Ejemplo n.º 1
0
def main():
    """Create the model and start the evaluation process."""
    args = get_arguments()

    gpu0 = args.gpu

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)


    model = Res_Deeplab(num_classes=args.num_classes)

    if args.pretrained_model != None:
        args.restore_from = pretrianed_models_dict[args.pretrained_model]

    if args.restore_from[:4] == 'http' :
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)
    model.load_state_dict(saved_state_dict)

    model.eval()
    model.cuda(gpu0)

    testloader = data.DataLoader(VOCDataSet(args.data_dir, args.data_list, crop_size=(505, 505), mean=IMG_MEAN, scale=False, mirror=False),
                                    batch_size=1, shuffle=False, pin_memory=True)

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(505, 505), mode='bilinear', align_corners=True)
    else:
        interp = nn.Upsample(size=(505, 505), mode='bilinear')
    data_list = []

    colorize = VOCColorize()

    for index, batch in enumerate(testloader):
        if index % 100 == 0:
            print('%d processd'%(index))
        image, label, size, name = batch
        size = size[0].numpy()
        output = model(Variable(image, volatile=True).cuda(gpu0))
        output = interp(output).cpu().data[0].numpy()

        output = output[:,:size[0],:size[1]]
        gt = np.asarray(label[0].numpy()[:size[0],:size[1]], dtype=np.int)

        output = output.transpose(1,2,0)
        output = np.asarray(np.argmax(output, axis=2), dtype=np.int)

        filename = os.path.join(args.save_dir, '{}.png'.format(name[0]))
        color_file = Image.fromarray(colorize(output).transpose(1, 2, 0), 'RGB')
        color_file.save(filename)

        # show_all(gt, output)
        data_list.append([gt.flatten(), output.flatten()])

    filename = os.path.join(args.save_dir, 'result.txt')
    get_iou(data_list, args.num_classes, filename)
def main():
    """Create the model and start the evaluation process."""
    args = get_arguments()

    gpu0 = args.gpu

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)


    model = Res_Deeplab(num_classes=args.num_classes)

    if args.pretrained_model != None:
        args.restore_from[i] = pretrianed_models_dict[args.pretrained_model] # if there is pretrained model, restore_from will be changed

    if args.restore_from[i][:4] == 'http' :
        saved_state_dict = model_zoo.load_url(args.restore_from[i])
    else:
        saved_state_dict = torch.load(args.restore_from[i])  ##VOC_25000
    model.load_state_dict(saved_state_dict)

    model.eval() #evaluation mode
    model.cuda(gpu0)

    testloader = data.DataLoader(VOCDataSet(args.data_dir, args.data_list, crop_size=(505, 505), mean=IMG_MEAN, scale=False, mirror=False),
                                    batch_size=1, shuffle=False, pin_memory=True)

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(505, 505), mode='bilinear', align_corners=True)
    else:
        interp = nn.Upsample(size=(505, 505), mode='bilinear')
    data_list = []

    colorize = VOCColorize() # colorize!
    with torch.no_grad():### added for 0.4
        for index, batch in enumerate(testloader):
            if index % 100 == 0:
                print('%d processd'%(index))
            image, label, size, name = batch # size >>  tensor([[366, 500,   3]])
            size = size[0].numpy() ## [366 500 3]
            output = model(image.cuda(args.gpu))
            output = interp(output).cpu().data[0].numpy()# 21,505,505
            output = output[:,:size[0],:size[1]] # 21,366,500

            gt = np.asarray(label[0].numpy()[:size[0],:size[1]], dtype=np.int) # size of each image is diff

            output = output.transpose(1,2,0)
            output = np.asarray(np.argmax(output, axis=2), dtype=np.int)

            filename = os.path.join(args.save_dir, '{}.png'.format(name[0]))
            color_file = Image.fromarray(colorize(output).transpose(1, 2, 0), 'RGB') # colorize the output
            color_file.save(filename)

            # show_all(gt, output)
            data_list.append([gt.flatten(), output.flatten()])

    filename = os.path.join(args.save_dir, 'result'+args.restore_from[i][-10:-4]+'.txt')
    get_iou(data_list, args.num_classes, filename)
Ejemplo n.º 3
0
def main():
    """Create the model and start the evaluation process."""

    args = get_arguments()

    gpu0 = args.gpu

    if not os.path.exists(args.save):
        os.makedirs(args.save)

    if args.model == 'Deeplab':
        model = Res_Deeplab(num_classes=args.num_classes)
    elif args.model == 'DeeplabVGG':
        model = DeeplabVGG(num_classes=args.num_classes)

    saved_state_dict = torch.load(args.restore_from)

    ### for running different versions of pytorch
    model_dict = model.state_dict()
    saved_state_dict = {k: v for k, v in saved_state_dict.items() if k in model_dict}
    model_dict.update(saved_state_dict)
    ###
    model.load_state_dict(saved_state_dict)

    model.eval()
    model.cuda(gpu0)

    testloader = data.DataLoader(cityscapesDataSet(args.data_dir, args.data_list, crop_size=(1024, 512), mean=IMG_MEAN, scale=False, mirror=False, set=args.set),
                                    batch_size=1, shuffle=False, pin_memory=True)


    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(1024, 2048), mode='bilinear', align_corners=True)
    else:
        interp = nn.Upsample(size=(1024, 2048), mode='bilinear')

    for index, batch in enumerate(testloader):
        if index % 100 == 0:
            print('%d processd' % index)
        image, _, name = batch
        if args.model == 'Deeplab':
            output = model(Variable(image, volatile=True).cuda(gpu0))
            output = interp(output).cpu().data[0].numpy()
        elif args.model == 'DeeplabVGG':
            output = model(Variable(image, volatile=True).cuda(gpu0))
            output = interp(output).cpu().data[0].numpy()

        output = output.transpose(1,2,0)
        output = np.asarray(np.argmax(output, axis=2), dtype=np.uint8)

        output_col = colorize_mask(output)
        output = Image.fromarray(output)

        name = name[0].split('/')[-1]
        output.save('%s/%s' % (args.save, name))
        output_col.save('%s/%s_color.png' % (args.save, name.split('.')[0]))
Ejemplo n.º 4
0
def eval(pth, cityscapes_eval_dir, i_iter):
    """Create the model and start the evaluation process."""

    args = get_arguments()

    gpu0 = args.gpu

    if args.model == 'ResNet':
        model = Res_Deeplab(num_classes=args.num_classes)
        saved_state_dict = torch.load(pth)
    elif args.model == 'VGG':
        model = DeeplabVGG(num_classes=args.num_classes)
        saved_state_dict = torch.load(pth)
    model.load_state_dict(saved_state_dict)

    model.eval()
    model.cuda(gpu0)

    cityscapesloader = data.DataLoader(cityscapesDataSet(
        args.cityscapes_data_dir,
        args.cityscapes_data_list,
        crop_size=(1024, 512),
        mean=IMG_MEAN,
        scale=False,
        mirror=False,
        set=args.set),
                                       batch_size=1,
                                       shuffle=False,
                                       pin_memory=True)

    interp = nn.Upsample(size=(1024, 2048),
                         mode='bilinear',
                         align_corners=True)

    for index, batch in enumerate(cityscapesloader):
        with torch.no_grad():
            if index % 100 == 0:
                print('%d processd' % index)
            image, _, name = batch

            output = model(Variable(image).cuda(gpu0))
            output = interp(output).cpu().data[0].numpy()

            output = output.transpose(1, 2, 0)
            output = np.asarray(np.argmax(output, axis=2), dtype=np.uint8)

            output_col = colorize_mask(output)
            output = Image.fromarray(output)

            name = name[0].split('/')[-1]
            output.save('%s/%s' % (cityscapes_eval_dir, name))
            output_col.save('%s/%s_color.png' %
                            (cityscapes_eval_dir, name.split('.')[0]))

            if i_iter == 0:
                break
Ejemplo n.º 5
0
def main():
    """Create the model and start the evaluation process."""
    args = get_arguments()

    gpu0 = args.gpu

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)


    model = Res_Deeplab(num_classes=args.num_classes)

    # if args.pretrained_model != None:
    #     args.restore_from = pretrianed_models_dict[args.pretrained_model]
    #
    # if args.restore_from[:4] == 'http' :
    #     saved_state_dict = model_zoo.load_url(args.restore_from)
    # else:
    #     saved_state_dict = torch.load(args.restore_from)
    #model.load_state_dict(saved_state_dict)

    model = Res_Deeplab(num_classes=args.num_classes)
    #model.load_state_dict(torch.load('/data/wyc/AdvSemiSeg/snapshots/VOC_15000.pth'))
    state_dict=torch.load('/data1/wyc/AdvSemiSeg/snapshots/VOC_t_concat_pred_img_15000.pth')
    from model.discriminator_pred_concat_img import FCDiscriminator

    model_D = FCDiscriminator(num_classes=args.num_classes)

    state_dict_d = torch.load('/data1/wyc/AdvSemiSeg/snapshots/VOC_t_concat_pred_img_15000_D.pth')


    # original saved file with DataParallel

    # create new OrderedDict that does not contain `module.`
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v
    # load params
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print (name)
        if name in new_state_dict and param.size() == new_state_dict[name].size():
            new_params[name].copy_(new_state_dict[name])
            print('copy {}'.format(name))

    model.load_state_dict(new_params)

    model.eval()
    model.cuda()

    new_state_dict_d = OrderedDict()
    for k, v in state_dict_d.items():
        name = k[7:]  # remove `module.`
        new_state_dict_d[name] = v

    new_params_d = model_D.state_dict().copy()
    for name, param in new_params_d.items():

        print (name)
        if name in new_state_dict_d and param.size() == new_state_dict_d[name].size():
            new_params_d[name].copy_(new_state_dict_d[name])
            print('copy {}'.format(name))

    model_D.load_state_dict(new_params_d)

    model_D.eval()
    model_D.cuda()

    testloader = data.DataLoader(VOCDataSet(args.data_dir, args.data_list, crop_size=(505, 505), mean=IMG_MEAN, scale=False, mirror=False),
                                    batch_size=1, shuffle=False, pin_memory=True)

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(505, 505), mode='bilinear', align_corners=True)
    else:
        interp = nn.Upsample(size=(505, 505), mode='bilinear')
    data_list = []

    colorize = VOCColorize()

    for index, batch in enumerate(testloader):
        if index % 100 == 0:
            print('%d processd'%(index))
        image, label, size, name = batch
        size = size[0].numpy()
        output = model(Variable(image, volatile=True).cuda())
        image_d=Variable(image, volatile=True).cuda()
        output=interp(output)
        output_dout = output.clone()
        output_pred = F.softmax(output, dim=1).cpu().data[0].numpy()
        label2=label[0].numpy()
        output = output.cpu().data[0].numpy()
        output = output[:,:size[0],:size[1]]
        gt = np.asarray(label[0].numpy()[:size[0],:size[1]], dtype=np.int)
        output = output.transpose(1,2,0)
        output = np.asarray(np.argmax(output, axis=2), dtype=np.int)

        #"""pred result"""
        filename = os.path.join(args.save_dir, '{}.png'.format(name[0]))
        color_file = Image.fromarray(colorize(output).transpose(1, 2, 0), 'RGB')
        color_file.save(filename)


        #"""the area of the pred which is wrong"""
        output_mistake=np.zeros(output.shape)
        semi_ignore_mask_correct = (output == gt)
        #semi_ignore_mask_255=(gt==255)
        output_mistake[semi_ignore_mask_correct] = 255
        #output_mistake[semi_ignore_mask_255] = 255
        output_mistake = np.expand_dims(output_mistake, axis=2)
        filename2 = os.path.join('/data1/wyc/AdvSemiSeg/pred_mis/', '{}.png'.format(name[0]))
        cv2.imwrite(filename2, output_mistake)



        #"""dis confidence map decide line of pred map"""
        D_out = interp(model_D(torch.cat([F.softmax(output_dout, dim=1),F.sigmoid(image_d)],1)))#67
        D_out_sigmoid = (F.sigmoid(D_out).data[0].cpu().numpy())
        D_out_sigmoid = D_out_sigmoid[:, :size[0], :size[1]]
        semi_ignore_mask_dout0 = (D_out_sigmoid < 0.0001)
        semi_ignore_mask_dout255 = (D_out_sigmoid >= 0.0001)

        D_out_sigmoid[semi_ignore_mask_dout0] = 0
        D_out_sigmoid[semi_ignore_mask_dout255] = 255
        filename2 = os.path.join('/data1/wyc/AdvSemiSeg/confidence_line/', '{}.png'.format(name[0]))#0 black 255 white
        cv2.imwrite(filename2,D_out_sigmoid.transpose(1, 2, 0))


        #""""pred max decide line of pred map"""
        # id2 = np.argmax(output_pred, axis=0)
        # map=np.zeros([1,id2.shape[0],id2.shape[1]])
        # for i in range(id2.shape[0]):
        #     for j in range(id2.shape[1]):
        #         map[0][i][j]=output_pred[id2[i][j]][i][j]
        # semi_ignore_mask2 = (map < 0.999999)
        # semi_ignore_mask3 = (map >= 0.999999)
        # map[semi_ignore_mask2] = 0
        # map[semi_ignore_mask3] = 255
        # map = map[:, :size[0], :size[1]]
        # filename2 = os.path.join('/data1/wyc/AdvSemiSeg/pred_line/', '{}.png'.format(name[0]))#0 black 255 white
        # cv2.imwrite(filename2,map.transpose(1, 2, 0))





        data_list.append([gt.flatten(), output.flatten()])

    filename = os.path.join(args.save_dir, 'result.txt')
    get_iou(data_list, args.num_classes, filename)
Ejemplo n.º 6
0
def main():
    # 将参数的input_size 映射到整数,并赋值,从字符串转换到整数二元组
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = False
    gpu = args.gpu

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    # 确保模型中参数的格式与要加载的参数相同
    # 返回一个字典,保存着module的所有状态(state);parameters和persistent buffers都会包含在字典中,字典的key就是parameter和buffer的 names。
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        # print (name)
        if name in saved_state_dict and param.size() == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            # print('copy {}'.format(name))
    model.load_state_dict(new_params)

    # 设置为训练模式
    model.train()
    cudnn.benchmark = True

    model.cuda(gpu)

    # init D
    model_D = FCDiscriminator(num_classes=args.num_classes)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))
    model_D.train()
    model_D.cuda(gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    train_dataset = VOCDataSet(args.data_dir, args.data_list, crop_size=input_size,
                               scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)
    train_gt_dataset = VOCGTDataSet(args.data_dir, args.data_list, crop_size=input_size,
                                    scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True)
    else:
        # sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = list(range(train_dataset_size))  # ?
            np.random.shuffle(train_ids)

        pickle.dump(train_ids, open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))  # 写入文件

        train_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size, sampler=train_sampler, num_workers=3, pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size, sampler=train_remain_sampler, num_workers=3,
                                             pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size, sampler=train_gt_sampler, num_workers=3,
                                         pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(), lr=args.learning_rate_D, betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')  # ???

    # labels for adversarial training
    pred_label = 0
    gt_label = 1

    for i_iter in range(args.num_steps):
        print("Iter:", i_iter)
        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):

            # train G

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # do semi first
            if args.lambda_semi > 0 and i_iter >= args.semi_start:
                try:
                    _, batch = next(trainloader_remain_iter)
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = next(trainloader_remain_iter)

                # only access to img
                images, _, _, _ = batch

                images = Variable(images).cuda(gpu)
                # images = Variable(images).cpu()

                pred = interp(model(images))
                D_out = interp(model_D(F.softmax(pred)))

                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(axis=1)

                # produce ignore mask
                semi_ignore_mask = (D_out_sigmoid < args.mask_T)

                semi_gt = pred.data.cpu().numpy().argmax(axis=1)
                semi_gt[semi_ignore_mask] = 255

                semi_ratio = 1.0 - float(semi_ignore_mask.sum()) / semi_ignore_mask.size
                print('semi ratio: {:.4f}'.format(semi_ratio))

                if semi_ratio == 0.0:
                    loss_semi_value += 0
                else:
                    semi_gt = torch.FloatTensor(semi_gt)

                    loss_semi = args.lambda_semi * loss_calc(pred, semi_gt, args.gpu)
                    loss_semi = loss_semi / args.iter_size
                    loss_semi.backward()
                    loss_semi_value += loss_semi.data.cpu().numpy()[0] / args.lambda_semi
            else:
                loss_semi = None

            # train with source

            try:
                _, batch = next(trainloader_iter)
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = next(trainloader_iter)

            images, labels, _, _ = batch

            images = Variable(images).cuda(gpu)
            # images = Variable(images).cpu()

            ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))

            loss_seg = loss_calc(pred, labels, args.gpu)

            D_out = interp(model_D(F.softmax(pred)))

            loss_adv_pred = bce_loss(D_out, make_D_label(gt_label, ignore_mask))

            loss = loss_seg + args.lambda_adv_pred * loss_adv_pred

            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            loss_seg_value += loss_seg.data.cpu().numpy()[0] / args.iter_size
            loss_adv_pred_value += loss_adv_pred.data.cpu().numpy()[0] / args.iter_size

            # train D

            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            # train with pred
            pred = pred.detach()

            D_out = interp(model_D(F.softmax(pred)))
            loss_D = bce_loss(D_out, make_D_label(pred_label, ignore_mask))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]

            # train with gt
            # get gt labels
            try:
                _, batch = next(trainloader_gt_iter)
            except:
                trainloader_gt_iter = enumerate(trainloader_gt)
                _, batch = next(trainloader_gt_iter)

            _, labels_gt, _, _ = batch
            D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
            # D_gt_v = Variable(one_hot(labels_gt)).cpu()
            ignore_mask_gt = (labels_gt.numpy() == 255)

            D_out = interp(model_D(D_gt_v))
            loss_D = bce_loss(D_out, make_D_label(gt_label, ignore_mask_gt))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]

        optimizer.step()
        optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_semi = {5:.3f}'.format(
                i_iter, args.num_steps, loss_seg_value, loss_adv_pred_value, loss_D_value, loss_semi_value))

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'VOC_' + str(args.num_steps) + '.pth'))
            torch.save(model_D.state_dict(), osp.join(args.snapshot_dir, 'VOC_' + str(args.num_steps) + '_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth'))
            torch.save(model_D.state_dict(), osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
Ejemplo n.º 7
0
def main():
    # prepare
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True
    gpu = args.gpu

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            print('copy {}'.format(name))
    model.load_state_dict(new_params)

    model.train()
    model.cuda(args.gpu)

    cudnn.benchmark = True

    # init D
    model_D = detector.FlawDetector(in_channels=24)
    # model_D = FCDiscriminator(num_classes=args.num_classes)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))
    model_D.train()
    model_D.cuda(args.gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=5,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=5,
                                         pin_memory=True)
    else:
        #sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = [_ for _ in range(0, train_dataset_size)]
            np.random.shuffle(train_ids)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))

        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      sampler=train_sampler,
                                      num_workers=3,
                                      pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=3,
                                             pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=3,
                                         pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    # loss/ bilinear upsampling
    minimum_loss = detector.MinimumCriterion()
    detector_loss = detector.FlawDetectorCriterion()

    # bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1

    for i_iter in range(args.num_steps):

        if i_iter > 0 and i_iter % 1000 == 0:
            val(model, args.gpu)
            model.train()

        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_value = 0
        loss_semi_adv_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):

            # train G

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # do semi first
            if (args.lambda_semi > 0 or args.lambda_semi_adv > 0
                ) and i_iter >= args.semi_start_adv:
                try:
                    _, batch = trainloader_remain_iter.__next__()
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = trainloader_remain_iter.__next__()

                # only access to img
                images, _, _, _ = batch
                images = Variable(images).cuda(args.gpu)

                pred = interp(model(images))
                pred_remain = pred.detach()

                D_out = model_D(images, pred)

                ignore_mask_remain = np.zeros(D_out.shape).astype(np.bool)
                loss_semi_adv = args.lambda_semi_adv * minimum_loss(
                    D_out)  # ke: SSL loss for unlabeled data
                loss_semi_adv = loss_semi_adv

                #loss_semi_adv.backward()
                loss_semi_adv_value += loss_semi_adv.data.cpu().numpy(
                ) / args.iter_size

                loss_semi_adv.backward()
                loss_semi_value = 0

            else:
                loss_semi = None
                loss_semi_adv = None

            # train with source (labeled data)

            try:
                _, batch = trainloader_iter.__next__()
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = trainloader_iter.__next__()

            images, labels, _, _ = batch
            images = Variable(images).cuda(args.gpu)
            ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))

            loss_seg = loss_calc(pred, labels, args.gpu)

            D_out = interp(model_D(images, pred))

            loss_adv_pred = args.lambda_adv_pred * minimum_loss(
                D_out)  # ke: SSL loss for labeled data

            loss = loss_seg + loss_adv_pred

            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size
            loss_adv_pred_value += loss_adv_pred.data.cpu().numpy(
            ) / args.iter_size

            # train D

            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            # train with pred from labeled data
            pred = pred.detach()

            D_out = interp(model_D(images, pred))

            detect_gt = detector.generate_flaw_detector_gt(
                pred,
                labels.view(labels.shape[0], 1, labels.shape[1],
                            labels.shape[2]).cuda(args.gpu), NUM_CLASSES,
                IGNORE_LABEL)
            loss_D = detector_loss(D_out, detect_gt)

            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()

            # # train with gt
            # # get gt labels
            # try:
            #     _, batch = trainloader_gt_iter.__next__()
            # except:
            #     trainloader_gt_iter = enumerate(trainloader_gt)
            #     _, batch = trainloader_gt_iter.__next__()

            # _, labels_gt, _, _ = batch
            # D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
            # ignore_mask_gt = (labels_gt.numpy() == 255)

            # D_out = interp(model_D(D_gt_v))
            # loss_D = bce_loss(D_out, make_D_label(gt_label, ignore_mask_gt))
            # loss_D = loss_D/args.iter_size/2
            # loss_D.backward()
            # loss_D_value += loss_D.data.cpu().numpy()

        optimizer.step()
        optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.6f}, loss_adv_l = {3:.6f}, loss_D = {4:.6f}, loss_semi = {5:.6f}, loss_adv_u = {6:.6f}'
            .format(i_iter, args.num_steps, loss_seg_value,
                    loss_adv_pred_value, loss_D_value, loss_semi_value,
                    loss_semi_adv_value))

        if i_iter >= args.num_steps - 1:
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth'))

    end = timeit.default_timer()
Ejemplo n.º 8
0
def main():
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True
    gpu = args.gpu

    # create network

    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters (weights)
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(
            args.restore_from
        )  ## http://vllab1.ucmerced.edu/~whung/adv-semi-seg/resnet101COCO-41f33a49.pth
    else:
        saved_state_dict = torch.load(args.restore_from)
        #checkpoint = torch.load(args.restore_from)_

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()  # state_dict() is current model
    for name, param in new_params.items():
        #print (name) # 'conv1.weight, name:param(value), dict
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            #print('copy {}'.format(name))
    model.load_state_dict(new_params)
    #model.load_state_dict(checkpoint['state_dict'])
    #optimizer.load_state_dict(args.checkpoint['optim_dict'])

    model.train(
    )  # https://pytorch.org/docs/stable/nn.html, Sets the module in training mode.
    model.cuda(args.gpu)  ##

    cudnn.benchmark = True  # This flag allows you to enable the inbuilt cudnn auto-tuner to find the best algorithm to use for your hardware

    # init D

    model_D = FCDiscriminator(num_classes=args.num_classes)
    #args.restore_from_D = 'snapshots/linear2/VOC_25000_D.pth'
    if args.restore_from_D is not None:  # None
        model_D.load_state_dict(torch.load(args.restore_from_D))
        # checkpoint_D = torch.load(args.restore_from_D)
        # model_D.load_state_dict(checkpoint_D['state_dict'])
        # optimizer_D.load_state_dict(checkpoint_D['optim_dict'])
    model_D.train()
    model_D.cuda(args.gpu)

    if USECALI:
        model_cali = ModelWithTemperature(model, model_D)
        model_cali.cuda(args.gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    random.seed(args.random_seed)
    np.random.seed(args.random_seed)
    torch.manual_seed(args.random_seed)
    torch.cuda.manual_seed(args.random_seed)
    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)
    train_dataset_remain = VOCDataSet(args.data_dir,
                                      args.data_list_remain,
                                      crop_size=input_size,
                                      scale=args.random_scale,
                                      mirror=args.random_mirror,
                                      mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)
    train_dataset_size_remain = len(train_dataset_remain)

    print train_dataset_size
    print train_dataset_size_remain

    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)
    if args.partial_data is None:  #if not partial, load all

        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=5,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=5,
                                         pin_memory=True)
    else:
        #sample partial data
        #args.partial_data = 0.125
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:  #args.partial_id is none
            train_ids = range(train_dataset_size)
            train_ids_remain = range(train_dataset_size_remain)
            np.random.shuffle(train_ids)  #shuffle!
            np.random.shuffle(train_ids_remain)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'),
                         'wb'))  #randomly suffled ids

        #sampler
        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:])  # 0~1/8,
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids_remain[:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(train_ids[:])
        # train_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size]) # 0~1/8
        # train_remain_sampler = data.sampler.SubsetRandomSampler(train_ids[partial_size:]) # used as unlabeled, 7/8
        # train_gt_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])

        #train loader
        trainloader = data.DataLoader(
            train_dataset,
            batch_size=args.batch_size,
            sampler=train_sampler,
            num_workers=3,
            pin_memory=True)  # multi-process data loading
        trainloader_remain = data.DataLoader(train_dataset_remain,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=3,
                                             pin_memory=True)
        # trainloader_remain = data.DataLoader(train_dataset,
        #                                      batch_size=args.batch_size, sampler=train_remain_sampler, num_workers=3,
        #                                     pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=3,
                                         pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network

    # model.optim_paramters(args) = list(dict1, dict2), dict1 >> 'lr' and 'params'
    # print(type(model.optim_parameters(args)[0]['params'])) # generator
    #print(model.state_dict()['coeff'][0]) #confirmed

    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    #optimizer.add_param_group({"params":model.coeff}) # assign new coefficient to the optimizer
    #print(len(optimizer.param_groups))
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()  #initialize

    if USECALI:
        optimizer_cali = optim.LBFGS([model_cali.temperature],
                                     lr=0.01,
                                     max_iter=50)
        optimizer_cali.zero_grad()

        nll_criterion = BCEWithLogitsLoss().cuda()  # BCE!!
        ece_criterion = ECELoss().cuda()

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(
        size=(input_size[1], input_size[0]), mode='bilinear'
    )  # okay it automatically change to functional.interpolate
    # 321, 321

    if version.parse(torch.__version__) >= version.parse('0.4.0'):  #0.4.1
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1
    semi_ratio_sum = 0
    semi_sum = 0
    loss_seg_sum = 0
    loss_adv_sum = 0
    loss_vat_sum = 0
    l_seg_sum = 0
    l_vat_sum = 0
    l_adv_sum = 0
    logits_list = []
    labels_list = []

    #https: // towardsdatascience.com / understanding - pytorch -with-an - example - a - step - by - step - tutorial - 81fc5f8c4e8e

    for i_iter in range(args.num_steps):

        loss_seg_value = 0  # L_seg
        loss_adv_pred_value = 0  # 0.01 L_adv
        loss_D_value = 0  # L_D
        loss_semi_value = 0  # 0.1 L_semi
        loss_semi_adv_value = 0  # 0.001 L_adv
        loss_vat_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)  #changing lr by iteration

        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):

            ###################### train G!!!###########################
            ############################################################
            # don't accumulate grads in D

            for param in model_D.parameters(
            ):  # <class 'torch.nn.parameter.Parameter'>, convolution weights
                param.requires_grad = False  # do not update gradient of D (freeze) while G

            ######### do unlabeled first!! 0.001 L_adv + 0.1 L_semi ###############

            # lambda_semi, lambda_adv for unlabeled
            if (args.lambda_semi > 0 or args.lambda_semi_adv > 0
                ) and i_iter >= args.semi_start_adv:
                try:
                    _, batch = trainloader_remain_iter.next(
                    )  #remain = unlabeled
                    print(trainloader_remain_iter.next())
                except:
                    trainloader_remain_iter = enumerate(
                        trainloader_remain)  # impose counters
                    _, batch = trainloader_remain_iter.next()

                # only access to img
                images, _, _, _ = batch  # <class 'torch.Tensor'>
                images = Variable(images).cuda(
                    args.gpu)  # <class 'torch.Tensor'>

                pred = interp(
                    model(images))  # S(X), pred <class 'torch.Tensor'>
                pred_remain = pred.detach(
                )  #use detach() when attempting to remove a tensor from a computation graph, will be used for D
                # https://discuss.pytorch.org/t/clone-and-detach-in-v0-4-0/16861
                # The difference is that detach refers to only a given variable on which it's called.
                # torch.no_grad affects all operations taking place within the with statement. >> for context,
                # requires_grad is for tensor

                # pred >> (8,21,321,321), L_adv
                D_out = interp(
                    model_D(F.softmax(pred))
                )  # D(S(X)), confidence, 8,1,321,321, not detached, there was not dim
                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(
                    axis=1)  # (8,321,321) 0~1

                # 0.001 L_adv!!!!
                ignore_mask_remain = np.zeros(D_out_sigmoid.shape).astype(
                    np.bool)  # no ignore_mask for unlabeled adv
                loss_semi_adv = args.lambda_semi_adv * bce_loss(
                    D_out, make_D_label(gt_label,
                                        ignore_mask_remain))  #gt_label =1,
                # -log(D(S(X)))
                loss_semi_adv = loss_semi_adv / args.iter_size  #normalization

                loss_semi_adv_value += loss_semi_adv.data.cpu().numpy(
                ) / args.lambda_semi_adv

                ##--- visualization, pred(8,21,321,321), D_out_sigmoid(8,321,321)
                """
                if i_iter % 1000 == 0:
                    vpred = pred.transpose(1, 2).transpose(2, 3).contiguous()  # (8,321,321,21)
                    vpred = vpred.view(-1, 21)  # (8*321*321, 21)
                    vlogsx = F.log_softmax(vpred)  # torch.Tensor
                    vsemi_gt = pred.data.cpu().numpy().argmax(axis=1)
                    vsemi_gt = Variable(torch.FloatTensor(vsemi_gt).long()).cuda(gpu)
                    vlogsx = vlogsx.gather(1, vsemi_gt.view(-1, 1))
                    sx = F.softmax(vpred).gather(1, vsemi_gt.view(-1, 1))
                    vD_out_sigmoid = Variable(torch.FloatTensor(D_out_sigmoid)).cuda(gpu).view(-1, 1)
                    vlogsx = (vlogsx*(2.5*vD_out_sigmoid+0.5))
                    vlogsx = -vlogsx.squeeze(dim=1)
                    sx = sx.squeeze(dim=1)
                    vD_out_sigmoid = vD_out_sigmoid.squeeze(dim=1)
                    dsx = vD_out_sigmoid.data.cpu().detach().numpy()
                    vlogsx = vlogsx.data.cpu().detach().numpy()
                    sx = sx.data.cpu().detach().numpy()
                    plt.clf()
                    plt.figure(figsize=(15, 5))
                    plt.subplot(131)
                    plt.ylim(0, 0.004)
                    plt.scatter(dsx, vlogsx, s = 0.1)  # variable requires grad cannot call numpy >> detach
                    plt.xlabel('D(S(X))')
                    plt.ylabel('Loss_Semi per Pixel')
                    plt.subplot(132)
                    plt.scatter(dsx, vlogsx, s = 0.1)  # variable requires grad cannot call numpy >> detach
                    plt.xlabel('D(S(X))')
                    plt.ylabel('Loss_Semi per Pixel')
                    plt.subplot(133)
                    plt.scatter(dsx, sx, s=0.1)
                    plt.xlabel('D(S(X))')
                    plt.ylabel('S(x)')
                    plt.savefig('/home/eungyo/AdvSemiSeg/plot/'  + str(i_iter) + '.png')
                    """

                if args.lambda_semi <= 0 or i_iter < args.semi_start:
                    loss_semi_adv.backward()
                    loss_semi_value = 0
                else:

                    semi_gt = pred.data.cpu().numpy().argmax(
                        axis=1
                    )  # pred=S(X) ((8,21,321,321)), semi_gt is not one-hot, 8,321,321
                    #(8, 321, 321)

                    if not USECALI:
                        semi_ignore_mask = (
                            D_out_sigmoid < args.mask_T
                        )  # both (8,321,321) 0~1threshold!, numpy
                        semi_gt[
                            semi_ignore_mask] = 255  # Yhat, ignore pixel becomes 255
                        semi_ratio = 1.0 - float(semi_ignore_mask.sum(
                        )) / semi_ignore_mask.size  # ignored pixels / H*W
                        print('semi ratio: {:.4f}'.format(semi_ratio))

                        if semi_ratio == 0.0:
                            loss_semi_value += 0
                        else:
                            semi_gt = torch.FloatTensor(semi_gt)
                            confidence = torch.FloatTensor(
                                D_out_sigmoid)  ## added, only pred is on cuda
                            loss_semi = args.lambda_semi * weighted_loss_calc(
                                pred, semi_gt, args.gpu, confidence)

                    else:
                        semi_ratio = 1
                        semi_gt = (torch.FloatTensor(semi_gt))  # (8,321,321)
                        confidence = torch.FloatTensor(
                            F.sigmoid(
                                model_cali.temperature_scale(D_out.view(
                                    -1))).data.cpu().numpy())  # (8*321*321,)
                        loss_semi = args.lambda_semi * calibrated_loss_calc(
                            pred, semi_gt, args.gpu, confidence, accuracies,
                            n_bin
                        )  #  L_semi = Yhat * log(S(X)) # loss_calc(pred, semi_gt, args.gpu)
                        # pred(8,21,321,321)

                    if semi_ratio != 0:
                        loss_semi = loss_semi / args.iter_size
                        loss_semi_value += loss_semi.data.cpu().numpy(
                        ) / args.lambda_semi

                        if args.method == 'vatent' or args.method == 'vat':
                            #v_loss = vat_loss(model, images, pred, eps=args.epsilon[i])  # R_vadv
                            weighted_v_loss = weighted_vat_loss(
                                model,
                                images,
                                pred,
                                confidence,
                                eps=args.epsilon)

                            if args.method == 'vatent':
                                #v_loss += entropy_loss(pred)  # R_cent (conditional entropy loss)
                                weighted_v_loss += weighted_entropy_loss(
                                    pred, confidence)

                            v_loss = weighted_v_loss / args.iter_size
                            loss_vat_value += v_loss.data.cpu().numpy()
                            loss_semi_adv += args.alpha * v_loss

                            loss_vat_sum += loss_vat_value
                            if i_iter % 100 == 0 and sub_i == 4:
                                l_vat_sum = loss_vat_sum / 100
                                if i_iter == 0:
                                    l_vat_sum = l_vat_sum * 100
                                loss_vat_sum = 0

                        loss_semi += loss_semi_adv
                        loss_semi.backward(
                        )  # 0.001 L_adv + 0.1 L_semi, backward == back propagation

            else:
                loss_semi = None
                loss_semi_adv = None

            ###########train with source (labeled data)############### L_ce + 0.01 * L_adv

            try:
                _, batch = trainloader_iter.next()
            except:
                trainloader_iter = enumerate(trainloader)  # safe coding
                _, batch = trainloader_iter.next()  #counter, batch

            images, labels, _, _ = batch  # also get labels images(8,321,321)
            images = Variable(images).cuda(args.gpu)
            ignore_mask = (
                labels.numpy() == 255
            )  # ignored pixels == 255 >> 1, yes ignored mask for labeled data

            pred = interp(model(images))  # S(X), 8,21,321,321
            loss_seg = loss_calc(pred, labels,
                                 args.gpu)  # -Y*logS(X)= L_ce, not detached

            if USED:
                softsx = F.softmax(pred, dim=1)
                D_out = interp(model_D(softsx))  # D(S(X)), L_adv

                loss_adv_pred = bce_loss(
                    D_out, make_D_label(
                        gt_label,
                        ignore_mask))  # both  8,1,321,321, gt_label = 1
                # L_adv =  -log(D(S(X)), make_D_label is all 1 except ignored_region

                loss = loss_seg + args.lambda_adv_pred * loss_adv_pred
                if USECALI:
                    if (args.lambda_semi > 0 or args.lambda_semi_adv > 0
                        ) and i_iter >= args.semi_start_adv:
                        with torch.no_grad():
                            _, prediction = torch.max(softsx, 1)
                            labels_mask = (
                                (labels > 0) *
                                (labels != 255)) | (prediction.data.cpu() > 0)
                            labels = labels[labels_mask]
                            prediction = prediction[labels_mask]
                            fake_mask = (labels.data.cpu().numpy() !=
                                         prediction.data.cpu().numpy())
                            real_label = make_conf_label(
                                1, fake_mask
                            )  # (10*321*321, ) 0 or 1 (fake or real)

                            logits = D_out.squeeze(dim=1)
                            logits = logits[labels_mask]
                            logits_list.append(logits)  # initialize
                            labels_list.append(real_label)

                        if (i_iter * args.iter_size * args.batch_size + sub_i +
                                1) % train_dataset_size == 0:
                            logits = torch.cat(logits_list).cuda(
                            )  # overall 5000 images in val,  #logits >> 5000,100, (1464*321*321,)
                            labels = torch.cat(labels_list).cuda()
                            before_temperature_nll = nll_criterion(
                                logits, labels).item()  ####modify
                            before_temperature_ece, _, _ = ece_criterion(
                                logits, labels)  # (1464*321*321,)
                            before_temperature_ece = before_temperature_ece.item(
                            )
                            print('Before temperature - NLL: %.3f, ECE: %.3f' %
                                  (before_temperature_nll,
                                   before_temperature_ece))

                            def eval():
                                loss_cali = nll_criterion(
                                    model_cali.temperature_scale(logits),
                                    labels)
                                loss_cali.backward()
                                return loss_cali

                            optimizer_cali.step(
                                eval)  # just one backward >> not 50 iterations
                            after_temperature_nll = nll_criterion(
                                model_cali.temperature_scale(logits),
                                labels).item()
                            after_temperature_ece, accuracies, n_bin = ece_criterion(
                                model_cali.temperature_scale(logits), labels)
                            after_temperature_ece = after_temperature_ece.item(
                            )
                            print('Optimal temperature: %.3f' %
                                  model_cali.temperature.item())
                            print(
                                'After temperature - NLL: %.3f, ECE: %.3f' %
                                (after_temperature_nll, after_temperature_ece))

                            logits_list = []
                            labels_list = []

            else:
                loss = loss_seg

            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            loss_seg_sum += loss_seg / args.iter_size
            if USED:
                loss_adv_sum += loss_adv_pred
            if i_iter % 100 == 0 and sub_i == 4:
                l_seg_sum = loss_seg_sum / 100
                if USED:
                    l_adv_sum = loss_adv_sum / 100
                if i_iter == 0:
                    l_seg_sum = l_seg_sum * 100
                    l_adv_sum = l_adv_sum * 100
                loss_seg_sum = 0
                loss_adv_sum = 0

            loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size
            if USED:
                loss_adv_pred_value += loss_adv_pred.data.cpu().numpy(
                ) / args.iter_size

            ##################### train D!!!###########################
            ###########################################################
            # bring back requires_grad
            if USED:
                for param in model_D.parameters():
                    param.requires_grad = True  # before False.

                ############# train with pred S(X)############# labeled + unlabeled
                pred = pred.detach(
                )  #orginally only use labeled data, freeze S(X) when train D,

                # We do train D with the unlabeled data. But the difference is quite small

                if args.D_remain:  #default true
                    pred = torch.cat(
                        (pred, pred_remain), 0
                    )  # pred_remain(unlabeled S(x)) is detached  16,21,321,321
                    ignore_mask = np.concatenate(
                        (ignore_mask, ignore_mask_remain),
                        axis=0)  # 16,321,321

                D_out = interp(
                    model_D(F.softmax(pred, dim=1))
                )  # D(S(X)) 16,1,321,321  # softmax(pred,dim=1) for 0.4, not nessesary

                loss_D = bce_loss(D_out,
                                  make_D_label(pred_label,
                                               ignore_mask))  # pred_label = 0

                # -log(1-D(S(X)))
                loss_D = loss_D / args.iter_size / 2  # iter_size = 1, /2 because there is G and D
                loss_D.backward()
                loss_D_value += loss_D.data.cpu().numpy()

                ################## train with gt################### only labeled
                #VOCGT and VOCdataset can be reduced to one dataset in this repo.
                # get gt labels Y
                #print "before train gt"
                try:
                    print(trainloader_gt_iter.next())  # len 732
                    _, batch = trainloader_gt_iter.next()

                except:
                    trainloader_gt_iter = enumerate(trainloader_gt)
                    _, batch = trainloader_gt_iter.next()
                #print "train with gt?"
                _, labels_gt, _, _ = batch
                D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)  #one_hot
                ignore_mask_gt = (labels_gt.numpy() == 255
                                  )  # same as ignore_mask (8,321,321)
                #print "finish"
                D_out = interp(model_D(D_gt_v))  # D(Y)
                loss_D = bce_loss(D_out,
                                  make_D_label(gt_label,
                                               ignore_mask_gt))  # log(D(Y))
                loss_D = loss_D / args.iter_size / 2

                loss_D.backward()
                loss_D_value += loss_D.data.cpu().numpy()

        optimizer.step()

        if USED:
            optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))  #snapshot
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.6f}, loss_semi = {5:.6f}, loss_semi_adv = {6:.3f}, loss_vat = {7: .5f}'
            .format(i_iter, args.num_steps, loss_seg_value,
                    loss_adv_pred_value, loss_D_value, loss_semi_value,
                    loss_semi_adv_value, loss_vat_value))
        #                                        L_ce             L_adv for labeled      L_D                L_semi              L_adv for unlabeled
        #loss_adv should be inversely proportional to the loss_D if they are seeing the same data.
        # loss_adv_p is essentially the inverse loss of loss_D. We expect them to achieve a good balance during the adversarial training
        # loss_D is around 0.2-0.5   >> good
        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '_D.pth'))
            #torch.save(state, osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth.tar'))
            #torch.save(state_D, osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth.tar'))
            break

        if i_iter % 100 == 0 and sub_i == 4:  #loss_seg_value
            wdata = "iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.6f}, loss_semi = {5:.8f}, loss_semi_adv = {6:.3f}, l_vat_sum = {7: .5f}, loss_label = {8: .4}\n".format(
                i_iter, args.num_steps, l_seg_sum, l_adv_sum, loss_D_value,
                loss_semi_value, loss_semi_adv_value, l_vat_sum,
                l_seg_sum + 0.01 * l_adv_sum)
            #wdata2 = "{0:8d} {1:s} {2:s} {3:s} {4:s} {5:s} {6:s} {7:s} {8:s}\n".format(i_iter,str(model.coeff[0])[8:14],str(model.coeff[1])[8:14],str(model.coeff[2])[8:14],str(model.coeff[3])[8:14],str(model.coeff[4])[8:14],str(model.coeff[5])[8:14],str(model.coeff[6])[8:14],str(model.coeff[7])[8:14])
            if i_iter == 0:
                f2 = open("/home/eungyo/AdvSemiSeg/snapshots/log.txt", 'w')
                f2.write(wdata)
                f2.close()
                #f3 = open("/home/eungyo/AdvSemiSeg/snapshots/coeff.txt", 'w')
                #f3.write(wdata2)
                #f3.close()
            else:
                f1 = open("/home/eungyo/AdvSemiSeg/snapshots/log.txt", 'a')
                f1.write(wdata)
                f1.close()
                #f4 = open("/home/eungyo/AdvSemiSeg/snapshots/coeff.txt", 'a')
                #f4.write(wdata2)
                #f4.close()

        if i_iter % args.save_pred_every == 0 and i_iter != 0:  # 5000
            print('taking snapshot ...')
            #state = {'epoch':i_iter, 'state_dict':model.state_dict(),'optim_dict':optimizer.state_dict()}
            #state_D = {'epoch':i_iter, 'state_dict': model_D.state_dict(), 'optim_dict': optimizer_D.state_dict()}
            #torch.save(state, osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth.tar'))
            #torch.save(state_D, osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth.tar'))
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
Ejemplo n.º 9
0
def main():

    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True
    gpu = args.gpu

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print(name)
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            print('copy {}'.format(name))
    model.load_state_dict(new_params)

    model.train()
    model.cuda(args.gpu)

    cudnn.benchmark = True

    # init D
    model_D = FCDiscriminator(num_classes=args.num_classes)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))
    model_D.train()
    model_D.cuda(args.gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=16,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=16,
                                         pin_memory=True)
    else:
        #sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = np.arange(train_dataset_size)
            np.random.shuffle(train_ids)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))

        train_sampler_all = data.sampler.SubsetRandomSampler(train_ids)
        train_gt_sampler_all = data.sampler.SubsetRandomSampler(train_ids)
        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])

        trainloader_all = data.DataLoader(train_dataset,
                                          batch_size=args.batch_size,
                                          sampler=train_sampler_all,
                                          num_workers=16,
                                          pin_memory=True)
        trainloader_gt_all = data.DataLoader(train_gt_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_gt_sampler_all,
                                             num_workers=16,
                                             pin_memory=True)
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      sampler=train_sampler,
                                      num_workers=16,
                                      pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=16,
                                             pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=16,
                                         pin_memory=True)

        trainloader_remain_iter = iter(trainloader_remain)

    trainloader_all_iter = iter(trainloader_all)
    trainloader_iter = iter(trainloader)
    trainloader_gt_iter = iter(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1

    #y_real_, y_fake_ = Variable(torch.ones(args.batch_size, 1).cuda()), Variable(torch.zeros(args.batch_size, 1).cuda())

    for i_iter in range(args.num_steps):

        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_fm_value = 0
        loss_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):

            # train G

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # train with source

            try:
                batch = next(trainloader_iter)
            except:
                trainloader_iter = iter(trainloader)
                batch = next(trainloader_iter)

            images, labels, _, _ = batch
            images = Variable(images).cuda(args.gpu)
            #ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))

            loss_seg = loss_calc(pred, labels, args.gpu)
            loss_seg.backward()
            loss_seg_value += loss_seg.data.cpu().numpy()[0] / args.iter_size

            if i_iter >= args.adv_start:

                #fm loss calc
                try:
                    batch = next(trainloader_all_iter)
                except:
                    trainloader_iter = iter(trainloader_all)
                    batch = next(trainloader_all_iter)

                images, labels, _, _ = batch
                images = Variable(images).cuda(args.gpu)
                #ignore_mask = (labels.numpy() == 255)
                pred = interp(model(images))

                _, D_out_y_pred = model_D(F.softmax(pred))

                trainloader_gt_iter = iter(trainloader_gt)
                batch = next(trainloader_gt_iter)

                _, labels_gt, _, _ = batch
                D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
                #ignore_mask_gt = (labels_gt.numpy() == 255)

                _, D_out_y_gt = model_D(D_gt_v)

                fm_loss = torch.mean(
                    torch.abs(
                        torch.mean(D_out_y_gt, 0) -
                        torch.mean(D_out_y_pred, 0)))

                loss = loss_seg + args.lambda_fm * fm_loss

                # proper normalization
                fm_loss.backward()
                #loss_seg_value += loss_seg.data.cpu().numpy()[0]/args.iter_size
                loss_fm_value += fm_loss.data.cpu().numpy()[0] / args.iter_size
                loss_value += loss.data.cpu().numpy()[0] / args.iter_size

                # train D

                # bring back requires_grad
                for param in model_D.parameters():
                    param.requires_grad = True

                # train with pred
                pred = pred.detach()

                D_out_z, _ = model_D(F.softmax(pred))
                y_fake_ = Variable(torch.zeros(D_out_z.size(0), 1).cuda())
                loss_D_fake = criterion(D_out_z, y_fake_)

                # train with gt
                # get gt labels
                _, labels_gt, _, _ = batch
                D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
                #ignore_mask_gt = (labels_gt.numpy() == 255)

                D_out_z_gt, _ = model_D(D_gt_v)
                #D_out = interp(D_out_x)

                y_real_ = Variable(torch.ones(D_out_z_gt.size(0), 1).cuda())

                loss_D_real = criterion(D_out_z_gt, y_real_)
                loss_D = loss_D_fake + loss_D_real
                loss_D.backward()
                loss_D_value += loss_D.data.cpu().numpy()[0]

        optimizer.step()
        optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print('iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_D = {3:.3f}'.
              format(i_iter, args.num_steps, loss_seg_value, loss_D_value))
        print('fm_loss: ', loss_fm_value, ' g_loss: ', loss_value)

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
Ejemplo n.º 10
0
def main():
    """Create the model and start the evaluation process."""
    args = get_arguments()
    gpu0 = args.gpu

    print("Evaluating model")
    print(args.restore_from)
    print("classifier model")
    print(args.restore_from_classifier)
    print("sigmoid threshold")
    print(args.sigmoid_threshold)

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    model = Res_Deeplab(num_classes=args.num_classes)
    model_cls = Res_Deeplab_class(num_classes=args.num_classes,
                                  mode=6,
                                  latent_vars=args.latent_vars)

    saved_state_dict = torch.load(args.restore_from)
    model.load_state_dict(saved_state_dict, strict=False)

    model.eval()
    model.cuda(gpu0)

    saved_state_dict = torch.load(args.restore_from_classifier)
    model_cls.load_state_dict(saved_state_dict, strict=False)

    model_cls.eval()
    model_cls.cuda(gpu0)

    testloader = data.DataLoader(VOCDataSet(args.data_dir,
                                            args.data_list,
                                            crop_size=(505, 505),
                                            mean=IMG_MEAN,
                                            scale=False,
                                            mirror=False),
                                 batch_size=1,
                                 shuffle=False,
                                 pin_memory=True)

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(505, 505),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(505, 505), mode='bilinear')
    data_list = []

    colorize = VOCColorize()

    combo_matrix = np.zeros((args.num_classes, args.latent_vars + 1),
                            dtype=np.float32)
    for index, batch in enumerate(testloader):
        if index % 100 == 0:
            print('%d processd' % (index))
        image, label, size, name = batch
        size = size[0].numpy()
        output = model(Variable(image, volatile=True).cuda(gpu0))
        output = interp(output).cpu().data[0].numpy()

        output = output[:, :size[0], :size[1]]

        cls_pred = F.sigmoid(
            model_cls(Variable(image, volatile=True).cuda(gpu0)))
        cls_pred = cls_pred.cpu().data.numpy()[0]

        gt = np.asarray(label[0].numpy()[:size[0], :size[1]], dtype=np.int)

        #gt_classes = np.unique(gt).tolist()
        for clsID in range(1, args.num_classes):
            if cls_pred[clsID - 1] < args.sigmoid_threshold:
                output[clsID, :, :] = -1000000000

        output = output.transpose(1, 2, 0)
        output = np.asarray(np.argmax(output, axis=2), dtype=np.int)

        filename = os.path.join(args.save_dir, '{}.png'.format(name[0]))
        color_file = Image.fromarray(
            colorize(output).transpose(1, 2, 0), 'RGB')
        #color_file.save(filename)

        #filename = os.path.join(args.save_dir, '{}_lv.png'.format(name[0]))
        #color_file = Image.fromarray(colorize(output_lv).transpose(1, 2, 0), 'RGB')
        #color_file.save(filename)

        filename_gt = os.path.join(args.save_dir, '{}_gt.png'.format(name[0]))
        color_file_gt = Image.fromarray(colorize(gt).transpose(1, 2, 0), 'RGB')
        #color_file_gt.save(filename_gt)

        # show_all(gt, output)
        data_list.append([gt.flatten(), output.flatten()])

    filename = os.path.join(
        args.save_dir,
        args.restore_from.split('/')[-1][:-4] + '_with_classifier_result.txt')
    confusion_matrix = get_iou(data_list, args.num_classes, filename)
Ejemplo n.º 11
0
def main():
    """Create the model and start the evaluation process."""
    args = get_arguments()

    gpu0 = args.gpu

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    model = Res_Deeplab(num_classes=args.num_classes)

    # if args.pretrained_model != None:
    #     args.restore_from = pretrianed_models_dict[args.pretrained_model]
    #
    # if args.restore_from[:4] == 'http' :
    #     saved_state_dict = model_zoo.load_url(args.restore_from)
    # else:
    #     saved_state_dict = torch.load(args.restore_from)
    #model.load_state_dict(saved_state_dict)

    model = Res_Deeplab(num_classes=args.num_classes)
    #model.load_state_dict(torch.load('/data/wyc/AdvSemiSeg/snapshots/VOC_15000.pth'))#70.7
    state_dict = torch.load(
        '/data1/wyc/AdvSemiSeg/snapshots/VOC_t_baseline_1adv_mul_20000.pth'
    )  #baseline707 adv 709 nadv 705()*2#n adv0.694

    # state_dict = torch.load(
    #     '/home/wyc/VOC_t_baseline_nadv2_20000.pth')  # baseline707 adv 709 nadv 705()*2

    # original saved file with DataParallel

    # create new OrderedDict that does not contain `module.`
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v
    # load params

    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print(name)
        if name in new_state_dict and param.size(
        ) == new_state_dict[name].size():
            new_params[name].copy_(new_state_dict[name])
            print('copy {}'.format(name))

    model.load_state_dict(new_params)

    model.eval()
    model.cuda(gpu0)

    testloader = data.DataLoader(VOCDataSet(args.data_dir,
                                            args.data_list,
                                            crop_size=(505, 505),
                                            mean=IMG_MEAN,
                                            scale=False,
                                            mirror=False),
                                 batch_size=1,
                                 shuffle=False,
                                 pin_memory=True)

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(505, 505),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(505, 505), mode='bilinear')
    data_list = []

    colorize = VOCColorize()

    tag = 0

    for index, batch in enumerate(testloader):
        if index % 100 == 0:
            print('%d processd' % (index))
        image, label, size, name = batch
        size = size[0].numpy()
        output = model(Variable(image, volatile=True).cuda(gpu0))
        pred = interp(output)
        pred01 = F.softmax(pred, dim=1)
        output = interp(output).cpu().data[0].numpy()
        image = Variable(image).cuda()

        pred_re = F.softmax(pred, dim=1).repeat(1, 3, 1, 1)

        indices_1 = torch.index_select(image, 1,
                                       Variable(torch.LongTensor([0])).cuda())
        indices_2 = torch.index_select(image, 1,
                                       Variable(torch.LongTensor([1])).cuda())
        indices_3 = torch.index_select(image, 1,
                                       Variable(torch.LongTensor([2])).cuda())
        img_re = torch.cat([
            indices_1.repeat(1, 21, 1, 1),
            indices_2.repeat(1, 21, 1, 1),
            indices_3.repeat(1, 21, 1, 1),
        ], 1)

        mul_img = pred_re * img_re

        for i_l in range(label.shape[0]):
            label_set = np.unique(label[i_l]).tolist()
            for ls in label_set:
                if ls != 0 and ls != 255:
                    ls = int(ls)

                    img_p = torch.cat([
                        mul_img[i_l][ls].unsqueeze(0).unsqueeze(0),
                        mul_img[i_l][ls + 21].unsqueeze(0).unsqueeze(0),
                        mul_img[i_l][ls + 21 + 21].unsqueeze(0).unsqueeze(0)
                    ], 1)

                    imgs = img_p.squeeze()
                    imgs = imgs.transpose(0, 1)
                    imgs = imgs.transpose(1, 2)
                    imgs = imgs.data.cpu().numpy()

                    img_ori = image[0]
                    img_ori = img_ori.squeeze()
                    img_ori = img_ori.transpose(0, 1)
                    img_ori = img_ori.transpose(1, 2)
                    img_ori = img_ori.data.cpu().numpy()

                    pred_ori = pred01[0][ls]
                    pred_ori = pred_ori.data.cpu().numpy()
                    pred_0 = pred_ori.copy()

                    pred_ori = pred_ori

                    size = pred_ori.shape
                    color_image = np.zeros((3, size[0], size[1]),
                                           dtype=np.uint8)

                    for i in range(size[0]):
                        for j in range(size[1]):
                            if pred_0[i][j] > 0.995:
                                color_image[0][i][j] = 0
                                color_image[1][i][j] = 255
                                color_image[2][i][j] = 0
                            elif pred_0[i][j] > 0.9:
                                color_image[0][i][j] = 255
                                color_image[1][i][j] = 0
                                color_image[2][i][j] = 0
                            elif pred_0[i][j] > 0.7:
                                color_image[0][i][j] = 0
                                color_image[1][i][j] = 0
                                color_image[2][i][j] = 255

                    color_image = color_image.transpose((1, 2, 0))

                    # print pred_ori.shape

                    cv2.imwrite(
                        osp.join('/data1/wyc/AdvSemiSeg/vis/img_pred',
                                 name[0] + '.png'), imgs)
                    cv2.imwrite(
                        osp.join('/data1/wyc/AdvSemiSeg/vis/image',
                                 name[0] + '.png'), img_ori)
                    cv2.imwrite(
                        osp.join('/data1/wyc/AdvSemiSeg/vis/pred',
                                 name[0] + '.png'), color_image)

        output = output[:, :size[0], :size[1]]
        gt = np.asarray(label[0].numpy()[:size[0], :size[1]], dtype=np.int)

        output = output.transpose(1, 2, 0)
        output = np.asarray(np.argmax(output, axis=2), dtype=np.int)

        filename = os.path.join(args.save_dir, '{}.png'.format(name[0]))
        color_file = Image.fromarray(
            colorize(output).transpose(1, 2, 0), 'RGB')
        color_file.save(filename)

        # show_all(gt, output)
        data_list.append([gt.flatten(), output.flatten()])

    filename = os.path.join(args.save_dir, 'result.txt')
    get_iou(data_list, args.num_classes, filename)
Ejemplo n.º 12
0
def main():
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True
    gpu = args.gpu
    np.random.seed(args.random_seed)

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print(name)
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            print('copy {}'.format(name))
    model.load_state_dict(new_params)
    model.train()
    model.cuda(args.gpu)

    # init D
    model_D = FCDiscriminator(num_classes=args.num_classes)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))
    model_D.train()
    model_D.cuda(args.gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    # load dataset
    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=5,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=5,
                                         pin_memory=True)
    else:
        #sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = np.arange(train_dataset_size)
            np.random.shuffle(train_ids)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))

        # labeled data
        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])
        train_gt_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      sampler=train_sampler,
                                      num_workers=3,
                                      pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=3,
                                         pin_memory=True)

        # unlabeled data
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids[partial_size:])
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=3,
                                             pin_memory=True)
        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)
    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    # loss/bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1

    for i_iter in range(args.num_steps):
        loss_seg_value = 0
        loss_adv_pred_value = 0

        loss_D_value = 0
        loss_D_ul_value = 0

        loss_semi_value = 0
        loss_semi_adv_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        # creating 2nd discriminator as a copy of the 1st one
        if i_iter == args.discr_split:
            model_D_ul = FCDiscriminator(num_classes=args.num_classes)
            model_D_ul.load_state_dict(net_D.state_dict())
            model_D_ul.train()
            model_D_ul.cuda(args.gpu)

            optimizer_D_ul = optim.Adam(model_D_ul.parameters(),
                                        lr=args.learning_rate_D,
                                        betas=(0.9, 0.99))

        # start training 2nd discriminator after specified number of steps
        if i_iter >= args.discr_split:
            optimizer_D_ul.zero_grad()
            adjust_learning_rate_D(optimizer_D_ul, i_iter)

        for sub_i in range(args.iter_size):
            # train Segmentation

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # don't accumulate grads in D_ul, in case split has already been made
            if i_iter >= args.discr_split:
                for param in model_D_ul.parameters():
                    param.requires_grad = False

            # do semi-supervised training first
            if args.lambda_semi_adv > 0 and i_iter >= args.semi_start_adv:
                try:
                    _, batch = trainloader_remain_iter.next()
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = trainloader_remain_iter.next()

                # only access to img
                images, _, _, _ = batch
                images = Variable(images).cuda(args.gpu)

                pred = interp(model(images))
                pred_remain = pred.detach()

                # choose discriminator depending on the iteration
                if i_iter >= args.discr_split:
                    D_out = interp(model_D_ul(F.softmax(pred)))
                else:
                    D_out = interp(model_D(F.softmax(pred)))

                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(
                    axis=1)
                ignore_mask_remain = np.zeros(D_out_sigmoid.shape).astype(
                    np.bool)

                # adversarial loss
                loss_semi_adv = args.lambda_semi_adv * bce_loss(
                    D_out, make_D_label(gt_label, ignore_mask_remain,
                                        args.gpu))
                loss_semi_adv = loss_semi_adv / args.iter_size

                # true loss value without multiplier
                loss_semi_adv_value += loss_semi_adv.data.cpu().numpy(
                ) / args.lambda_semi_adv
                loss_semi_adv.backward()

            else:

                loss_semi = None
                loss_semi_adv = None

            # train with labeled images
            try:
                _, batch = trainloader_iter.next()
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = trainloader_iter.next()

            images, labels, _, _ = batch
            images = Variable(images).cuda(args.gpu)
            ignore_mask = (labels.numpy() == 255)

            pred = interp(model(images))
            D_out = interp(model_D(F.softmax(pred)))

            # computing loss
            loss_seg = loss_calc(pred, labels, args.gpu)
            loss_adv_pred = bce_loss(
                D_out, make_D_label(gt_label, ignore_mask, args.gpu))
            loss = loss_seg + args.lambda_adv_pred * loss_adv_pred

            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size
            loss_adv_pred_value += loss_adv_pred.data.cpu().numpy(
            ) / args.iter_size

            # train D and D_ul

            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            if i_iter >= args.discr_split:
                for param in model_D_ul.parameters():
                    param.requires_grad = True

            # train D with pred
            pred = pred.detach()

            # before split, traing D with both labeled and unlabeled
            if args.D_remain and i_iter < args.discr_split and (
                    args.lambda_semi > 0 or args.lambda_semi_adv > 0):
                pred = torch.cat((pred, pred_remain), 0)
                ignore_mask = np.concatenate((ignore_mask, ignore_mask_remain),
                                             axis=0)

            D_out = interp(model_D(F.softmax(pred)))
            loss_D = bce_loss(D_out,
                              make_D_label(pred_label, ignore_mask, args.gpu))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()

            # train D_ul with pred on unlabeled
            if i_iter >= args.discr_split and (args.lambda_semi > 0
                                               or args.lambda_semi_adv > 0):
                D_ul_out = interp(model_D_ul(F.softmax(pred_remain)))
                loss_D_ul = bce_loss(
                    D_ul_out,
                    make_D_label(pred_label, ignore_mask_remain, args.gpu))
                loss_D_ul = loss_D_ul / args.iter_size / 2
                loss_D_ul.backward()
                loss_D_ul_value += loss_D_ul.data.cpu().numpy()

            # get gt labels
            try:
                _, batch = trainloader_gt_iter.next()
            except:
                trainloader_gt_iter = enumerate(trainloader_gt)
                _, batch = trainloader_gt_iter.next()

            images_gt, labels_gt, _, _ = batch
            images_gt = Variable(images_gt).cuda(args.gpu)
            with torch.no_grad():
                pred_l = interp(model(images_gt))

            # train D with gt
            D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
            ignore_mask_gt = (labels_gt.numpy() == 255)

            D_out = interp(model_D(D_gt_v))
            loss_D = bce_loss(D_out,
                              make_D_label(gt_label, ignore_mask_gt, args.gpu))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()

            # train D_ul with pseudo_gt (gt are substituted for pred)
            if i_iter >= args.discr_split:
                D_ul_out = interp(model_D_ul(F.softmax(pred_l)))
                loss_D_ul = bce_loss(
                    D_ul_out, make_D_label(gt_label, ignore_mask_gt, args.gpu))
                loss_D_ul = loss_D_ul / args.iter_size / 2
                loss_D_ul.backward()
                loss_D_ul_value += loss_D_ul.data.cpu().numpy()

        optimizer.step()
        optimizer_D.step()
        if i_iter >= args.discr_split:
            optimizer_D_ul.step()

        print('exp = {}'.format(args.snapshot_dir))
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_D_ul={5:.3f}, loss_semi = {6:.3f}, loss_semi_adv = {7:.3f}'
            .format(i_iter, args.num_steps, loss_seg_value,
                    loss_adv_pred_value, loss_D_value, loss_D_ul_value,
                    loss_semi_value, loss_semi_adv_value))

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                net.state_dict(),
                osp.join(
                    args.snapshot_dir, 'VOC_' + str(args.num_steps) + '_' +
                    str(args.random_seed) + '.pth'))
            torch.save(
                net_D.state_dict(),
                osp.join(
                    args.snapshot_dir, 'VOC_' + str(args.num_steps) + '_' +
                    str(args.random_seed) + '_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            torch.save(
                net.state_dict(),
                osp.join(
                    args.snapshot_dir, 'VOC_' + str(i_iter) + '_' +
                    str(args.random_seed) + '.pth'))
            torch.save(
                net_D.state_dict(),
                osp.join(
                    args.snapshot_dir, 'VOC_' + str(i_iter) + '_' +
                    str(args.random_seed) + '_D.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
Ejemplo n.º 13
0
def main():
    # 将参数的input_size 映射到整数,并赋值,从字符串转换到整数二元组
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = False
    gpu = args.gpu

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    # 确保模型中参数的格式与要加载的参数相同
    # 返回一个字典,保存着module的所有状态(state);parameters和persistent buffers都会包含在字典中,字典的key就是parameter和buffer的 names。
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        # print (name)
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            # print('copy {}'.format(name))
    model.load_state_dict(new_params)

    # 设置为训练模式
    model.train()
    cudnn.benchmark = True

    model.cuda(gpu)

    # init D
    model_D = FCDiscriminator(num_classes=args.num_classes)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))
    model_D.train()
    model_D.cuda(gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)
    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=5,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=5,
                                         pin_memory=True)
    else:
        # sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = list(range(train_dataset_size))  # ?
            np.random.shuffle(train_ids)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'),
                         'wb'))  # 写入文件

        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      sampler=train_sampler,
                                      num_workers=3,
                                      pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=3,
                                             pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=3,
                                         pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]),
                         mode='bilinear')  # ???

    # labels for adversarial training
    pred_label = 0
    gt_label = 1

    for i_iter in range(args.num_steps):
        print("Iter:", i_iter)
        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):

            # train G

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # do semi first
            if args.lambda_semi > 0 and i_iter >= args.semi_start:
                try:
                    _, batch = next(trainloader_remain_iter)
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = next(trainloader_remain_iter)

                # only access to img
                images, _, _, _ = batch

                images = Variable(images).cuda(gpu)
                # images = Variable(images).cpu()

                pred = interp(model(images))
                D_out = interp(model_D(F.softmax(pred)))

                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(
                    axis=1)

                # produce ignore mask
                semi_ignore_mask = (D_out_sigmoid < args.mask_T)

                semi_gt = pred.data.cpu().numpy().argmax(axis=1)
                semi_gt[semi_ignore_mask] = 255

                semi_ratio = 1.0 - float(
                    semi_ignore_mask.sum()) / semi_ignore_mask.size
                print('semi ratio: {:.4f}'.format(semi_ratio))

                if semi_ratio == 0.0:
                    loss_semi_value += 0
                else:
                    semi_gt = torch.FloatTensor(semi_gt)

                    loss_semi = args.lambda_semi * loss_calc(
                        pred, semi_gt, args.gpu)
                    loss_semi = loss_semi / args.iter_size
                    loss_semi.backward()
                    loss_semi_value += loss_semi.data.cpu().numpy(
                    )[0] / args.lambda_semi
            else:
                loss_semi = None

            # train with source

            try:
                _, batch = next(trainloader_iter)
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = next(trainloader_iter)

            images, labels, _, _ = batch

            images = Variable(images).cuda(gpu)
            # images = Variable(images).cpu()

            ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))

            loss_seg = loss_calc(pred, labels, args.gpu)

            D_out = interp(model_D(F.softmax(pred)))

            loss_adv_pred = bce_loss(D_out,
                                     make_D_label(gt_label, ignore_mask))

            loss = loss_seg + args.lambda_adv_pred * loss_adv_pred

            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            loss_seg_value += loss_seg.data.cpu().numpy()[0] / args.iter_size
            loss_adv_pred_value += loss_adv_pred.data.cpu().numpy(
            )[0] / args.iter_size

            # train D

            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            # train with pred
            pred = pred.detach()

            D_out = interp(model_D(F.softmax(pred)))
            loss_D = bce_loss(D_out, make_D_label(pred_label, ignore_mask))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]

            # train with gt
            # get gt labels
            try:
                _, batch = next(trainloader_gt_iter)
            except:
                trainloader_gt_iter = enumerate(trainloader_gt)
                _, batch = next(trainloader_gt_iter)

            _, labels_gt, _, _ = batch
            D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
            # D_gt_v = Variable(one_hot(labels_gt)).cpu()
            ignore_mask_gt = (labels_gt.numpy() == 255)

            D_out = interp(model_D(D_gt_v))
            loss_D = bce_loss(D_out, make_D_label(gt_label, ignore_mask_gt))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]

        optimizer.step()
        optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_semi = {5:.3f}'
            .format(i_iter, args.num_steps, loss_seg_value,
                    loss_adv_pred_value, loss_D_value, loss_semi_value))

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
Ejemplo n.º 14
0
def main():
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True
    gpu = args.gpu
    np.random.seed(args.random_seed)

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print(name)
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            print('copy {}'.format(name))
    model.load_state_dict(new_params)

    model.train()
    model.cuda(args.gpu)

    cudnn.benchmark = True

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    # load dataset
    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=5,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=5,
                                         pin_memory=True)
    else:
        #sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = np.arange(train_dataset_size)
            np.random.shuffle(train_ids)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))

        # labeled data
        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])
        train_gt_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      sampler=train_sampler,
                                      num_workers=3,
                                      pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=3,
                                         pin_memory=True)

        # unlabeled data
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids[partial_size:])
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=3,
                                             pin_memory=True)
        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # loss/bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear')

    for i_iter in range(args.num_steps):
        loss_seg_value = 0
        loss_unlabeled_seg_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)

        for sub_i in range(args.iter_size):
            # train Segmentation
            # train with labeled images
            try:
                _, batch = trainloader_iter.next()
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = trainloader_iter.next()

            images, labels, _, _ = batch
            images = Variable(images).cuda(args.gpu)
            pred = interp(model(images))

            # computing loss
            loss_seg = loss_calc(pred, labels, args.gpu)

            # proper normalization
            loss = loss_seg / args.iter_size
            loss.backward()
            loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size

            # train with unlabeled
            if args.lambda_semi > 0 and i_iter >= args.semi_start:
                try:
                    _, batch = trainloader_remain_iter.next()
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = trainloader_remain_iter.next()

                # only access to img
                images, _, _, _ = batch
                images = Variable(images).cuda(args.gpu)

                pred = interp(model(images))
                semi_gt = pred.data.cpu().numpy().argmax(axis=1)
                semi_gt = torch.FloatTensor(semi_gt)

                loss_unlabeled_seg = args.lambda_semi * loss_calc(
                    pred, semi_gt, args.gpu)
                loss_unlabeled_seg = loss_unlabeled_seg / args.iter_size
                loss_unlabeled_seg.backward()

                loss_unlabeled_seg_value += loss_unlabeled_seg.data.cpu(
                ).numpy() / args.lambda_semi

            else:
                if args.lambda_semi > 0 and i_iter < args.semi_start:
                    loss_unlabeled_seg_value = 0

                else:
                    loss_unlabeled_seg_value = None

        optimizer.step()

        print('exp = {}'.format(args.snapshot_dir))
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_unlabeled_seg = {3:.3f} '
            .format(i_iter, args.num_steps, loss_seg_value,
                    loss_unlabeled_seg_value))

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(
                    args.snapshot_dir, 'VOC_' + str(args.num_steps) + '_' +
                    str(args.lambda_semi) + '_' + str(args.random_seed) +
                    '.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            torch.save(
                model.state_dict(),
                osp.join(
                    args.snapshot_dir,
                    'VOC_' + str(i_iter) + '_' + str(args.lambda_semi) + '_' +
                    str(args.random_seed) + '.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
Ejemplo n.º 15
0
def main():
    """Create the model and start the evaluation process."""
    args = get_arguments()

    gpu0 = args.gpu

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    model = Res_Deeplab(num_classes=args.num_classes)

    # if args.pretrained_model != None:
    #     args.restore_from = pretrianed_models_dict[args.pretrained_model]
    #
    # if args.restore_from[:4] == 'http' :
    #     saved_state_dict = model_zoo.load_url(args.restore_from)
    # else:
    #     saved_state_dict = torch.load(args.restore_from)
    #model.load_state_dict(saved_state_dict)

    model = Res_Deeplab(num_classes=args.num_classes)
    #model.load_state_dict(torch.load('/data/wyc/AdvSemiSeg/snapshots/VOC_15000.pth'))#70.7
    state_dict = torch.load(
        '/data1/wyc/AdvSemiSeg/snapshots/VOC_t_baseline_1adv_mul_new_two_patch2_20000.pth'
    )  #baseline707 adv 709 nadv 705()*2#n adv0.694

    # state_dict = torch.load(
    #     '/home/wyc/VOC_t_baseline_nadv2_20000.pth')  # baseline707 adv 709 nadv 705()*2

    # original saved file with DataParallel

    # create new OrderedDict that does not contain `module.`
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v
    # load params

    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print(name)
        if name in new_state_dict and param.size(
        ) == new_state_dict[name].size():
            new_params[name].copy_(new_state_dict[name])
            print('copy {}'.format(name))

    model.load_state_dict(new_params)

    model.eval()
    model.cuda(gpu0)

    testloader = data.DataLoader(VOCDataSet(args.data_dir,
                                            args.data_list,
                                            crop_size=(505, 505),
                                            mean=IMG_MEAN,
                                            scale=False,
                                            mirror=False),
                                 batch_size=1,
                                 shuffle=False,
                                 pin_memory=True)

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(505, 505),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(505, 505), mode='bilinear')
    data_list = []

    colorize = VOCColorize()

    for index, batch in enumerate(testloader):
        if index % 100 == 0:
            print('%d processd' % (index))
        image, label, size, name = batch
        size = size[0].numpy()
        output = model(Variable(image, volatile=True).cuda(gpu0))
        output = interp(output).cpu().data[0].numpy()

        output = output[:, :size[0], :size[1]]
        gt = np.asarray(label[0].numpy()[:size[0], :size[1]], dtype=np.int)

        output = output.transpose(1, 2, 0)
        output = np.asarray(np.argmax(output, axis=2), dtype=np.int)

        filename = os.path.join(args.save_dir, '{}.png'.format(name[0]))
        color_file = Image.fromarray(
            colorize(output).transpose(1, 2, 0), 'RGB')
        color_file.save(filename)

        # show_all(gt, output)
        data_list.append([gt.flatten(), output.flatten()])

    filename = os.path.join(args.save_dir, 'result.txt')
    get_iou(data_list, args.num_classes, filename)
Ejemplo n.º 16
0
def main():
    # LD build for summary
    # training_summary = tf.summary.FileWriter(os.path.join(SUMMARY_DIR, 'train'))
    # val_summary = tf.summary.FileWriter(os.path.join(SUMMARY_DIR, 'val'))
    # dice_placeholder = tf.placeholder(tf.float32, [], name='dice')
    # loss_placeholder = tf.placeholder(tf.float32, [], name='loss')
    # # image_placeholder = tf.placeholder(tf.float32, [400*2, 400*2], name='image')
    # # prediction_placeholder = tf.placeholder(tf.float32, [400*2, 400*2], name='prediction')
    # tf.summary.scalar('dice', dice_placeholder)
    # tf.summary.scalar('loss', loss_placeholder)
    # # tf.summary.image('image', image_placeholder, max_outputs=1)
    # # tf.summary.image('prediction', prediction_placeholder, max_outputs=1)
    # summary_op = tf.summary.merge_all()
    # config = tf.ConfigProto()
    # config.gpu_options.allow_growth = True
    # sess = tf.Session(config=config)

    perfix_name = 'Liver'
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True
    gpu = args.gpu

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print(name)
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            print('copy {}'.format(name))
    model.load_state_dict(new_params)

    model.train()
    model.cuda(args.gpu)

    cudnn.benchmark = True

    # LD delete
    '''
    # init D
    model_D = FCDiscriminator(num_classes=args.num_classes)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))
    model_D.train()
    model_D.cuda(args.gpu)
    '''

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    # LD ADD start
    from dataset.LiverDataset.liver_dataset import LiverDataset
    user_name = 'ld'
    validation_interval = 800
    max_steps = 1000000000
    batch_size = 5
    n_neighboringslices = 1
    input_size = 400
    output_size = 400
    slice_type = 'axial'
    oversample = False
    # reset_counter = args.reset_counter
    label_of_interest = 1
    label_required = 0
    magic_number = 26.91
    max_slice_tries_val = 0
    max_slice_tries_train = 2
    fuse_labels = True
    apply_crop = False

    train_data_dir = "/home/" + user_name + "/Documents/dataset/ISBI2017/media/nas/01_Datasets/CT/LITS/Training_Batch_2"
    test_data_dir = "/home/" + user_name + "/Documents/dataset/ISBI2017/media/nas/01_Datasets/CT/LITS/Training_Batch_1"
    train_dataset = LiverDataset(data_dir=train_data_dir,
                                 slice_type=slice_type,
                                 n_neighboringslices=n_neighboringslices,
                                 input_size=input_size,
                                 oversample=oversample,
                                 label_of_interest=label_of_interest,
                                 label_required=label_required,
                                 max_slice_tries=max_slice_tries_train,
                                 fuse_labels=fuse_labels,
                                 apply_crop=apply_crop,
                                 interval=validation_interval,
                                 is_training=True,
                                 batch_size=batch_size,
                                 data_augmentation=True)
    val_dataset = LiverDataset(data_dir=test_data_dir,
                               slice_type=slice_type,
                               n_neighboringslices=n_neighboringslices,
                               input_size=input_size,
                               oversample=oversample,
                               label_of_interest=label_of_interest,
                               label_required=label_required,
                               max_slice_tries=max_slice_tries_val,
                               fuse_labels=fuse_labels,
                               apply_crop=apply_crop,
                               interval=validation_interval,
                               is_training=False,
                               batch_size=batch_size)
    # LD ADD end

    # LD delete
    '''
    train_dataset = VOCDataSet(args.data_dir, args.data_list, crop_size=input_size,
                    scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir, args.data_list, crop_size=input_size,
                       scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                        batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                        batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True)
    else:
        #sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = range(train_dataset_size)
            np.random.shuffle(train_ids)

        pickle.dump(train_ids, open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))

        train_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                        batch_size=args.batch_size, sampler=train_sampler, num_workers=3, pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                        batch_size=args.batch_size, sampler=train_remain_sampler, num_workers=3, pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                        batch_size=args.batch_size, sampler=train_gt_sampler, num_workers=3, pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)


    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)
    '''

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # LD delete
    '''
    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(), lr=args.learning_rate_D, betas=(0.9,0.99))
    optimizer_D.zero_grad()
    '''

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size, input_size), mode='bilinear')

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(input_size, input_size),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size, input_size), mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1
    loss_list = []

    for i_iter in range(iter_start, args.num_steps):

        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_value = 0
        loss_semi_adv_value = 0
        num_prediction = 0
        num_ground_truth = 0
        num_intersection = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        # LD delete
        '''
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)
        '''
        for sub_i in range(args.iter_size):

            # train G
            # LD delete
            '''
            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            
            # do semi first
            if (args.lambda_semi > 0 or args.lambda_semi_adv > 0 ) and i_iter >= args.semi_start_adv :
                try:
                    _, batch = trainloader_remain_iter.next()
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = trainloader_remain_iter.next()
                
                # only access to img
                images, _, _, _ = batch
                images = Variable(images).cuda(args.gpu)
                
                
                pred = interp(model(images))
                pred_remain = pred.detach()

                D_out = interp(model_D(F.softmax(pred)))
                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(axis=1)

                ignore_mask_remain = np.zeros(D_out_sigmoid.shape).astype(np.bool)

                loss_semi_adv = args.lambda_semi_adv * bce_loss(D_out, make_D_label(gt_label, ignore_mask_remain))
                loss_semi_adv = loss_semi_adv/args.iter_size

                #loss_semi_adv.backward()
                loss_semi_adv_value += loss_semi_adv.data.cpu().numpy()[0]/args.lambda_semi_adv

                if args.lambda_semi <= 0 or i_iter < args.semi_start:
                    loss_semi_adv.backward()
                    loss_semi_value = 0
                else:
                    # produce ignore mask
                    semi_ignore_mask = (D_out_sigmoid < args.mask_T)

                    semi_gt = pred.data.cpu().numpy().argmax(axis=1)
                    semi_gt[semi_ignore_mask] = 255

                    semi_ratio = 1.0 - float(semi_ignore_mask.sum())/semi_ignore_mask.size
                    print('semi ratio: {:.4f}'.format(semi_ratio))

                    if semi_ratio == 0.0:
                        loss_semi_value += 0
                    else:
                        semi_gt = torch.FloatTensor(semi_gt)

                        loss_semi = args.lambda_semi * loss_calc(pred, semi_gt, args.gpu)
                        loss_semi = loss_semi/args.iter_size
                        loss_semi_value += loss_semi.data.cpu().numpy()[0]/args.lambda_semi
                        loss_semi += loss_semi_adv
                        loss_semi.backward()

            else:
                loss_semi = None
                loss_semi_adv = None
            '''

            # train with source

            # LD delete
            '''
            try:
                _, batch = trainloader_iter.next()
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = trainloader_iter.next()

            images, labels, _, _ = batch
            images = Variable(images).cuda(args.gpu)
            '''
            batch_image, batch_label = train_dataset.get_next_batch()
            batch_image = np.transpose(batch_image, axes=(0, 3, 1, 2))
            batch_image = np.concatenate(
                [batch_image, batch_image, batch_image], axis=1)
            # print('Shape: ', np.shape(batch_image))
            batch_image_torch = torch.Tensor(batch_image)
            images = Variable(batch_image_torch).cuda(args.gpu)

            # LD delete
            # ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))
            pred_ny = pred.data.cpu().numpy()
            pred_ny = np.transpose(pred_ny, axes=(0, 2, 3, 1))
            pred_label_ny = np.squeeze(np.argmax(pred_ny, axis=3))

            # prepare for dice
            # print('Shape of gt is: ', np.shape(batch_label))
            # print('Shape of pred is: ', np.shape(pred_ny))
            # print('Shape of pred_label is: ', np.shape(pred_label_ny))
            num_prediction += np.sum(np.asarray(pred_label_ny, np.uint8))
            num_ground_truth += np.sum(np.asarray(batch_label >= 1, np.uint8))
            num_intersection += np.sum(
                np.asarray(
                    np.logical_and(batch_label >= 1, pred_label_ny >= 1),
                    np.uint8))
            # num_intersection += np.sum(np.asarray(batch_label >= 1, np.uint8) == np.asarray(pred_label_ny, np.uint8))

            loss_seg = loss_calc(pred, batch_label, args.gpu)

            # LD delete
            '''
            D_out = interp(model_D(F.softmax(pred)))

            loss_adv_pred = bce_loss(D_out, make_D_label(gt_label, ignore_mask))

            loss = loss_seg + args.lambda_adv_pred * loss_adv_pred
            '''
            loss = loss_seg
            # print('Loss is: ', loss)
            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            # print('Loss of numpy is: ', loss_seg.data.cpu().numpy())
            # print('Loss of numpy of zero is: ', loss_seg.data.cpu().numpy())
            loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size
            loss_list.append(loss_seg_value)
            # loss_adv_pred_value += loss_adv_pred.data.cpu().numpy()[0]/args.iter_size

            # train D
            # LD delete
            '''
            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            # train with pred
            pred = pred.detach()

            if args.D_remain:
                pred = torch.cat((pred, pred_remain), 0)
                ignore_mask = np.concatenate((ignore_mask,ignore_mask_remain), axis = 0)

            D_out = interp(model_D(F.softmax(pred)))
            loss_D = bce_loss(D_out, make_D_label(pred_label, ignore_mask))
            loss_D = loss_D/args.iter_size/2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]


            # train with gt
            # get gt labels
            try:
                _, batch = trainloader_gt_iter.next()
            except:
                trainloader_gt_iter = enumerate(trainloader_gt)
                _, batch = trainloader_gt_iter.next()

            _, labels_gt, _, _ = batch
            D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
            ignore_mask_gt = (labels_gt.numpy() == 255)

            D_out = interp(model_D(D_gt_v))
            loss_D = bce_loss(D_out, make_D_label(gt_label, ignore_mask_gt))
            loss_D = loss_D/args.iter_size/2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]
            '''

        optimizer.step()
        # optimizer_D.step()
        dice = (2 * num_intersection + 1e-7) / (num_prediction +
                                                num_ground_truth + 1e-7)
        print('exp = {}'.format(args.snapshot_dir))
        print('iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}'.format(
            i_iter, args.num_steps, loss_seg_value))
        print(
            'dice: %.4f, num_prediction: %d, num_ground_truth: %d, num_intersection: %d'
            % (dice, num_prediction, num_ground_truth, num_intersection))

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir,
                         perfix_name + str(args.num_steps) + '.pth'))
            # torch.save(model_D.state_dict(), osp.join(args.snapshot_dir, perfix_name +str(args.num_steps)+'_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            # torch.save(model.state_dict(), osp.join(args.snapshot_dir, perfix_name + str(i_iter)+'.pth'))
            save_model(model, args.snapshot_dir, perfix_name, i_iter, 2)
            # torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, perfix_name +str(i_iter)+'_D.pth'))

        # if i_iter % UPDATE_TENSORBOARD_INTERVAL and i_iter != 0:
        #     # update tensorboard
        #     feed_dict = {
        #         dice_placeholder: dice,
        #         loss_placeholder: np.mean(loss_list)
        #     }
        #     summery_value = sess.run(summary_op, feed_dict)
        #     training_summary.add_summary(summery_value, i_iter)
        #     training_summary.flush()
        #
        #     # for validation
        #     val_num_prediction = 0
        #     val_num_ground_truth = 0
        #     val_num_intersection = 0
        #     loss_list = []
        #
        #     for _ in range(VAL_EXECUTE_TIMES):
        #         batch_image, batch_label = val_dataset.get_next_batch()
        #         batch_image = np.transpose(batch_image, axes=(0, 3, 1, 2))
        #         batch_image = np.concatenate([batch_image, batch_image, batch_image], axis=1)
        #         # print('Shape: ', np.shape(batch_image))
        #         batch_image_torch = torch.Tensor(batch_image)
        #         images = Variable(batch_image_torch).cuda(args.gpu)
        #
        #         # LD delete
        #         # ignore_mask = (labels.numpy() == 255)
        #         pred = interp(model(images))
        #         pred_ny = pred.data.cpu().numpy()
        #         pred_ny = np.transpose(pred_ny, axes=(0, 2, 3, 1))
        #         pred_label_ny = np.squeeze(np.argmax(pred_ny, axis=3))
        #         val_num_prediction += np.sum(np.asarray(pred_label_ny, np.uint8))
        #         val_num_ground_truth += np.sum(np.asarray(batch_label >= 1, np.uint8))
        #         val_num_intersection += np.sum(np.asarray(np.logical_and(batch_label >= 1, pred_label_ny >= 1), np.uint8))
        #
        #         loss_seg = loss_calc(pred, batch_label, args.gpu)
        #         loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size
        #         loss_list.append(loss_seg)
        #     dice = (2 * val_num_intersection + 1e-7) / (val_num_prediction + val_num_ground_truth + 1e-7)
        #     feed_dict = {
        #         dice_placeholder: dice,
        #         loss_placeholder: np.mean(loss_list)
        #     }
        #     summery_value = sess.run(summary_op, feed_dict)
        #     val_summary.add_summary(summery_value, i_iter)
        #     val_summary.flush()
        #     loss_list = []

    training_summary.close()
    val_summary.close()
    end = timeit.default_timer()
    print(end - start, 'seconds')
Ejemplo n.º 17
0
def main():
    """Create the model and start the training."""
    w, h = map(int, args.input_size_source.split(','))
    input_size_source = (w, h)

    w, h = map(int, args.input_size_target.split(','))
    input_size_target = (w, h)

    cudnn.enabled = True

    # Create network
    if args.model == 'ResNet':
        model = Res_Deeplab(num_classes=args.num_classes)
        if args.restore_from[:4] == 'http':
            saved_state_dict = model_zoo.load_url(args.restore_from)
        else:
            saved_state_dict = torch.load(args.restore_from)

        new_params = model.state_dict().copy()
        for i in saved_state_dict:
            # Scale.layer5.conv2d_list.3.weight
            i_parts = i.split('.')
            # print i_parts
            if not args.num_classes == 19 or not i_parts[1] == 'layer5':
                new_params['.'.join(i_parts[1:])] = saved_state_dict[i]
                # print i_parts
        model.load_state_dict(new_params)

        # model.load_state_dict(saved_state_dict)

    elif args.model == 'VGG':
        model = DeeplabVGG(num_classes=args.num_classes,
                           pretrained=True,
                           vgg16_caffe_path=args.restore_from)

        # saved_state_dict = torch.load(args.restore_from)
        # model.load_state_dict(saved_state_dict)

    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    model.train()
    model.cuda(args.gpu)
    cudnn.benchmark = True

    #Discrimintator setting
    model_D = FCDiscriminator(num_classes=args.num_classes)
    model_D.train()
    model_D.cuda(args.gpu)

    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    bce_loss = torch.nn.BCEWithLogitsLoss()

    # labels for adversarial training
    source_adv_label = 0
    target_adv_label = 1

    #Dataloader
    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    trainloader = data.DataLoader(GTA5DataSet(args.translated_data_dir,
                                              args.data_list,
                                              max_iters=args.num_steps *
                                              args.iter_size * args.batch_size,
                                              crop_size=input_size_source,
                                              scale=args.random_scale,
                                              mirror=args.random_mirror,
                                              mean=IMG_MEAN),
                                  batch_size=args.batch_size,
                                  shuffle=True,
                                  num_workers=args.num_workers,
                                  pin_memory=True)

    trainloader_iter = enumerate(trainloader)

    style_trainloader = data.DataLoader(GTA5DataSet(
        args.stylized_data_dir,
        args.data_list,
        max_iters=args.num_steps * args.iter_size * args.batch_size,
        crop_size=input_size_source,
        scale=args.random_scale,
        mirror=args.random_mirror,
        mean=IMG_MEAN),
                                        batch_size=args.batch_size,
                                        shuffle=True,
                                        num_workers=args.num_workers,
                                        pin_memory=True)

    style_trainloader_iter = enumerate(style_trainloader)

    if STAGE == 1:
        targetloader = data.DataLoader(cityscapesDataSet(
            args.data_dir_target,
            args.data_list_target,
            max_iters=args.num_steps * args.iter_size * args.batch_size,
            crop_size=input_size_target,
            mean=IMG_MEAN,
            set=args.set),
                                       batch_size=args.batch_size,
                                       shuffle=True,
                                       num_workers=args.num_workers,
                                       pin_memory=True)

        targetloader_iter = enumerate(targetloader)

    else:
        #Dataloader for self-training
        targetloader = data.DataLoader(cityscapesDataSetLabel(
            args.data_dir_target,
            args.data_list_target,
            max_iters=args.num_steps * args.iter_size * args.batch_size,
            crop_size=input_size_target,
            mean=IMG_MEAN,
            set=args.set,
            label_folder='Path to generated pseudo labels'),
                                       batch_size=args.batch_size,
                                       shuffle=True,
                                       num_workers=args.num_workers,
                                       pin_memory=True)

        targetloader_iter = enumerate(targetloader)

    interp = nn.Upsample(size=(input_size_source[1], input_size_source[0]),
                         mode='bilinear',
                         align_corners=True)
    interp_target = nn.Upsample(size=(input_size_target[1],
                                      input_size_target[0]),
                                mode='bilinear',
                                align_corners=True)

    # load checkpoint
    model, model_D, optimizer, start_iter = load_checkpoint(
        model,
        model_D,
        optimizer,
        filename=args.snapshot_dir + 'checkpoint_' + CHECKPOINT + '.pth.tar')

    for i_iter in range(start_iter, args.num_steps):
        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)

        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        #train segementation network
        # don't accumulate grads in D
        for param in model_D.parameters():
            param.requires_grad = False

        # train with source
        if STAGE == 1:
            if i_iter % 2 == 0:
                _, batch = next(trainloader_iter)
            else:
                _, batch = next(style_trainloader_iter)

        else:
            _, batch = next(trainloader_iter)

        image_source, label, _, _ = batch
        image_source = Variable(image_source).cuda(args.gpu)

        pred_source = model(image_source)
        pred_source = interp(pred_source)

        loss_seg_source = loss_calc(pred_source, label, args.gpu)
        loss_seg_source_value = loss_seg_source.item()
        loss_seg_source.backward()

        if STAGE == 2:
            # train with target
            _, batch = next(targetloader_iter)
            image_target, target_label, _, _ = batch
            image_target = Variable(image_target).cuda(args.gpu)

            pred_target = model(image_target)
            pred_target = interp_target(pred_target)

            #target segmentation loss
            loss_seg_target = loss_calc(pred_target,
                                        target_label,
                                        gpu=args.gpu)
            loss_seg_target.backward()

        # optimize
        optimizer.step()

        if STAGE == 1:
            # train with target
            _, batch = next(targetloader_iter)
            image_target, _, _ = batch
            image_target = Variable(image_target).cuda(args.gpu)

            pred_target = model(image_target)
            pred_target = interp_target(pred_target)

            #output-level adversarial training
            D_output_target = model_D(F.softmax(pred_target))
            loss_adv = bce_loss(
                D_output_target,
                Variable(
                    torch.FloatTensor(D_output_target.data.size()).fill_(
                        source_adv_label)).cuda(args.gpu))
            loss_adv = loss_adv * args.lambda_adv
            loss_adv.backward()

            #train discriminator
            for param in model_D.parameters():
                param.requires_grad = True

            pred_source = pred_source.detach()
            pred_target = pred_target.detach()

            D_output_source = model_D(F.softmax(pred_source))
            D_output_target = model_D(F.softmax(pred_target))

            loss_D_source = bce_loss(
                D_output_source,
                Variable(
                    torch.FloatTensor(D_output_source.data.size()).fill_(
                        source_adv_label)).cuda(args.gpu))
            loss_D_target = bce_loss(
                D_output_target,
                Variable(
                    torch.FloatTensor(D_output_target.data.size()).fill_(
                        target_adv_label)).cuda(args.gpu))

            loss_D_source = loss_D_source / 2
            loss_D_target = loss_D_target / 2

            loss_D_source.backward()
            loss_D_target.backward()

            #optimize
            optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print('iter = {0:8d}/{1:8d}, loss_seg_source = {2:.5f}'.format(
            i_iter, args.num_steps, loss_seg_source_value))

        if i_iter % args.save_pred_every == 0:
            print('taking snapshot ...')
            state = {
                'iter': i_iter,
                'model': model.state_dict(),
                'model_D': model_D.state_dict(),
                'optimizer': optimizer.state_dict()
            }
            torch.save(
                state,
                osp.join(args.snapshot_dir,
                         'checkpoint_' + str(i_iter) + '.pth.tar'))
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir, 'GTA5_' + str(i_iter) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir, 'GTA5_D_' + str(i_iter) + '.pth'))

            cityscapes_eval_dir = osp.join(args.cityscapes_eval_dir,
                                           str(i_iter))
            if not os.path.exists(cityscapes_eval_dir):
                os.makedirs(cityscapes_eval_dir)

            eval(osp.join(args.snapshot_dir, 'GTA5_' + str(i_iter) + '.pth'),
                 cityscapes_eval_dir, i_iter)

            iou19, iou13, iou = compute_mIoU(cityscapes_eval_dir, i_iter)
            outputfile = open(args.output_file, 'a')
            outputfile.write(
                str(i_iter) + '\t' + str(iou19) + '\t' +
                str(iou.replace('\n', ' ')) + '\n')
            outputfile.close()
Ejemplo n.º 18
0
def main():

    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True


    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http' :
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in currendt model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print (name)
        if name in saved_state_dict and param.size() == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            print('copy {}'.format(name))

    model.load_state_dict(new_params)


    model.train()


    model=nn.DataParallel(model)
    model.cuda()


    cudnn.benchmark = True

    # init D
    model_D = FCDiscriminator(num_classes=args.num_classes)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))

    model_D = nn.DataParallel(model_D)
    model_D.train()
    model_D.cuda()


    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)


    train_dataset = VOCDataSet(args.data_dir, args.data_list, crop_size=input_size,
                    scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir, args.data_list, crop_size=input_size,
                       scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                        batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                        batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True)
    else:
        #sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = list(range(train_dataset_size))
            np.random.shuffle(train_ids)

        pickle.dump(train_ids, open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))

        train_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                        batch_size=args.batch_size, sampler=train_sampler, num_workers=3, pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                        batch_size=args.batch_size, sampler=train_remain_sampler, num_workers=3, pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                        batch_size=args.batch_size, sampler=train_gt_sampler, num_workers=3, pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)


    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)


    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.module.optim_parameters(args),
                lr=args.learning_rate, momentum=args.momentum,weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(), lr=args.learning_rate_D, betas=(0.9,0.99))
    optimizer_D.zero_grad()

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear', align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')


    # labels for adversarial training
    pred_label = 0
    gt_label = 1


    for i_iter in range(args.num_steps):

        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_value = 0
        loss_semi_adv_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):


            # train G

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # do semi first
            if (args.lambda_semi > 0 or args.lambda_semi_adv > 0 ) and i_iter >= args.semi_start_adv :
                try:
                    _, batch = trainloader_remain_iter.next()
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = trainloader_remain_iter.next()

                # only access to img
                images, _, _, _ = batch
                images = Variable(images).cuda()


                pred = interp(model(images))
                pred_remain = pred.detach()

                mask1=F.softmax(pred,dim=1).data.cpu().numpy()

                id2 = np.argmax(mask1, axis=1)#10, 321, 321)


                D_out = interp(model_D(F.softmax(pred,dim=1)))
                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(axis=1)


                ignore_mask_remain = np.zeros(D_out_sigmoid.shape).astype(np.bool)

                loss_semi_adv = args.lambda_semi_adv * bce_loss(D_out, make_D_label(gt_label, ignore_mask_remain))
                loss_semi_adv = loss_semi_adv/args.iter_size

                #loss_semi_adv.backward()
                loss_semi_adv_value += loss_semi_adv.data.cpu().numpy()[0]/args.lambda_semi_adv

                if args.lambda_semi <= 0 or i_iter < args.semi_start:
                    loss_semi_adv.backward()
                    loss_semi_value = 0
                else:
                    # produce ignore mask
                    semi_ignore_mask = (D_out_sigmoid < args.mask_T)
                    #print semi_ignore_mask.shape 10,321,321

                    map2 = np.zeros([pred.size()[0], id2.shape[1], id2.shape[2]])
                    for k in  range(pred.size()[0]):
                        for i in range(id2.shape[1]):
                            for j in range(id2.shape[2]):
                               map2[k][i][j] = mask1[k][id2[k][i][j]][i][j]


                    semi_ignore_mask = (map2 <  0.999999)
                    semi_gt = pred.data.cpu().numpy().argmax(axis=1)
                    semi_gt[semi_ignore_mask] = 255

                    semi_ratio = 1.0 - float(semi_ignore_mask.sum())/semi_ignore_mask.size
                    print('semi ratio: {:.4f}'.format(semi_ratio))

                    if semi_ratio == 0.0:
                        loss_semi_value += 0
                    else:
                        semi_gt = torch.FloatTensor(semi_gt)

                        loss_semi = args.lambda_semi * loss_calc(pred, semi_gt)
                        loss_semi = loss_semi/args.iter_size
                        loss_semi_value += loss_semi.data.cpu().numpy()[0]/args.lambda_semi
                        loss_semi += loss_semi_adv
                        loss_semi.backward()

            else:
                loss_semi = None
                loss_semi_adv = None

            # train with source

            try:
                _, batch = trainloader_iter.next()
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = trainloader_iter.next()

            images, labels, _, _ = batch
            images = Variable(images).cuda()
            ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))

            loss_seg = loss_calc(pred, labels)

            D_out = interp(model_D(F.softmax(pred,dim=1)))

            loss_adv_pred = bce_loss(D_out, make_D_label(gt_label, ignore_mask))

            loss = loss_seg + args.lambda_adv_pred * loss_adv_pred

            # proper normalization
            loss = loss/args.iter_size
            loss.backward()
            loss_seg_value += loss_seg.data.cpu().numpy()[0]/args.iter_size
            loss_adv_pred_value += loss_adv_pred.data.cpu().numpy()[0]/args.iter_size


            # train D

            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            # train with pred
            pred = pred.detach()

            if args.D_remain:
                pred = torch.cat((pred, pred_remain), 0)
                ignore_mask = np.concatenate((ignore_mask,ignore_mask_remain), axis = 0)


            D_out = interp(model_D(F.softmax(pred,dim=1)))
            loss_D = bce_loss(D_out, make_D_label(pred_label, ignore_mask))
            loss_D = loss_D/args.iter_size/2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]


            # train with gt
            # get gt labels
            try:
                _, batch = trainloader_gt_iter.next()
            except:
                trainloader_gt_iter = enumerate(trainloader_gt)
                _, batch = trainloader_gt_iter.next()

            _, labels_gt, _, _ = batch
            D_gt_v = Variable(one_hot(labels_gt)).cuda()
            ignore_mask_gt = (labels_gt.numpy() == 255)

            D_out = interp(model_D(D_gt_v))
            loss_D = bce_loss(D_out, make_D_label(gt_label, ignore_mask_gt))
            loss_D = loss_D/args.iter_size/2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]



        optimizer.step()
        optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print('iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_semi = {5:.3f}, loss_semi_adv = {6:.3f}'.format(i_iter, args.num_steps, loss_seg_value, loss_adv_pred_value, loss_D_value, loss_semi_value, loss_semi_adv_value))

        if i_iter >= args.num_steps-1:
            print( 'save model ...')
            torch.save(model.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(args.num_steps)+'.pth'))
            torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(args.num_steps)+'_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter!=0:
            print ('taking snapshot ...')
            torch.save(model.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(i_iter)+'.pth'))
            torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(i_iter)+'_D.pth'))

    end = timeit.default_timer()
    print(end-start,'seconds')
Ejemplo n.º 19
0
def main():
    h, w = list(map(int, args.input_size.split(',')))   # 321, 321
    input_size = (h, w)

    cudnn.enabled = True

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)   # num_classes = 21

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in list(new_params.items()):
        # print(name)
        if name in saved_state_dict and param.size() == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            # print(('copy {}'.format(name)))
    model.load_state_dict(new_params)

    model.train()
    model.cuda(args.gpu)

    cudnn.benchmark = True

    # init D
    model_D = FCDiscriminator(num_classes=args.num_classes)   # num_classes = 21,全卷积判别模型
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))

    model_D.train()
    model_D.cuda(args.gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)
    if not os.path.exists('logs/'):
        os.makedirs('logs/')
    now_time = datetime.now().strftime('%Y-%m-%d-%H:%M:%S')
    log_file = 'logs/' + now_time + '.txt'
    file = open(log_file, 'w')      # 保存loss

    train_dataset = VOCDataSet(args.data_dir, args.data_list, args.label_list, crop_size=input_size,
                               scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir, args.data_list, args.label_list, crop_size=input_size,
                                    scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)

    if args.partial_data is None:   # 使用全部数据
        trainloader = data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,  # batch_size = 10
                                      num_workers=5, pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset, batch_size=args.batch_size, shuffle=True,
                                         num_workers=5, pin_memory=True)
    else:
        # sample partial data 部分数据
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print(('loading train ids from {}'.format(args.partial_id)))
        else:
            train_ids = list(range(train_dataset_size))
            np.random.shuffle(train_ids)

        pickle.dump(train_ids, open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))    # 将train_ids写入train_id.pkl

        train_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,    # 数据集中采样输入
                        batch_size=args.batch_size, sampler=train_sampler, num_workers=3, pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                        batch_size=args.batch_size, sampler=train_remain_sampler, num_workers=3, pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                        batch_size=args.batch_size, sampler=train_gt_sampler, num_workers=3, pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(), lr=args.learning_rate_D, betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    # interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear', align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1
    best_loss = 1
    best_epoch = 0

    for i_iter in range(args.num_steps):    # num_steps = 20000
        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_value = 0
        loss_semi_adv_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):     # iter_size = 1
            # train G

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # do semi first
            if (args.lambda_semi > 0 or args.lambda_semi_adv > 0) and i_iter >= args.semi_start_adv:
                try:
                    _, batch = next(trainloader_remain_iter)
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = next(trainloader_remain_iter)

                # only access to img 无标签数据
                images, _, _, _, _ = batch
                images = Variable(images).cuda(args.gpu)

                pred = interp(model(images))
                pred_remain = pred.detach()     # 返回一个新的Variable,不具有grade

                D_out = interp(model_D(F.softmax(pred)))
                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(axis=1)

                ignore_mask_remain = np.zeros(D_out_sigmoid.shape).astype(np.bool)

                loss_semi_adv = args.lambda_semi_adv * bce_loss(D_out, make_D_label(gt_label, ignore_mask_remain))
                loss_semi_adv = loss_semi_adv/args.iter_size

                # loss_semi_adv.backward()

                # print('bug,', loss_semi_adv.data.cpu().numpy())

                # loss_semi_adv_value += loss_semi_adv.data.cpu().numpy()[0]/args.lambda_semi_adv
                loss_semi_adv_value += loss_semi_adv.data.cpu().numpy()/args.lambda_semi_adv

                if args.lambda_semi <= 0 or i_iter < args.semi_start:
                    loss_semi_adv.backward()
                    loss_semi_value = 0
                else:
                    # produce ignore mask
                    semi_ignore_mask = (D_out_sigmoid < args.mask_T)    # mask_T = 0.2,阈值

                    semi_gt = pred.data.cpu().numpy().argmax(axis=1)    # 返回维度为1上的最大值的下标
                    semi_gt[semi_ignore_mask] = 255

                    semi_ratio = 1.0 - float(semi_ignore_mask.sum())/semi_ignore_mask.size  # 被忽略的点占的比重
                    print(('semi ratio: {:.4f}'.format(semi_ratio)))

                    if semi_ratio == 0.0:
                        loss_semi_value += 0
                    else:
                        semi_gt = torch.FloatTensor(semi_gt)

                        loss_semi = args.lambda_semi * loss_calc(pred, semi_gt, args.gpu)
                        loss_semi = loss_semi/args.iter_size
                        # loss_semi_value += loss_semi.data.cpu().numpy()[0]/args.lambda_semi
                        loss_semi_value += loss_semi.data.cpu().numpy()/args.lambda_semi
                        loss_semi += loss_semi_adv
                        loss_semi.backward()

            else:
                loss_semi = None
                loss_semi_adv = None

            # train with source

            try:
                _, batch = next(trainloader_iter)
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = next(trainloader_iter)

            images, labels, _, _, _ = batch    # 有标签数据
            images = Variable(images).cuda(args.gpu)
            ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))    # interp上采样

            loss_seg = loss_calc(pred, labels, args.gpu)    # 语义分割的cross entropy loss
            # loss_seg_NLL = loss_NLL(pred, labels, args.gpu)     # 语义分割的NLLLoss

            D_out = interp(model_D(F.softmax(pred)))    # 得到判别模型输出的判别图

            loss_adv_pred = bce_loss(D_out, make_D_label(gt_label, ignore_mask))

            loss = loss_seg + args.lambda_adv_pred * loss_adv_pred

            # proper normalization
            loss = loss/args.iter_size
            loss.backward()

            # loss_seg_value += loss_seg.data.cpu().numpy()[0]/args.iter_size
            # loss_adv_pred_value += loss_adv_pred.data.cpu().numpy()[0]/args.iter_size

            loss_seg_value += loss_seg.data.cpu().numpy()/args.iter_size
            # loss_seg_value += loss_seg_NLL.data.cpu().numpy()/args.iter_size
            loss_adv_pred_value += loss_adv_pred.data.cpu().numpy()/args.iter_size

            # train D

            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            # train with pred
            pred = pred.detach()

            if args.D_remain:
                pred = torch.cat((pred, pred_remain), 0)
                ignore_mask = np.concatenate((ignore_mask,ignore_mask_remain), axis=0)

            D_out = interp(model_D(F.softmax(pred)))
            loss_D = bce_loss(D_out, make_D_label(pred_label, ignore_mask))
            loss_D = loss_D/args.iter_size/2
            loss_D.backward()
            # loss_D_value += loss_D.data.cpu().numpy()[0]
            loss_D_value += loss_D.data.cpu().numpy()

            # train with gt
            # get gt labels
            try:
                _, batch = next(trainloader_gt_iter)
            except:
                trainloader_gt_iter = enumerate(trainloader_gt)
                _, batch = next(trainloader_gt_iter)

            _, labels_gt, _, _, _ = batch
            D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)    # 每个类别一张label图,batch * class * h * w
            ignore_mask_gt = (labels_gt.numpy() == 255)

            D_out = interp(model_D(D_gt_v))     # ground_truth输入判别模型
            loss_D = bce_loss(D_out, make_D_label(gt_label, ignore_mask_gt))
            loss_D = loss_D/args.iter_size/2
            loss_D.backward()
            # loss_D_value += loss_D.data.cpu().numpy()[0]
            loss_D_value += loss_D.data.cpu().numpy()

        optimizer.step()
        optimizer_D.step()

        print(('exp = {}'.format(args.snapshot_dir)))
        print(('iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, '
               'loss_semi = {5:.3f}, loss_semi_adv = {6:.3f}'.format(i_iter, args.num_steps, loss_seg_value,
                                                                     loss_adv_pred_value, loss_D_value, loss_semi_value,
                                                                     loss_semi_adv_value)))

        file.write('{0} {1} {2} {3} {4}\n'.format(loss_seg_value, loss_adv_pred_value, loss_D_value, loss_semi_value,
                                                loss_semi_adv_value))

        if loss_seg_value < best_loss:      # 保存最优模型,删除次优模型
            # print('loss:', loss_seg_value, 'best:', best_loss)
            torch.save(model.state_dict(), osp.join(args.snapshot_dir,
                                                    'VOC_epoch_{0}_seg_loss_{1}.pth'.format(i_iter+1, loss_seg_value)))
            torch.save(model_D.state_dict(), osp.join(args.snapshot_dir,
                                                      'VOC_epoch_{0}_seg_loss_{1}_D.pth'.format(i_iter+1, loss_seg_value)))
            delete_models(best_epoch + 1, best_loss)
            best_loss = loss_seg_value
            best_epoch = i_iter

        if i_iter >= args.num_steps-1:  # num_step = 20000
            print('save model ...')
            torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'VOC_'+str(args.num_steps)+'.pth'))
            torch.save(model_D.state_dict(), osp.join(args.snapshot_dir, 'VOC_'+str(args.num_steps)+'_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:  # save_pred_every = 5000
            print('taking snapshot ...')
            torch.save(model.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+str(i_iter)+'.pth'))
            torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+str(i_iter)+'_D.pth'))

    end = timeit.default_timer()
    print(end-start, 'seconds')
    file.close()