def __init__(self,
              opts,
              arch,
              use_bias=True,
              initializers=None,
              regularizers=None,
              custom_getter=None,
              name="graphnn"):
     """
 Input:
 - opts (options) - object with all relevant options stored
 - arch (ArchParams) - object with all relevant Architecture options
 - use_bias (boolean, optional) - have biases in the network (default True)
 - intializers (dict, optional) - specify custom initializers
 - regularizers (dict, optional) - specify custom regularizers
 - custom_getter (dict, optional) - specify custom getters
 - name (string, optional) - name for module for scoping (default graphnn)
 """
     super(GraphLongSkipLayerNetwork,
           self).__init__(custom_getter=custom_getter, name=name)
     self._nlayers = len(arch.layer_lens)
     final_regularizers = None
     if regularizers is not None:
         lin_regularizers = {
             k: v
             for k, v in regularizers.items() if k in ["w", "b"]
         }
     else:
         lin_regularizers = None
     self._layers = [
         layers.GraphSkipLayer(output_size=layer_len,
                               activation=arch.activ,
                               initializers=initializers,
                               regularizers=regularizers,
                               name="{}/graph_skip".format(name))
         for layer_len in arch.layer_lens
     ] + [
         layers.EmbeddingLinearLayer(output_size=opts.final_embedding_dim,
                                     initializers=initializers,
                                     regularizers=lin_regularizers,
                                     name="{}/embed_lin".format(name))
     ]
     self._skip_layer_idx = arch.skip_layers
     self._skip_layers = [
         layers.EmbeddingLinearLayer(output_size=arch.layer_lens[skip_idx],
                                     initializers=initializers,
                                     regularizers=lin_regularizers,
                                     name="{}/skip".format(name))
         for skip_idx in self._skip_layer_idx
     ]
     self.normalize_emb = arch.normalize_emb
Ejemplo n.º 2
0
 def __init__(self,
              opts,
              arch,
              use_bias=True,
              initializers=None,
              regularizers=None,
              custom_getter=None,
              name="graphnn"):
     """
 Input:
 - opts (options) - object with all relevant options stored
 - arch (ArchParams) - object with all relevant Architecture options
 - use_bias (boolean, optional) - have biases in the network (default True)
 - intializers (dict, optional) - specify custom initializers
 - regularizers (dict, optional) - specify custom regularizers
 - custom_getter (dict, optional) - specify custom getters
 - name (string, optional) - name for module for scoping (default graphnn)
 """
     super(GraphConvLayerNetwork,
           self).__init__(custom_getter=custom_getter, name=name)
     self._nlayers = len(arch.layer_lens)
     self._layers = [
         layers.GraphConvLayer(output_size=layer_len,
                               activation=arch.activ,
                               initializers=initializers,
                               regularizers=regularizers,
                               name="{}/graph_conv".format(name))
         for layer_len in arch.layer_lens
     ] + [
         layers.EmbeddingLinearLayer(output_size=opts.final_embedding_dim,
                                     initializers=initializers,
                                     regularizers=regularizers,
                                     name="{}/embed_lin".format(name))
     ]
     self.normalize_emb = arch.normalize_emb
Ejemplo n.º 3
0
 def __init__(self,
              opts,
              arch,
              use_bias=True,
              initializers=None,
              regularizers=None,
              custom_getter=None,
              name="graphnn"):
   super(GraphSkipHopNormedNetwork, self).__init__(opts, arch,
                                                    use_bias=use_bias,
                                                    initializers=initializers,
                                                    regularizers=regularizers,
                                                    custom_getter=custom_getter,
                                                    name=name)
   lin_regularizers = None
   if regularizers is not None:
     lin_regularizers = { k:v
                          for k, v in regularizers.items()
                          if k in ["w", "b"] }
   self._hop_layers = [
     layers.EmbeddingLinearLayer(
       output_size=arch.layer_lens[skip_idx],
       initializers=initializers,
       regularizers=lin_regularizers,
       name="{}/hop".format(name))
     for skip_idx in self._skip_layer_idx[1:]
   ]
Ejemplo n.º 4
0
 def __init__(self,
              opts,
              arch,
              use_bias=True,
              initializers=None,
              regularizers=None,
              custom_getter=None,
              name="graphnn"):
   super(GraphSkipLayerNetwork, self).__init__(custom_getter=custom_getter, name=name)
   self._nlayers = len(arch.layer_lens)
   final_regularizers = None
   if regularizers is not None:
     final_regularizers = { k:v
                            for k, v in regularizers.items()
                            if k in ["w", "b"] }
   self._layers = [
     layers.GraphSkipLayer(
       output_size=layer_len,
       activation=arch.activ,
       initializers=initializers,
       regularizers=regularizers,
       name="{}/graph_skip".format(name))
     for layer_len in arch.layer_lens
   ] + [
     layers.EmbeddingLinearLayer(
       output_size=opts.final_embedding_dim,
       initializers=initializers,
       regularizers=final_regularizers,
       name="{}/embed_lin".format(name))
   ]
   self.normalize_emb = arch.normalize_emb
 def __init__(self,
              opts,
              arch,
              use_bias=True,
              initializers=None,
              regularizers=None,
              custom_getter=None,
              name="graphnn"):
     """
 Input:
 - opts (options) - object with all relevant options stored
 - arch (ArchParams) - object with all relevant Architecture options
 - use_bias (boolean, optional) - have biases in the network (default True)
 - intializers (dict, optional) - specify custom initializers
 - regularizers (dict, optional) - specify custom regularizers
 - custom_getter (dict, optional) - specify custom getters
 - name (string, optional) - name for module for scoping (default graphnn)
 """
     super(GraphSkipHopNormedNetwork,
           self).__init__(opts,
                          arch,
                          use_bias=use_bias,
                          initializers=initializers,
                          regularizers=regularizers,
                          custom_getter=custom_getter,
                          name=name)
     lin_regularizers = None
     if regularizers is not None:
         lin_regularizers = {
             k: v
             for k, v in regularizers.items() if k in ["w", "b"]
         }
     self._hop_layers = [
         layers.EmbeddingLinearLayer(output_size=arch.layer_lens[skip_idx],
                                     initializers=initializers,
                                     regularizers=lin_regularizers,
                                     name="{}/hop".format(name))
         for skip_idx in self._skip_layer_idx[1:]
     ]