Ejemplo n.º 1
0
	parser.add_argument('--pretrainEpochs', help='number of epochs for pretraining', default=PRETRAINEPOCHS)
	parser.add_argument('--trainEpochs', '-e', help='number of epochs for training', default=TRAINEPOCHS)
	parser.add_argument('--batch_size', '-b', help='bastch size', default=BATCH_SIZE)
	parser.add_argument('--dropout', help='dropout probability', default=DROPOUT)
	parser.add_argument('--optim', help='optimiser', default=OPTIM)
	parser.add_argument('--lr', help='learning rate', default=LEARNING_RATE)
	parser.add_argument('--cuda', '-g', help='GPU option', default=CUDA, type=bool)
	parser.add_argument('--maneuvers', help='maneuvers option', default=MANEUVERS, type=bool)
	parser.add_argument('--modelLoc', help='trained prediction store/load location', default=MODELLOC)
	parser.add_argument('--pretrain_loss', help='pretrain loss algorithm', default=PRETRAIN_LOSS)
	parser.add_argument('--train_loss', help='train loss algorithm', default=TRAIN_LOSS)
	parser.add_argument('--list', '-l', action='append', help='DATASet', required=True)

	args = parser.parse_args()

	model = TnpModel(None)

	file_names = []

	for i in args.list:


		folder = os.path.join(args.dir, DATA_FOLDER.format(i))
		video = VIDEO.format(i)
		det = 'det.txt'
		if args.detection: 
			sayVerbose(VERBOSE, "begin detection for {}...".format(folder))
			model.YOLO_detect(folder, video, args.frames, det, "detectedFrames", args.conf, args.nms, args.cuda)    
			sayVerbose(VERBOSE, "finished detection for {}...".format(folder))

		if args.tracking:
Ejemplo n.º 2
0
from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtCore import QThread, pyqtSignal
from view.view import TrackNPredView
from control.controller import Controller
from model.model import TnpModel

if __name__ == "__main__":
    import sys
    app = QtWidgets.QApplication(sys.argv)
    Dialog = QtWidgets.QDialog()

    controller = Controller()
    view = TrackNPredView()
    ## to get attributes
    view.setupUi(Dialog)
    model = TnpModel(controller)
    controller.setView(view)
    controller.setModel(model)

    #show ui
    Dialog.show()
    sys.exit(app.exec_())
Ejemplo n.º 3
0
        val_lst = apol_to_formatted(val_loc, files, output_dir, "val")
        create_data(output_dir, val_lst, args.dir, "val", threadid, class_type)

        test_loc = RAW_DATA
        output_dir = RAW_DATA + '/test_obs/formatted/'
        files = datasets_for_test
        test_lst = apol_to_formatted(test_loc, files, output_dir, "test")
        create_data(output_dir, test_lst, args.dir, "test", threadid,
                    class_type)

        quit()
    print('using {} dataset.'.format(DATASET))

    t0 = time.time()  #ben: initialize time

    model = TnpModel(viewArgs)
    if args.cuda:
        print("using cuda...\n")
    else:
        print("using cpu...\n")

    if LOAD != '':
        model.load(LOAD)
    t1 = time.time()

    if TRAIN:
        model.train(viewArgs['dsId'])

    t2 = time.time()

    if EVAL:
    # output_dir = RAW_DATA + '/val/formatted/'
    # files = [f for f in os.listdir(val_loc) if '.csv' in f]
    # val_lst = argo_to_formatted(val_loc, output_dir, "val")
    # create_data(output_dir, val_lst, args.dir, "val")

    # test_loc = RAW_DATA + '/test_obs/data/'
    # output_dir = RAW_DATA + '/test_obs/formatted/'
    # files = [f for f in os.listdir(test_loc) if '.csv' in f]
    # test_lst = argo_to_formatted(test_loc, files, output_dir, "test")
    # create_data(output_dir, test_lst, args.dir, "test")

    print('using {} dataset.'.format(DATASET))

    t0 = time.time()

    model = TnpModel(viewArgs)
    if args.cuda:
        print("using cuda...\n")
    else:
        print("using cpu...\n")

    if LOAD != '':
        model.load(LOAD)
    t1 = time.time()

    #	for i in range(5):
    #		model.train(i)
    if TRAIN:
        model.train(0)

    t2 = time.time()
Ejemplo n.º 5
0
# ## path settings
# args["dir"] = str(self.view.dataDir.text())
# args["frames"] = str(self.view.framesDir.text())

# ## detection settings
# args["detection"] = str(self.view.detectionSelector.currentText())
# args["detConf"] = float(self.view.detConfidence.text())
# args["NMS"] = float(self.view.nmsInput.text())
# args["display"] = "False"

## prediction settings
args["predAlgo"] = "Traphic"
args["pretrainEpochs"] = 6
args["trainEpochs"] = 10
args["batch_size"] = 64
args["dropout"] = .5
args["optim"] = "Adam"
args["lr"] = .0001
args["cuda"] = True
args["maneuvers"] = False
args["modelLoc"] = "resources/trained_models/Traphic_model.tar"
args["pretrain_loss"] = ''
args['train_loss'] = "MSE"
args["dir"] = 'resources/data/TRAF'

model = TnpModel()

# model.train(args)
model.evaluate(args)