Ejemplo n.º 1
0
def train_model_scenario_2(n, model_fname, opponet_model_fname, alpha=0.1, iterations=5000):
  alpha0 = alpha
  decay_rate = 0.01
  modelInstance = model.load(opponet_model_fname)
  W0 = modelInstance['W']
  b0 = modelInstance['b']

  if model_fname == opponet_model_fname:
    W = W0
    b = b0
  else:
    make_movement_fn = lambda x: model.predict2(W0, b0, x)
    (W, b) = model.initialize_weights(n)

  for i in range(0, iterations):
    if model_fname == opponet_model_fname:
      make_movement_fn = lambda x: model.predict2(W, b, x)

    ex = training.make_training_examples(make_movement_fn)

    X = ex['X']
    Y = ex['Y']

    # displayTrainingExamples(X, Y)

    # (dW, db) = model.calcGradients(W, b, X, Y)
    (dW, db, _) = model.back_propagation(n, W, b, X, Y)

    alpha = alpha0 / (1 + decay_rate * i)

    model.update_weights(W, dW, b, db, alpha)

    if i % 100 == 0:
      print('iteration ' + str(i))
      (aL, _) = model.forward_propagation(W, b, X)
      cost = model.cost_function(Y, aL)
      print('cost')
      print(cost)
      print('alpha')
      print(alpha)

    # if i % 1000 == 0:
    #   is_back_prop_correct = model.checkBackPropagation(n, W, b, X, Y)

    #   if not is_back_prop_correct:
    #     print("BP is not correct")
    #     exit()

  print('------ end -------')

  model.save(n, W, b, model_fname)
Ejemplo n.º 2
0
def spy_on_training_process(model_fname):
  model_instance = model.load(model_fname)

  n = model_instance['n']
  W = model_instance['W']
  b = model_instance['b']
  
  vdW = np.zeros(W.shape)
  vdb = np.zeros(b.shape)

  alpha0 = 0.3
  beta=0.9
  iterations = 100000
  decay_rate = 4.0 / iterations

  pos_trains = 0
  x_to_investigate = None

  for i in range(0, iterations):
    make_movement_fn = lambda x: model.predict2(W, b, x)

    ex = make_training_examples(make_movement_fn)

    X = ex['X']
    Y = ex['Y']

    x = X[:, 0].reshape(9, 1)

    if x_to_investigate == None:
      x_to_investigate = x
      position_to_investigate = x_to_investigate.reshape(3, 3)

    if (x == x_to_investigate).all():
      position.print_position(position_to_investigate)
      (_, _, aLbefore) = model.predict3(W, b, x_to_investigate)

    (dW, db, _) = model.back_propagation(n, W, b, X, Y)

    alpha = alpha0 / (1.0 + decay_rate * i)

    vdW = beta * vdW + (1 - beta) * dW
    vdb = beta * vdb + (1 - beta) * db

    W = W - alpha * dW
    b = b - alpha * db

    if i > 0 and i % 1000 == 0:
      model.save(n, W, b, model_fname)
      print('========saved=======')

    if (x == x_to_investigate).all():
      pos_trains += 1
      position.print_position(position_to_investigate)
      (_, _, aLafter) = model.predict3(W, b, x_to_investigate)
      print('\niteration: %d, position trained times: %d' % (i, pos_trains))
      y = Y[:, 0].reshape(9, 1)
      table = np.concatenate((aLbefore, aLafter, y), axis = 1)
      print(table)
Ejemplo n.º 3
0
def generate_and_save_m_training_examples(m,
                                          make_movement_fn=None,
                                          model_fname=None,
                                          traing_fname=None):
    if make_movement_fn == None and model_fname != None:
        modelInstance = model.load(model_fname)
        W = modelInstance['W']
        b = modelInstance['b']
        make_movement_fn = lambda x: model.predict2(W, b, x)

    trainingExamples = make_training_examples(make_movement_fn)

    X = trainingExamples['X']
    Y = trainingExamples['Y']

    for i in range(0, m):
        trainingExamples = make_training_examples(make_movement_fn)
        X = np.append(X, trainingExamples['X'], axis=1)
        Y = np.append(Y, trainingExamples['Y'], axis=1)

        if len(X[0]) >= m:
            break

        if i % 100 == 0:
            print("Done: " + str(len(X[0])))

    X = X[:, 0:m]
    Y = Y[:, 0:m]

    if traing_fname == None:
        save_training_examples({
            'X': X,
            'Y': Y,
        })
    else:
        save_training_examples({
            'X': X,
            'Y': Y,
        }, file_name=traing_fname)
Ejemplo n.º 4
0
def train_model_scenario_4(model_fname, alpha0=1, iterations=500000, beta=0.9):
  debug = False

  model_instance = model.load(model_fname)

  n = model_instance['n']
  W = model_instance['W']
  b = model_instance['b']
  
  vdW = np.zeros(W.shape)
  vdb = np.zeros(b.shape)

  decay_rate = 9.0 / iterations # it will reduce final alpha 10 times

  for i in range(0, iterations):
    if i % 1000 == 0:
      print('i: %d' % (i))

    # debug = True if i % 500 == 0 else False

    make_movement_fn = lambda x: model.predict2(W, b, x)

    ex = training.make_training_examples(make_movement_fn)

    X = ex['X']
    Y = ex['Y']

    if debug:
      print(X)
      print(Y)
      for j in range(len(X.T) - 1, -1, -1):
        x = X.T[j]
        nextPosition = position.transform_vector_into_position(x)
        x = position.transform_position_into_vector(nextPosition)

        position.print_position(nextPosition)

        (aL, _) = model.forward_propagation(W, b, x)

        print("\naL")
        print(aL)

        print('\n predicted ')

        movement = model.predict(W, b, x)
        position.print_movement(movement)

        print(' expected ')

        y = Y.T[j]
        position.print_movement(y.reshape(9, 1))

        raw_input("Press Enter to continue...")

    # displayTrainingExamples(X, Y)

    # (dW, db) = model.calcGradients(W, b, X, Y)
    (dW, db, _) = model.back_propagation(n, W, b, X, Y)

    if debug:
      if i > 0 and i % 3000 == 0:
        is_back_prop_correct = model.check_back_propagation(n, W, b, X, Y)

        if is_back_prop_correct:
          print("BP is OK")
        else:
          print("BP is not correct")
          exit()

    alpha = alpha0 / (1.0 + decay_rate * i)

    # if debug:
    if i % 1000 == 0:
      print("alpha:")
      print(alpha)

    vdW = beta * vdW + (1 - beta) * dW
    vdb = beta * vdb + (1 - beta) * db

    # model.updateWeights(W, dW, b, db, alpha)

    # W = W - alpha * vdW
    # b = b - alpha * vdb
    W = W - alpha * dW
    b = b - alpha * db
    
    if i > 0 and i % 50 == 0:
      model.save(n, W, b, model_fname)
      if debug:
        print("model saved")

  print('------ end -------')

  model.save(n, W, b, model_fname)
Ejemplo n.º 5
0
import model

#Test 1

model.load_data('data/train.csv', 'data/test.csv')
train_tweets, test_tweets = model.preprocess_data()
X,y,test, feature_names = model.feature_extraction(train_tweets, test_tweets)
clfs = model.train2(X,y)


test_prediction = model.predict2(clfs, test)
model.saveResults('output/somePrediction.csv', test_prediction)