# Get column names for given database
column_names = sql.get_column_names(db_tables[0])
# get_names(column_names)

# Insert Speed
for i in range(len(col_no)):
    if col_no[i] > 0:
Ejemplo n.º 22
0
def update_filer(value, mode):
    if value > 0:
        options = [{'label': i, 'value': i} for i in SQL().get_column_names()]
        return generate_graph(mode, options)
Ejemplo n.º 23
0
def get_table(dummy):
    sql = SQL()
    df = sql.get_table('testtable')

    return generate_table(df)