Ejemplo n.º 1
0
def main():
    # Take in camera options
    args = sys.argv[1:]
    num_args = len(args)
    if num_args != 5:
        print("Did not input enough camera options")
        sys.exit()
    iso, cont, brt, sat, shutter = args

    #Set Raspistill image options
    dir = "/home/pi/"
    fileName = "img_" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") + ".jpg"
    cmd = "raspistill --ISO {} --contrast {} -- brightness {} --drc high -k --saturation {} --shutter {} -o ".format(
        iso, cont, brt, sat, shutter) + dir + fileName
    subprocess.call(cmd, shell=True)

    #Print model data
    model_wrapper = model.ModelWrapper()
    input_shape = model_wrapper.GetInputShape()
    output_shape = model_wrapper.GetOutputShape()
    preprocessing_metadata = helpers.get_image_preprocessing_metadata(
        model_wrapper)

    #Open image and run recognition
    my_file = Path(fileName)
    if not my_file.is_file():
        print("File Not Found")
        sys.exit()

    sample_image = cv2.imread(fileName)

    input_data = helpers.prepare_image_for_model(
        sample_image,
        input_shape.columns,
        input_shape.rows,
        preprocessing_metadata=preprocessing_metadata)

    input_data = model.FloatVector(input_data)

    predictions = model_wrapper.Predict(input_data)

    prediction_index = int(np.argmax(predictions))

    c_file = open("categories.txt", "r")
    list_of_categories = [(line.strip()).split() for line in c_file]
    c_file.close()

    #Print Results
    print("Model input shape: [{0.rows}, {0.columns}, {0.channels}]".format(
        input_shape))
    print("Model output shape: [{0.rows}, {0.columns}, {0.channels}]".format(
        output_shape))

    print("Category index: {}".format(prediction_index))
    print("Confidence: {}".format(predictions[prediction_index]))
    print("This object ({}) is a {} with confidence of {}".format(
        fileName, list_of_categories[prediction_index],
        predictions[prediction_index]))
Ejemplo n.º 2
0
def main():
    camera = cv2.VideoCapture(0)

    # request a specific resolution (sometimes the camera has very small default resolution)
    helpers.set_camera_resolution(camera, 1280, 720)

    with open("categories.txt", "r") as categories_file:
        categories = categories_file.read().splitlines()

    # Get the model wrapper in order to interact with the model
    model_wrapper = model.ModelWrapper()

    input_shape = model_wrapper.GetInputShape()
    output_shape = model_wrapper.GetOutputShape()

    # Get the model-specific preprocessing metadata
    preprocessing_metadata = helpers.get_image_preprocessing_metadata(model_wrapper)

    while (cv2.waitKey(1) & 0xFF) != 27:
        # Get the image from the camera
        original = get_image_from_camera(camera)

        # Prepare the image to pass to the model. This helper crops and resizes
        # the image maintaining proper aspect ratio and return the resultant
        # image instead of a numpy array.  Additionally, the helper will
        # reorder the image from BGR to RGB
        image, offset, scale = helpers.prepare_image_for_model(
            original, input_shape.columns, input_shape.rows, reorder_to_rgb=True,
            ravel=False, preprocessing_metadata=preprocessing_metadata)

        # Wrap the resulting numpy array in a FloatVector
        input_data = model.FloatVector(image)

        # Get the predictions by running the model. `predictions` is returned
        # as a flat array
        predictions = model_wrapper.Predict(input_data)

        # Reshape the output of the model into a tensor that matches the
        # expected shape
        predictions = np.reshape(
            predictions,
            (13, 13, 125))

        # Do some post-processing to extract the regions from the output of
        # the model
        regions = helpers.get_regions(
            predictions, categories, CONFIDENCE_THRESHOLD, ANCHOR_BOXES)

        # Get rid of any overlapping regions for the same object
        regions = helpers.non_max_suppression(
            regions, OVERLAP_THRESHOLD, categories)

        # Draw the regions onto the image
        scale = (scale[0] * image.shape[1], scale[1] * image.shape[0])
        helpers.draw_regions_on_image(original, regions, offset, scale)

        # Display the image
        cv2.imshow("Region detection", original)
def process_frame(frame, categories, frame_count, output_frame_path):
    if frame is None:
        print("Not valid input frame! Skip...")
        return

    # Get the model's input shape. We will use this information later to resize
    # images appropriately.
    input_shape = model.get_default_input_shape()

    # Get the model's output shape and create an array to hold the model's
    # output predictions
    output_shape = model.get_default_output_shape()
    predictions = model.FloatVector(output_shape.Size())

    # Prepare an image for processing
    # - Resize and center-crop to the required width and height while
    #   preserving aspect ratio.
    # - OpenCV gives the image in BGR order. If needed, re-order the
    #   channels to RGB.
    # - Convert the OpenCV result to a std::vector<float>
    input_data = helpers.prepare_image_for_model(
        frame, input_shape.columns, input_shape.rows)

    # Send the image to the compiled model and fill the predictions vector
    # with scores, measure how long it takes
    start = time.time()
    model.predict(input_data, predictions)
    end = time.time()

    # Get the value of the top 5 predictions
    top_5 = helpers.get_top_n(predictions, 5)

    if (len(top_5) > 0):
        # Generate header text that represents the top5 predictions
        header_text = ", ".join(["({:.0%}) {}".format(
            element[1], categories[element[0]]) for element in top_5])
        helpers.draw_header(frame, header_text)

        # Generate footer text that represents the mean evaluation time
        time_delta = end - start
        footer_text = "{:.0f}ms/frame".format(time_delta * 1000)
        helpers.draw_footer(frame, footer_text)

        # save the processed frame
        output_file_path = os.path.join(output_frame_path, "recognized_{}.png".format(frame_count))
        cv2.imwrite(output_file_path, frame)
        print("Processed frame {}: header text: {}, footer text: {}".format(frame_count, header_text, footer_text))
        return header_text
    else:
        print("Processed frame {}: No recognized frame!")
        return None
Ejemplo n.º 4
0
    def input_callback(self):
        """The input callback that returns an image to the model"""

        # Get an image from the camera. If you'd like to use a different image,
        # load the image from some other source.
        self.image = get_image_from_camera(self.camera)

        # Prepare the image to pass to the model. This helper:
        # - crops and resizes the image maintaining proper aspect ratio
        # - reorders the image channels if needed
        # - returns the data as a ravelled numpy array of floats so it can be
        # handed to the model
        return model.FloatVector(helpers.prepare_image_for_model(
            self.image, self.input_shape.columns, self.input_shape.rows, preprocessing_metadata=self.preprocessing_metadata))
Ejemplo n.º 5
0
def main():
    init_GPIO()
    init_camera()
    init_options()
    shoot_categories = set([504])
    with open("categories.txt", "r") as categories_file:
        categories = categories_file.read().splitlines()
    model_wrapper = model.ModelWrapper()
    input_shape = model_wrapper.GetInputShape()
    preprocessing_metadata = helpers.get_image_preprocessing_metadata(
        model_wrapper)
    while (cv2.waitKey(1) & 0xFF) == 0xFF:
        image = get_image_from_camera(camera)
        input_data = helpers.prepare_image_for_model(
            image,
            input_shape.columns,
            input_shape.rows,
            preprocessing_metadata=preprocessing_metadata)
        input_data = model.FloatVector(input_data)
        predictions = model_wrapper.Predict(input_data)
        top_5 = helpers.get_top_n(predictions, 5)
        header_text = ", ".join([
            "({:.0%}) {}".format(element[1], categories[element[0]])
            for element in top_5
        ])
        helpers.draw_header(image, header_text)
        if top_5:
            print(header_text)
        release_shutter()
        for element in top_5:
            if verbose:
                print(element[0])
            if element[0] in shoot_categories:
                press_shutter()
                break
        cv2.imshow("BirdWatcher", image)
        rawCapture.truncate(0)
Ejemplo n.º 6
0
def main():
    camera = cv2.VideoCapture(0)
    with open("categories.txt", "r") as categories_file:
        categories = categories_file.read().splitlines()
    model_wrapper = model.ModelWrapper()
    input_shape = model_wrapper.GetInputShape()
    preprocessing_metadata = helpers.get_image_preprocessing_metadata(
        model_wrapper)
    while (cv2.waitKey(1) & 0xFF) == 0xFF:
        image = get_image_from_camera(camera)
        input_data = helpers.prepare_image_for_model(
            image,
            input_shape.columns,
            input_shape.rows,
            preprocessing_metadata=preprocessing_metadata)
        input_data = model.FloatVector(input_data)
        predictions = model_wrapper.Predict(input_data)
        top_5 = helpers.get_top_n(predictions, 5)
        header_text = ", ".join([
            "({:.0%}) {}".format(element[1], categories[element[0]])
            for element in top_5
        ])
        helpers.draw_header(image, header_text)
        cv2.imshow("ELL model", image)
Ejemplo n.º 7
0
def main():
    """Entry point for the script when called directly"""
    # Open the video camera. To use a different camera, change the camera
    # index.
    camera = cv2.VideoCapture(0)

    # Read the category names
    with open("dogs.txt", "r") as dogs_file,\
            open("cats.txt", "r") as cats_file:
        dogs = dogs_file.read().splitlines()
        cats = cats_file.read().splitlines()

    # Get the model wrapper in order to interact with the model
    model_wrapper = model.ModelWrapper()

    # Get the model's input dimensions. We'll use this information later to
    # resize images appropriately.
    input_shape = model_wrapper.GetInputShape()

    # Get the model-specific preprocessing metadata
    preprocessing_metadata = helpers.get_image_preprocessing_metadata(
        model_wrapper)

    while (cv2.waitKey(1) & 0xFF) == 0xFF:
        # Get an image from the camera. If you'd like to use a different image,
        # load the image from some other source.
        image = get_image_from_camera(camera)

        # Prepare the image to pass to the model. This helper:
        # - crops and resizes the image maintaining proper aspect ratio
        # - reorders the image channels if needed
        # - returns the data as a ravelled numpy array of floats so it can be
        # handed to the model
        input_data = helpers.prepare_image_for_model(
            image,
            input_shape.columns,
            input_shape.rows,
            preprocessing_metadata=preprocessing_metadata)

        # Wrap the resulting numpy array in a FloatVector
        input_data = model.FloatVector(input_data)

        # Get the predicted classes using the model's predict function on the
        # image input data. The predictions are returned as a numpy array with the
        # probability that the image # contains the class represented by that
        # index.
        predictions = model_wrapper.Predict(input_data)

        # Let's grab the value of the top prediction and its index, which
        # represents the top most confident match and the class or category it
        # belongs to.
        top_n = helpers.get_top_n(predictions, 1, threshold=0.05)

        # See whether the prediction is in one of our groups
        group = ""
        label = ""
        if top_n:
            top = top_n[0][0]
            if prediction_index_in_set(top, dogs):
                group = "Dog"
            elif prediction_index_in_set(top, cats):
                group = "Cat"

        header_text = ""
        if group:
            # A group was detected, so take action
            top = top_n[0]
            take_action(group)
            header_text = "({:.0%}) {}".format(top[1], group)

        helpers.draw_header(image, header_text)

        # Display the image using opencv
        cv2.imshow("Grouping", image)
Ejemplo n.º 8
0
    # Return as a vector of floats
    result = resized.astype(np.float).ravel()
    return result


# Get the input and output shapes
input_shape = model.get_default_input_shape()
output_shape = model.get_default_output_shape()

print("Model input shape: " +
      str([input_shape.rows, input_shape.columns, input_shape.channels]))
print("Model output shape: " +
      str([output_shape.rows, output_shape.columns, output_shape.channels]))

# Create a blank output of the appropriate size to hold the prediction results
predictions = model.FloatVector(output_shape.Size())

# Read in the sample image
image = cv2.imread("coffeemug.jpg")

# Prepare the image to send to the model
input = prepare_image_for_model(image, input_shape.columns, input_shape.rows)

# Send the input to the predict function and get the prediction result
model.predict(input, predictions)

# Print the index of the highest confidence prediction
predictionIndex = int(np.argmax(predictions))
print("Category index: " + str(predictionIndex))
print("Confidence: " + str(predictions[predictionIndex]))
Ejemplo n.º 9
0
# Get the model-specific preprocessing metadata
preprocessing_metadata = helpers.get_image_preprocessing_metadata(
    model_wrapper)

print("Model input shape: [{0.rows}, {0.columns}, {0.channels}]".format(
    input_shape))
print("Model output shape: [{0.rows}, {0.columns}, {0.channels}]".format(
    output_shape))

# Read in the sample image
sample_image = cv2.imread("coffeemug.jpg")

# Prepare the image to send to the model
input_data = helpers.prepare_image_for_model(
    sample_image,
    input_shape.columns,
    input_shape.rows,
    preprocessing_metadata=preprocessing_metadata)

# Wrap the resulting numpy array in a FloatVector
input_data = model.FloatVector(input_data)

# Send the input to the predict function and get the prediction result
predictions = model.predict(input_data)

# Print the index of the highest confidence prediction
prediction_index = int(np.argmax(predictions))
print("Category index: {}".format(prediction_index))
print("Confidence: {}".format(predictions[prediction_index]))
Ejemplo n.º 10
0
Archivo: pets.py Proyecto: ezhangle/ELL
def main():
    # Open the video camera. To use a different camera, change the camera index.
    camera = cv2.VideoCapture(0)

    # Read the category names
    categories = open('categories.txt', 'r').read().splitlines()
    dogs = open('dogs.txt', 'r').read().splitlines()
    cats = open('cats.txt', 'r').read().splitlines()

    # Get the model's input dimensions. We'll use this information later to resize images appropriately.
    inputShape = model.get_default_input_shape()

    # Create a vector to hold the model's output predictions
    outputShape = model.get_default_output_shape()
    predictions = model.FloatVector(outputShape.Size())

    headerText = ""

    while ((cv2.waitKey(1) & 0xFF) == 0xFF):
        # Get an image from the camera. If you'd like to use a different image, load the image from some other source.
        image = get_image_from_camera(camera)

        # Prepare the image to pass to the model. This helper:
        # - crops and resizes the image maintaining proper aspect ratio
        # - reorders the image channels if needed
        # - returns the data as a ravelled numpy array of floats so it can be handed to the model
        input = helpers.prepare_image_for_model(image, inputShape.columns,
                                                inputShape.rows)

        # Get the predicted classes using the model's predict function on the image input data.
        # The predictions are returned as a vector with the probability that the image
        # contains the class represented by that index.
        model.predict(input, predictions)

        # Let's grab the value of the top prediction and its index, which represents the top most
        # confident match and the class or category it belongs to.
        topN = helpers.get_top_n(predictions, 1, threshold=0.05)

        # See whether the prediction is in one of our groups
        group = ""
        caption = ""
        label = ""
        if len(topN) > 0:
            top = topN[0]
            label = categories[top[0]]
            if label_in_set(label, dogs):
                group = "Dog"
            elif label_in_set(label, cats):
                group = "Cat"

        if not group == "":
            # A group was detected, so take action
            top = topN[0]
            take_action(group)
            headerText = "(" + str(int(top[1] * 100)) + "%) " + group
        else:
            # No group was detected
            headerText = ""

        helpers.draw_header(image, headerText)

        # Display the image using opencv
        cv2.imshow('Grouping', image)
Ejemplo n.º 11
0
def main():
    # Open the video camera. To use a different camera, change the camera
    # index.
    camera = cv2.VideoCapture(0)

    # Read the category names
    with open("categories.txt", "r") as categories_file:
        categories = categories_file.read().splitlines()

    # Get the model's input shape. We will use this information later to resize
    # images appropriately.
    input_shape = model.get_default_input_shape()

    # Get the model's output shape and create an array to hold the model's
    # output predictions
    output_shape = model.get_default_output_shape()
    predictions = model.FloatVector(output_shape.Size())

    # Declare a variable to hold the prediction times
    prediction_times = []
    mean_time_to_predict = 0.0

    while (cv2.waitKey(1) & 0xFF) == 0xFF:
        # Get an image from the camera.
        image = get_image_from_camera(camera)

        # Prepare an image for processing
        # - Resize and center-crop to the required width and height while
        #   preserving aspect ratio.
        # - OpenCV gives the image in BGR order. If needed, re-order the
        #   channels to RGB.
        # - Convert the OpenCV result to a std::vector<float>
        input_data = helpers.prepare_image_for_model(image,
                                                     input_shape.columns,
                                                     input_shape.rows)

        # Send the image to the compiled model and fill the predictions vector
        # with scores, measure how long it takes
        start = time.time()
        model.predict(input_data, predictions)
        end = time.time()

        # Get the value of the top 5 predictions
        top_5 = helpers.get_top_n(predictions, 5)

        # Generate header text that represents the top5 predictions
        header_text = ", ".join([
            "({:.0%}) {}".format(element[1], categories[element[0]])
            for element in top_5
        ])
        helpers.draw_header(image, header_text)

        # Generate footer text that represents the mean evaluation time
        mean_time_to_predict = helpers.get_mean_duration(
            prediction_times, end - start)
        footer_text = "{:.0f}ms/frame".format(mean_time_to_predict * 1000)
        helpers.draw_footer(image, footer_text)

        # Display the image
        cv2.imshow("ELL model", image)

    print("Mean prediction time: {:.0f}ms/frame".format(mean_time_to_predict *
                                                        1000))