import tensorflow as tf
from FaceAging import FaceAging
from os import environ
import argparse

import model as M
M.set_gpu('1')

environ['TF_CPP_MIN_LOG_LEVEL'] = '3'


def str2bool(v):
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')


parser = argparse.ArgumentParser(description='CAAE')
parser.add_argument('--is_train', type=str2bool, default=True)
parser.add_argument('--epoch', type=int, default=250, help='number of epochs')
parser.add_argument('--dataset', type=str, default='UTKFace', help='training dataset name that stored in ./data')
parser.add_argument('--savedir', type=str, default='save', help='dir of saving checkpoints and intermediate training results')
parser.add_argument('--testdir', type=str, default='None', help='dir of testing images')
parser.add_argument('--use_trained_model', type=str2bool, default=True, help='whether train from an existing model or from scratch')
parser.add_argument('--use_init_model', type=str2bool, default=True, help='whether train from the init model if cannot find an existing model')
FLAGS = parser.parse_args()

Ejemplo n.º 2
0
import tensorflow as tf
from FaceAging import FaceAging
from ops import *
from scipy.misc import imread, imresize, imsave

import model as M

M.set_gpu('0')

import os
if not os.path.exists('./res/'):
    os.mkdir('./res/')

sess = tf.Session()
net = FaceAging(sess, is_training=False, size_batch=5)
net.load_checkpoint()


def generate(img, sample_gender, pref):
    for i in range(10):
        age = np.ones([len(img), 10], dtype=np.float32)
        age = age * -1.
        age[:, i] = 1.
        gen = net.session.run(net.G,
                              feed_dict={
                                  net.input_image: img,
                                  net.age: age,
                                  net.gender: sample_gender
                              })
        gen = gen + 1.
        gen = gen * 0.5
Ejemplo n.º 3
0
import network as N
import numpy as np
import model as M
import tensorflow as tf
import cv2

M.set_gpu('2')


class recon():
    def __init__(self, step):
        with tf.variable_scope('Input_holders'):
            self.inpholder = tf.placeholder(tf.float32,
                                            [None, step, 256, 256, 3])
            self.step = step
            self.targetholder = tf.placeholder(tf.float32,
                                               [None, step, 256, 256, 3])

        with tf.variable_scope('Head'):
            inp_split = tf.unstack(self.inpholder, axis=1)
            features = []
            for i in range(len(inp_split)):
                features.append(N.conv_layers(inp_split[i], i != 0))
            features = tf.stack(features, axis=1)

        lstm_out = M.SimpleLSTM(4 * 4 * 128).apply(features)
        with tf.variable_scope('Tail'):
            feat_split = tf.unstack(lstm_out, axis=1)
            # I try the last frame for now
            feat = feat_split[-1]
            A, C = N.deconv_layers(feat)
Ejemplo n.º 4
0
import AIM_gen
import tensorflow as tf
import numpy as np
import model as M
import cv2

M.set_gpu('3')

aim_mod = AIM_gen.AIM_gen()

# get data_reader
import data_reader

data_reader = data_reader.data_reader('outpt.txt')

BSIZE = 32
ITER_PER_EPOC = 200000 // BSIZE
EPOC = 50
MAX_ITER = ITER_PER_EPOC * EPOC

ETA = M.ETA(MAX_ITER)
ETA.start()
for iteration in range(MAX_ITER + 1):
    img, age_fake, age = data_reader.get_train_batch(BSIZE)
    losses = aim_mod.train(img, age_fake, age, normalize=True)
    if iteration % 10 == 0:
        print('------ Iteration %d ---------' % iteration)
        aim_mod.display_losses(losses)
        print('ETA', ETA.get_ETA(iteration))
    if iteration % 1000 == 0 and iteration > 0:
        aim_mod.save('%d.ckpt' % iteration)