Ejemplo n.º 1
0
def sample(args):
    print('loading VAE at %s' % args.load_model, file=sys.stderr)
    fname, ext = os.path.splitext(args.load_model)
    encoder_path = fname + '.encoder' + ext
    decoder_path = fname + '.decoder' + ext

    vae_params = torch.load(args.load_model, map_location=lambda storage, loc: storage)
    encoder_params = torch.load(encoder_path, map_location=lambda storage, loc: storage)
    decoder_params = torch.load(decoder_path, map_location=lambda storage, loc: storage)

    transition_system = encoder_params['transition_system']
    vae_params['args'].cuda = encoder_params['args'].cuda = decoder_params['args'].cuda = args.cuda

    decoder = Reconstructor(decoder_params['args'], decoder_params['vocab'], transition_system)
    decoder.load_state_dict(decoder_params['state_dict'])

    assert vae_params['args'].prior == 'lstm'
    prior = LSTMPrior.load(args.load_prior, transition_system=decoder_params['transition_system'], cuda=args.cuda)
    print('loaded prior at %s' % args.load_prior, file=sys.stderr)
    # freeze prior parameters
    for p in prior.parameters():
        p.requires_grad = False

    decoder.eval()
    prior.eval()

    if args.cuda:
        decoder.cuda()
        prior.cuda()

    err_num = 0
    total_num = 0

    # while True:
    for sample_id in xrange(10000):
        sampled_z = prior.sample()
        sampled_z = ' '.join(sampled_z)
        sampled_z = sampled_z.replace(' else :', 'else :').replace(' except ', 'except ').replace(' elif ', 'elif ').replace('<unk>', 'unk')

        print('Z: %s' % sampled_z)
        total_num += 1

        try:
            transition_system.surface_code_to_ast(sampled_z)
        except:
            print('Error!')
            err_num += 1
            continue

        print('Sampled NL sentences:')
        sampled_nls = decoder.sample(sampled_z)
        for i, sampled_nl in enumerate(sampled_nls):
            print('[%d] %s' % (i, ' '.join(sampled_nl)))

        print()

    print('Ratio of well-formed samples: %d/%d=%.5f' % (total_num - err_num, total_num,
                                                        (total_num - err_num) / float(total_num)), file=sys.stderr)
Ejemplo n.º 2
0
def train_decoder(args):
    train_set = Dataset.from_bin_file(args.train_file)
    dev_set = Dataset.from_bin_file(args.dev_file)
    vocab = pickle.load(open(args.vocab))

    grammar = ASDLGrammar.from_text(open(args.asdl_file).read())
    transition_system = TransitionSystem.get_class_by_lang(args.lang)(grammar)

    model = Reconstructor(args, vocab, transition_system)
    model.train()
    if args.cuda: model.cuda()
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    def evaluate_ppl():
        model.eval()
        cum_loss = 0.
        cum_tgt_words = 0.
        for batch in dev_set.batch_iter(args.batch_size):
            loss = -model.score(batch).sum()
            cum_loss += loss.data[0]
            cum_tgt_words += sum(len(e.src_sent) + 1
                                 for e in batch)  # add ending </s>

        ppl = np.exp(cum_loss / cum_tgt_words)
        model.train()
        return ppl

    print('begin training decoder, %d training examples, %d dev examples' %
          (len(train_set), len(dev_set)),
          file=sys.stderr)
    print('vocab: %s' % repr(vocab), file=sys.stderr)

    epoch = train_iter = 0
    report_loss = report_examples = 0.
    history_dev_scores = []
    num_trial = patience = 0
    while True:
        epoch += 1
        epoch_begin = time.time()

        for batch_examples in train_set.batch_iter(batch_size=args.batch_size,
                                                   shuffle=True):
            batch_examples = [
                e for e in batch_examples
                if len(e.tgt_actions) <= args.decode_max_time_step
            ]
            # batch_examples = [e for e in train_set.examples if e.idx in [10192, 10894, 9706, 4659, 5609, 1442, 5849, 10644, 4592, 1875]]

            train_iter += 1
            optimizer.zero_grad()

            loss = -model.score(batch_examples)
            # print(loss.data)
            loss_val = torch.sum(loss).data[0]
            report_loss += loss_val
            report_examples += len(batch_examples)
            loss = torch.mean(loss)

            loss.backward()

            # clip gradient
            grad_norm = torch.nn.utils.clip_grad_norm(model.parameters(),
                                                      args.clip_grad)

            optimizer.step()

            if train_iter % args.log_every == 0:
                print('[Iter %d] encoder loss=%.5f' %
                      (train_iter, report_loss / report_examples),
                      file=sys.stderr)

                report_loss = report_examples = 0.

        print('[Epoch %d] epoch elapsed %ds' %
              (epoch, time.time() - epoch_begin),
              file=sys.stderr)
        # model_file = args.save_to + '.iter%d.bin' % train_iter
        # print('save model to [%s]' % model_file, file=sys.stderr)
        # model.save(model_file)

        # perform validation
        print('[Epoch %d] begin validation' % epoch, file=sys.stderr)
        eval_start = time.time()
        # evaluate ppl
        ppl = evaluate_ppl()
        print('[Epoch %d] ppl=%.5f took %ds' %
              (epoch, ppl, time.time() - eval_start),
              file=sys.stderr)
        dev_acc = -ppl
        is_better = history_dev_scores == [] or dev_acc > max(
            history_dev_scores)
        history_dev_scores.append(dev_acc)

        if is_better:
            patience = 0
            model_file = args.save_to + '.bin'
            print('save currently the best model ..', file=sys.stderr)
            print('save model to [%s]' % model_file, file=sys.stderr)
            model.save(model_file)
            # also save the optimizers' state
            torch.save(optimizer.state_dict(), args.save_to + '.optim.bin')
        elif patience < args.patience:
            patience += 1
            print('hit patience %d' % patience, file=sys.stderr)

        if patience == args.patience:
            num_trial += 1
            print('hit #%d trial' % num_trial, file=sys.stderr)
            if num_trial == args.max_num_trial:
                print('early stop!', file=sys.stderr)
                exit(0)

            # decay lr, and restore from previously best checkpoint
            lr = optimizer.param_groups[0]['lr'] * args.lr_decay
            print('load previously best model and decay learning rate to %f' %
                  lr,
                  file=sys.stderr)

            # load model
            params = torch.load(args.save_to + '.bin',
                                map_location=lambda storage, loc: storage)
            model.load_state_dict(params['state_dict'])
            if args.cuda: model = model.cuda()

            # load optimizers
            if args.reset_optimizer:
                print('reset optimizer', file=sys.stderr)
                optimizer = torch.optim.Adam(
                    model.inference_model.parameters(), lr=lr)
            else:
                print('restore parameters of the optimizers', file=sys.stderr)
                optimizer.load_state_dict(
                    torch.load(args.save_to + '.optim.bin'))

            # set new lr
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

            # reset patience
            patience = 0
Ejemplo n.º 3
0
def train_decoder(args):
    train_set = Dataset.from_bin_file(args.train_file)
    dev_set = Dataset.from_bin_file(args.dev_file)
    vocab = pickle.load(open(args.vocab))

    grammar = ASDLGrammar.from_text(open(args.asdl_file).read())
    transition_system = TransitionSystem.get_class_by_lang(args.lang)(grammar)

    model = Reconstructor(args, vocab, transition_system)
    model.train()
    if args.cuda: model.cuda()
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    def evaluate_ppl():
        model.eval()
        cum_loss = 0.
        cum_tgt_words = 0.
        for batch in dev_set.batch_iter(args.batch_size):
            loss = -model.score(batch).sum()
            cum_loss += loss.data[0]
            cum_tgt_words += sum(len(e.src_sent) + 1 for e in batch)  # add ending </s>

        ppl = np.exp(cum_loss / cum_tgt_words)
        model.train()
        return ppl

    print('begin training decoder, %d training examples, %d dev examples' % (len(train_set), len(dev_set)), file=sys.stderr)
    print('vocab: %s' % repr(vocab), file=sys.stderr)

    epoch = train_iter = 0
    report_loss = report_examples = 0.
    history_dev_scores = []
    num_trial = patience = 0
    while True:
        epoch += 1
        epoch_begin = time.time()

        for batch_examples in train_set.batch_iter(batch_size=args.batch_size, shuffle=True):
            batch_examples = [e for e in batch_examples if len(e.tgt_actions) <= args.decode_max_time_step]
            # batch_examples = [e for e in train_set.examples if e.idx in [10192, 10894, 9706, 4659, 5609, 1442, 5849, 10644, 4592, 1875]]

            train_iter += 1
            optimizer.zero_grad()

            loss = -model.score(batch_examples)
            # print(loss.data)
            loss_val = torch.sum(loss).data[0]
            report_loss += loss_val
            report_examples += len(batch_examples)
            loss = torch.mean(loss)

            loss.backward()

            # clip gradient
            grad_norm = torch.nn.utils.clip_grad_norm(model.parameters(), args.clip_grad)

            optimizer.step()

            if train_iter % args.log_every == 0:
                print('[Iter %d] encoder loss=%.5f' %
                      (train_iter,
                       report_loss / report_examples),
                      file=sys.stderr)

                report_loss = report_examples = 0.

        print('[Epoch %d] epoch elapsed %ds' % (epoch, time.time() - epoch_begin), file=sys.stderr)
        # model_file = args.save_to + '.iter%d.bin' % train_iter
        # print('save model to [%s]' % model_file, file=sys.stderr)
        # model.save(model_file)

        # perform validation
        print('[Epoch %d] begin validation' % epoch, file=sys.stderr)
        eval_start = time.time()
        # evaluate ppl
        ppl = evaluate_ppl()
        print('[Epoch %d] ppl=%.5f took %ds' % (epoch, ppl, time.time() - eval_start), file=sys.stderr)
        dev_acc = -ppl
        is_better = history_dev_scores == [] or dev_acc > max(history_dev_scores)
        history_dev_scores.append(dev_acc)

        if is_better:
            patience = 0
            model_file = args.save_to + '.bin'
            print('save currently the best model ..', file=sys.stderr)
            print('save model to [%s]' % model_file, file=sys.stderr)
            model.save(model_file)
            # also save the optimizers' state
            torch.save(optimizer.state_dict(), args.save_to + '.optim.bin')
        elif patience < args.patience:
            patience += 1
            print('hit patience %d' % patience, file=sys.stderr)

        if patience == args.patience:
            num_trial += 1
            print('hit #%d trial' % num_trial, file=sys.stderr)
            if num_trial == args.max_num_trial:
                print('early stop!', file=sys.stderr)
                exit(0)

            # decay lr, and restore from previously best checkpoint
            lr = optimizer.param_groups[0]['lr'] * args.lr_decay
            print('load previously best model and decay learning rate to %f' % lr, file=sys.stderr)

            # load model
            params = torch.load(args.save_to + '.bin', map_location=lambda storage, loc: storage)
            model.load_state_dict(params['state_dict'])
            if args.cuda: model = model.cuda()

            # load optimizers
            if args.reset_optimizer:
                print('reset optimizer', file=sys.stderr)
                optimizer = torch.optim.Adam(model.inference_model.parameters(), lr=lr)
            else:
                print('restore parameters of the optimizers', file=sys.stderr)
                optimizer.load_state_dict(torch.load(args.save_to + '.optim.bin'))

            # set new lr
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

            # reset patience
            patience = 0