def predict(self, num_iterations: int) -> Results: # TODO "method" rst # TODO replace num_activation by proper test """ Parameters ---------- num_iterations : int Discrete number of prediction iteration steps to perform by :method:predict method Returns ------- Results Object containing results from all predication iterations. """ global num_activations num_activations = 0 result = Results() self.adjacency.transposed() self.newly_activated_ = np.where(self.state_matrix_.matrix) for l in range(num_iterations): result.add_result(self.__single_iteration()) # print(num_activations) return result
def save_results(result: Results, dir, num_predictions): for iter in range(num_predictions): matrix = result.get_result(iter).matrix file_name = dir + '/result_' + str(iter) + '.pickle' os.makedirs(os.path.dirname(file_name), exist_ok=True) with open(file_name, 'wb') as file: pickle.dump(matrix, file)
def save_results(result: Results, dir, num_predictions): for iter in range(num_predictions): matrix = result.get_result(iter).matrix file_name = dir + 'result_' + str(iter) + '.pickle' with open(file_name, 'wb') as file: pickle.dump(matrix, file)